—AENEERSS BB SR E

PROCEEDINGS
OF
INTERNATIONAL
COMPUTER

SYMPOSIUM
1978

VOLUME ONE

37 A B E

PROCEEDINGS
OoF

INTERNATIONAL COMPUTER SYMPOSIUM 1978

DECEMBER 18-20, 1978
NANKANG, TAIPEI, REPUBLIC OF CHINA

VOLUME ONE

TO CELEBRATE THE 50TH ANNIVERSARY
OF ACADEMIA SINICA

ACADEMIA SINICA PUBLICATION

INTERNATIONAL COMPUTER SYMPOSIUM 1978

December 18—-20, 1978

Nankang, Taipei, Republic of China

HONORARY CHAIRMAN

DR.S. L. CHIEN
PRESIDENT, ACADEMIA SINICA, R.Q.‘C.

~ GENERAL CHAIRMAN

DR.JULIUS T. TOU
Member of Academia Sinica, R.O.C.
University of Florida, U.S.A.

ADVISORS

L. A. CHEN Vice Minister of Education, R.O.C.
HOWELL S. C: CHOU President, Computer Society of The Republic of China
YAQHAN CHU Professor, University of Maryland, U.S.A. |
H.C. FANG » President, Industry Technology Research Institute, R.O.C.
I T HO Senior Engineer, IBM, USA.
| N. H KUO Dean, College of Engineering, National Chiao Tung University, R.O.C.
K. C. LEE, Director, EDP Center, DGBAS, Executive Yuan, R.O.C.
S. S. SHU Chairman, National Sciénc_e Council, R.O.C.

C.CYU Dean, College of Engineering, National Taiwan University, R.O.C.

Proceedings of International Computer Symposium 1978 (Vol. 1)

DO NOT WRITE MORE AXIOMS THAN YOU HAVE TO

T.H.C. ¢EQUENO AND P.A.S. VELOSO
DEPTQ INFORMATICA, PONIIFTCIA UNIVERSIDADE CATOLICA
22453 RIO DE JANEIRO, RJ, BRAZIL

ABSTRACT

Abstract data types have been used as a powerful tool to construct elegant programs by

factorization into a program manipulating data types and implementation of the data types

in terms of selected representations. This requires the data types to be specified rormally

in a representation-independent manner, thus bringing about the problem of correctness of

specification. The main difficulty resides in writing a set of correct axioms that is

sufficient to completely characterize the data type. Here a methodology is presented to

help solving this problem by guiding in the discovery of the axioms and by indicating when

they are sufficient.

The method consists of electing a canonical form for the data type and then using it to

describe the- operations. Analysis of this description suggests candidates for axioms

which

are checked to be correct or modified. Once this process is over one is sure that no axioms

are missing. A justification of the method for data types regarded as initial

algebra

specifiable by conditional axioms is outlined, based on the concept of canonical " term

algebra. Two data types - finite sets of natural numbers and traversable stack - are

specified to illustrate the application of the method.

INTRODUCTION
Several methods have been proposed for
the specification of a data type by presenting
some of its basic properties (axioms) in a
representation-independent manner1 The main
difficulties in writing an axiomatic
specification are: what axioms to write ' and

when to stop writing them, i.e., if the axioms

written are sufficient to define the data type.

Here we present a methodology that helps in
both difficulties by guiding in the discovery
of the axioms and by indicating when they

are sufficient.

Abstract data types have been used as a
powerful programming tool. ILts use provides an
elegant construction of the program by fac-
toring it in two parts: a program that manipu-
lates an abstract data type and an implementaj
tion of the data type in terms of some selected
representation. The correctness proof of the
program can also be factored in the proof of
the program that manipulates the abstract
data type and the proof of the correctness of
the implementation of the data type.Both proofs
require a formal specification of 'the data ty-

pez. The methodology presented comsists of

487

Proceedings of International Computer Symposium 1978 (Vol. 1)

DO NOT WRITE MORE AXIOMS THAN YOU HAVE TO

T.H.C. PEQUENO AND P.A.S. VELOSO
DEPT9 INFORMATICA, POGNTIFICIA UNIVERSIDADE CATOLICA
22453 RIO DE JANEIRO, RJ, BRAZIL

, ABSTRACT

Abstract data types have been used as a
powerful tool to construct elegant programs
by factorization into a program manipulating
data types and»implementation of the data
types in terms of selected representations;
This requires the data.types to be specified
formally in a representation—independent
manner, thus bringing about the problem of
correctness of specification. The main
difficulty resides in writing a set of‘
correct axioms that is sufficient to
completely characterize the data type. Here
a'methodology is presented to help solving
this problem by guiding in the discovery of
the axioms and by indicating when they are
sufficient.

The method consists of electing a canonical
form for the data type and then using it to
describe the operations. Analysis of this
description suggests candidateé for axioms
which are checked to be correct or modified.
Once this process is over one is sure that
no axioms are missing. A jusfification of
the method for data types regardedbas initial
algebras specifiable by conditional axioms is
outlined, based on the concept of canonical

term algebra. Two data types — finite sets of

natural fiumbers and traversable stack - are

specified to illustrate the application of the
method.
INTRODUCTION
Several methods have been proposed for
the specification of a data type by presenting
some of its basic properties (axioms) in a
representation-independent mannerl- The

main difficulties in writing an axiomatic

"specification are: what axioms to write and

when to stop writing them, i.e., if the axioms
written are sufficient to define the data
type. Here we present a methodplogy that helps
in both difficulties by guiding in the
discovery of the axioms and by indicating when
they are sufficient.

Abstract data types have beeﬁ used as a
powerful programming tool. Its use provides an
elegant construction of the program by
factoring it in two parts: a program that
ﬁaﬁipulates an abstract data fype and an
implementation of the data type in terms of
some selected representation. The correctness
proof of the program can also be factored in
the proof of the program that manipulates the
abstract data type and the proof of the
correctness of the implementation of the data
type. Both proofs require a formal specifica-
tion of the data typez.

The methodology presented consists of

488

Proceedings of International 'Comphter Symposium 1978 {Voi. 1)

the choice of a canonical form for the data
type and in the analysis of the effect of
the application of each operation of the data

type on this canonical form. This analysis

suggests what axioms are needed and,once one

has done it for all the operations, one can
be sure that no more axioms are necessary.
For abstract data types regarded as
initial "algebras, using conditional
equations gs axioms, a formal justification

of the methodology can be provided, based

. 3
on the concept of canonical term algebra™’

Two examples are presented to illus-
trate the methodclogy: finite sets of natural
numbers and traversable stack (the latter
having been the pivot of a recent controversy
in SIGPLAN Notices).

AN INTRODUCTORY EXAMPLE

Suppose. we want to specify a data type
in a representation-independént manner. We
are given its operations and an informal
specification by means of a model. We are
required to define the type using only its
properties.

Let us consider the data tyﬁe natural
numbers Qith equalitys. It consists of
two sorts nat for the natural numbers and
bool for the boolean values true and false.
The operations are represented in the ADJ-

7

like diagram5 in Fig. 1.

The intended meanings of these opera-
tions are the usual ones, as suggested by
their mnemonical names. This is going to be
our informal model.

It is clear that each natural number can
be represented as a finite number of applica-
tions (maybe =zero) of succ to 0, i.e., by

the term squﬁ(g),Afor some n. Notice that

distinct terms represent distinctnatural num-
bers. Thus these terms can be regarded as
canonical representatives for nat.

We are now able to give a more precise
specification of the operations by describing
their effects on these canonical terms.Namely

(n+1)(9)

(1) succ[succ?(g)]=succ

true if m = n

@) eqlsuce™(©),suee™ @1 £35, 15 m 7

We are going to view. axioms as rules to
transform the lefthand sides of.the above l
definitions into the require righthand sides.

In the first definition the lefthand
side is already in the desired form, thus
requiring no axioms.

The Eransformatiqn of ESKEBssﬁ(Q)’
EEEEP(Q)) into'EEEg_or false, according to the
definition (2), can be done in two steps, as
follows.

1. Decrease the number of succ's in both
arguments simultaneously, while possible.
This would be achieved by the axiom
N1: eq(succ(i),succ(i)) = eq(d,]j)

The validity ¢f this axiom can be checked by
replacing the variables i and j by canonical
terms and using (1) and (2).

'By applying N1 as far as we canwe get one of

the following terms

ﬂ(g’g) ifm=n
eq(suce ™™ (0,0) ifm >
eq(0,suce @™ (0)) ifm<n

2. Reduce the term obtained above to true or
false by directly applying one of the
following axioms o
N2 eq(0,0) = true
N3: eq(succ(i),0) = false

N4: eq(0,succ(j)) = false

We can be sure that we do not need more

489

Proceedings of International Computer Symposium 1978 (Vol. 1)

axioms because we were able to reduce any
term to its canonical representative. Thus,Nl
through N4 give a complete specification for
the data type
THE METHODOLOGY

" The above method can be generalized to
a methodology, which can be used to give an
axiomatic specification for a data type. The
syntax of the data type is supposed to be
given by a set I of operations.Its semantics
is given (formally or informally) by some
other method, for instance, by means of a
model.

The methcdology consists of the follow-

ing steps:
1. Elect a canonical form, i.e., a set C of

terms such that every element of the

data type is uniquely represented in C
and whenever Oty...t is in C then so

are t ..,tn, 0 being an operation in I.

1’
2. Translate the given specification into a
specification of the operations in terms

of the canonical form of 1.

3. For each operation 0 ¢ I, write axioms to

transform each term of the .form Ocl...cn,

where ¢ sc are canonical representa-

17
tives, into the appropriate canonical
representative given by 2.

In many cases we can perform 3 by steps
using the following heuristics

3.1) devise a simpler transformation that
"approximates' the desired transforma-—
tion;

3.2) write "candidate axioms" to perform the
simpler transformation (which - often
suggests some candidates);

3.3) check that these candidate axioms

a) are valid (by using the given specifi

cation or the ome given by 2),
b) indeed perform the desired transforma
tion.

This methodology can be formally justi-

fied for data types that can be regarded as’

(many~sorted) algebras in which every element
is the value of a variable-free term. A
detailed proof would require some algebraic

tools “

Actually, steps 1 and 2 of the
methodology guarantee that C is a canonical
term algebra3 and step 3 guarantees that
C is isomorphic to the initial algebra in the

category of all Z-algebras satisfying those

axioms (cf. theorem 53).

A few remarks about the methodology are
in order. Firstly, we can treat the various
sorts modularly. Secondly, the usefulness of
the methodology hinges on the selection of a
convenient canonical form (in fact, this is
the most creative part), even though there
always exists some initial canomnical term
algebra (cf. theorem 43).

AN ILLUSTRATIVE EXAMPLE:
SETS OF NATURAL NUMBERS

To illustréte the method described let

us consider a data type comsisting of three

gsorts: natural numbers, sets and boolean

values with the following operations

0 : - nat
succ : nat - nat
eq ¢ nat x nat - bool

{1} : nat - set

¢ T > set

del @ set x nat > set
U i oset x set > set
has : set x nat -+ bool

—1 i bool -+ bool
true : -+ bool

false : -+ bool

490

Proceedings of International Computer Symiposium 1978 {Vol. 1)

where nat, bool, succ, eq, u, true and false

are the same as before. U, del, stand for

union, delete and negation. { } gets a
singleton from a natural number (we will use
{i}, instead of { } (i)). del(s,i) gives s
minus {i}, if i belongs to s, and gives s,
otherwise. Eﬂi(s’i) verifies whether 1
belongs to s or not. The other operations
have the usual meanings.
The ADJ-type diagranéin Fig. 2

represents the data type.

To follow the method we begin by choosing

canonical'forms for the sorts involved. An
element b of the sort bool has an obvious
form that is

" true

i false

For the sort pat we will use the form EEEE?Q
as before.

Finally for an element s of sort set we will
adopt the form

s = g(..h(g(¢,{il}),{i2}),..-),{in})

<

where for all 1 £ k, j < n if k > j then

ik‘> If n is zero then we agree that s is

b.

i..
]

For notational convenience we will

write s as

n

U (d)dl N

d) 3

- n

where d, = {i.} for 1
]]

i

Before proceeding with the method = one

<

<

.

must convince oneself that there is a one-to-
one correspondence between the expressions of
the form above and the finite sets of natural
to be sure that it is in fact

numbers, a

canonical form.

The second step of the method is to givyg,

a specification of ‘the operations in terms of

the canonical forms. For succ and eq this was

done before so we will do it for the other

operations.

3) {i} = v'(¢,{iD)

(4) del(U™(6d;...d) 1)
’ Un-l

jo1dgereedy)

if dj={i}for some 1<j<n

(¢d;...d

Son ,
- U (¢d1...dn) otherwise

(5) U0, .. .d), 07 (6a] . .1) =0 (be .. .ep)

where <e1...ek

repetitions of <d

> is the merge without

1 .dn>with <di .. 'dr‘1~>'
n .

(6) has(!_(¢dl...dn),1) =

| true if {i} = dj for some 1<j=n
§ false otherwise
(7) ~— (true) = false

(8) — (false) = true

We proceed now by imagining the transfor-

mations necessary to convert the terms on the

491

lefthand sides according to their definitions
and By writing suitable axioms to do it. This
is already done for succ and eq, so we will

do it for the other operations. Let us begin

with union. The transformation on

m n y ' .
U (9d; .- vd), U (0d] .. .d1)) (i)
can be performed in four steps.

L. The symbol "U" must appear at the begining
of the term. The following axiom can move

an internal "U" to the begining
St: E(sl’*q(SZ’d)) = H(H(slasz),d)

To check the validity of S1 let us

substitute canonical representatives for

s, and §5 on both sides of S1. On the

1
lefthand side we get

U™ (¢d,...d), UUT(P,dl...d"),d)

U 100+dy)e DA (,dy...d),

By the definition of {} we can substitute

U(¢,d) for d. By applying the definition

Proceedings of International Computer Symposium 1978 (Vol. 1)

of union to H(Hg(¢,di...d;),g(¢d))and then

to the entire term we get

k
U (¢e1...ek)
where <e]...ek>is the merge, without rep-
etitions, of <d,...d »,<d!...d'> and d.
1 m 1 n

The substitution into the righthand
side yields
T 19} [1
U@ (6d, .- d), 07 (9d) 5 d 1)) Q)

we can again substitute U(¢,d) for d and

apply the definition of union to
m) n i 1
o (¢dl...dm), U (¢dl...dn))

and then to the entire term to get the
same result as before.

The validity checks of the axioms along
this example can be done in a similar way

and are left to the reader.

The application n times of S1 to (i) will

produce

n, . m ' 1 '
U (pd; . d Y9d .. d!)d)

which can be rewritten as

Um+n+1

U (@dl...dn¢di{.;dé) (i)

. We need to eliminate the double occurrence

of ¢ in (ii).The following axiom can do it
§2: U(s,¢) = s

The application of $2 to (ii) will produce

U (gd; . ddldly (iii)
In (iii) the singletons di and di may not
be in the desired order so we must be able
to interchange them. The following axiom

allows us to do it

§3: U(U(s,d;),d,) = UU(s,dy),dy)
Convenient applications of S3 can put the
singletons of (iii) in the correct order
but some of them may appear twice because

some di may be equal to some dj. To

eliminate these repetitions we can apply

One can compare the axioms S1 to S4. that
we got here with the axioms set-1 through
set—4 presented by ADI* to conélude that our
axioms are one by one a bit weaker than theirs
but for 52, which is set-1. At a first glance
it is surprising the fact that the two systems
of axioms have the same power (which they do,
as both are complete). This happens'because
our axioms are "more independent' so.to speak,
than theirs. The reader is asked to try as an
exercise to prove set-1 through set=4 from S1
through S4.

To discover the transformations on
égljyﬁ(¢d1...dn),i) to conform the definition
of del we will examine two cases:

1. There is a j, I<j<n such that dj = {i}; In
this case we have to eliminate dj. We. can
use 83 to move dj to the right and get

n .
égl(g'(¢d1"'dj~kdj+1"'dndj)’l)

Now dj can be eliminated by the following

axiom

§5: del(U(s,{i}),1) = del(s,1)
By applying S5 we get

de1kgﬁ'1(¢d1...djdj+l...dn),i)

So we have reduced the first case to the

second one.

2. There is no dj such that {i} = dj. In this
case what we would like to do is just to
"erase" del and i of the expression. The
following equation does just that

del(s,i) = s
But‘unfortunatély it cannot be an axiom
since it 1s not valid because it obviously
fails when i belongs to s. This difficulty

can be overcome by using a conditional

492 -

Proceedings of International Combuter Symposium 1978 (Vol. 1)

equation3
- 86: has(s,i) = false + del(s,i) = s
To get true or false from
hﬁi(yé(¢dl...dn),i) we can apply one of
the following axioms,as the case may be
S$7: has(U(s,{i}),i) = true
88: eq(i,j)=false ~
has (U(s,{i]),]) = has(s,})
In the first case we are done. In
the second case we can reapply S8 unti.l
we reach the first case or has(¢,j) which
is of course false
$9: has($,j) = false
Finally for — we have the obvious axioms:
Bl: = true - false -
B2: - false = true .
We have written all the axioms that we
need since we andlised all the operations
except {} but note that the value of {i} can

be obtained directly from S2.

A MORE CONVINCING EXAMPLE:
TRAVERSABLE STACK

A traversable stack is similar to an
ordinary pushdown stack but it has the added
ability that readout is not restricted to the
topmost position. A version of traversable
stack has played a key role in a recent
controversy about the limitations of alge~
braic specification techniques7’l4

Our version of traversable stack of D
(where D is some already specified sort, say,
integers) may be described informally as '
follows. A configuration of a traversable
stack of D is a linear array of elements of D
together with 2 pointers, one to the top
position t, and an ilnner one which may point
to any position 1 £ t. In general we require

0<ist except for the empty stack, which. has

i=t=0.
The operations are
—createS, which creates an empty stack with
both pointers set to 0;
~pushS, which pushes an element of D on top of
a stack, increasing both pointers by one;
—-downS, the effect of which is to move -the
inner pointer one step toward the bottom by
one, if possible; otherwise it gives errorS;
-popS, which removes the top element, decrea-
sing both pointers by one, if possible; other
wise it gives error$;
-returnS, which resets the inner pointer to
the frop;
-read3, to read out the content of tHe cell
pointed by the pointer i, if possible; other-
wise giving errorD (a distinguished element
“in D)3 ’
-errorS, the error condition of stack.
The syntactical specification of the
type is as in Fig. 3.
A configuration containing the elements
IR RPN of D, in this order, can be obtained
from the empty stack create$ via a éequence of
m pushS's. This gives both pointers at m. If
the inner pointer is to have value i, with .
O<ism, we must then apply n = m-i downS$'s.
Thus,any configurarion can be represented
in a unique way, as
(a) errors, .or
(b) createS, or

(c) downS(...downS(pushS(...pushS(createS,a]),

...,am))...),
which we abbreviate as §9E3§é Bgihgm(al,...am)
for some 0<n<m, with all ai’s distinct and
different from errorD.
This should be clear from the above informal

description, which suggested it.

493

Proceedings of International Computer Symposium 1978 (Vol. 1)

We now describe the effect of each opera-
tion on the canonical representatives.

a) We generally assume that errors propagate
without bothering to say it explicitly in
the informal description. So
(al)
(a2)
(a3)
(a&)
(a5) returnS(errorS) = errors

(ab) readS(error§) =

pushS(errorS,a) = errorS

ﬁushs(t;errorD) = error$S

downS (errorS) = errorS

popS (errorS) = errorS

errorD

b) The effect of each operation on createS is,
as suggested by the informal description,

as follows
(b0)
(bl)’downS(createS) =
(b2)
(b3)
(bs)

¢) The informal description suggests

pushS(createS,a) = pushSl(a)

errorS

popS(createS) = errorS

returnS{(createS) = createS

readS(createS) = errorD

the
following specification of the effects of
the operations on a nontrivial term
douns”pushs” (a . .-

(cl) pushS[downSn ushs™(a, ,. ..
P 1

,a) with Osn<m
m

,am),a] =

+
downSnpushSm 1(al,...,aw,a)

(c2) downS[downSnpushSm(al,...am)] =

? §ownSP+lpushSm(ai,...am) if nt+l<m
= ' error$
(c3) popS[downSnpushSm(al,...

downsnggih§?_1(a

if nt+l=m

,am)] =

"am—l) if n<m-1

- L
errors if n=m-1
(cd) %eturnS[downSnpushSm(al,...,am)] =
= pushS"(a;,.-,a)
(c5) readS[downSnpushSm(al,...,am)]=am_n

In order to describe the transformations
on canonical terms specified before, we let a
be a variable of sort D and t be a variable of

sort S.

A) erxor§

The specifications (al) through (ab) are
already in the required forh, thus giving 6
axioms
(A1),...,(A6):ervor propagation,corresponding
to (al),...,(ab).

B) create$

Similarly, (bl) through (b4) have the
required form and we need no axiom for (b0),
thus we have 4 axioms
(BL),..

corresponding to (bl),.

.,(B4):effect on empty stack,
..o, (b4).
.C) ggyg§égg§§§?(al,...,am)'with 0<n<m
(1) Effect of pushS
The specification (cl) requires the most
recent pushS to be moved inside, over the
égyg§fs, if any. This suggests an equation to

the effect that pushS and downS commute, e.g.,

pushS[downS(t),a]=downS[pushS(t,a)]. Let us

check it

_holds if the value of t is createS. Now let t
denote downSnpushSm(al,...,am) with Os<n<m. The
righthand side gives, by (cl) and (c2)

downS(pushS[downSnpushSm(al,...,am),a)] =

= §2E2§?+1EE§E§W+1<a1"'"an’a) whereas the
"lefthand side gives the same result, by (c2),
(c1) and (al), only if n+l<m, i.e., if the
downS causes no error. We are thus led to re-
formulate the above axiomAas a conditional
one

Cl: downS(t) # error$ -

+ pushsldownS (t),a] = downS[pushs(e,a)]

We have just checked that this axiom is
valid. It remains to check that is strong
enough to perform the transformation required
by (cl). But, this is clear as we can apply

Cl n times to get

494

Proceedings of Invterna_tional Computer Symposium 1978 (Vol. 1)

pushS[downSnpushSm(al,...,an),dﬂ’

1

downS(pushS[downSn_lpushSm(al,...,ém),a])

=...=downSnpushS[pushSm(al,...,am),a]

since at the ith step we have the term

downSlpushS[downSn_lpushSm(al,...,am),a]

to which (C1) is still applicable as i<n.
(2) Effect of down§

The specification (c?) requires no
transformation when n+l<m, otherwise a trans-—
formation ipto errorS is called for. So, let
us assume n+l = m and try to transform

downSEdownSnpushSn+l(al,...,a Y1 into

a
n’ n+l

errorsS.
We can apply Cl n times to. get, calling

= (az,...,an+1) . ‘
downS"down$ push$ (pushS(createS,al),i) =

[
1

= downSnpushSn(downS pushS(createS,al),i)

This suggests the axiom

the validity of which is immediate. By

applying C2, we have altogether
) =

n+l Lo+l
downS push$§ (al,...,an,an.+1

= downSnpushSn(errorS,i)

= downSn(err9£§) (by n applications of Al)

= ;EEEEE (by a applications ol A3)
(3) Effect of popS

The similarity between (c3) and (c2)
suggests

€3} popSfdownS(t)] = downS[popS(t)],

the validity of which can be checked as before.

We thus can get, by n applications of C3

popS[downSnpushSm(al,...,am)] =

= downSnpopS pushSm(al,...,am)

To get from here to the terms specified by
(C3), it is natural to use popSlpushS(t,a)l=t
which is easily checked to be correct provided
that a # 525952. So we add

C4: a # errorD - popS[pushS(t,a)] = t

An application of C4, now leads to

popSldowns pushs™(a,,...,a_ .8)] =
= §9y3§“3353§?"1(a1,...,am_l),
which is what we want if n<m-1. If n = m-1,
then this reduces to error$ as in (2).
(4) Effect of return$

In order Eo make the returnS cancel all
the downS's it is natural to use

returnS[downS(t)] = returnS$(t), which is

easily seen to be correct under the proviso
downS(t) # errorS. So, we add

C5: danS(t) # errorS -

» rveturnS[downS(t)] = retunrS(t)

Sucessive applications of C5 lead to

returnS[downSnpushSm(al,...,am)] =

= return$ pushS’(a;,...,a)

from where we obtain the desired result - by
means of

C6: recurnslpushs(t,2)] = push(t,a)

the validity.of which being-easy to be

ascertained.

(5) Effect of reads

The specification (c5) does not depend on
& ity which could have been popped.
Indeed

readS[downSnpushSm(al,...,am)] = a =

It

m-n
= readS[pushs (al,...,am_n)]

(by c3)

= readS[popSnpushSm(al,...,am)]

This suggests the axiom

C7: readSldownS(t)] = readS[popsS(t)]

which is easily checked to bé valid. We thus

have, with gq = (a .,aj)

1’ .
readS[down§?£&§§§?(a ,...,am)] =

= readS[pop$ downs™ puShSmfgw)] (by €7)

= readS[downSn—lpopS pushSm(gé)] (by C3 re
_ _ B peatedly)

= readS[downs" % pushs™ 1(3? 1)] (by C&4)

................. ;Q;A;i.".'..'

i (by repeating the

= readSlpushs’
' above -cycle)

495

Proceedings of International Computer Symposium 1978 (Vol. 1)

to obtain a n from here it seems natural to
use readS{pushS(t,a)] = a, which of course is
not valid if t contains downS's. This can be
overcome by using instead,
readS(returnS[pushS(t,a)]) = a, which is
correct unless t happens to be errorS. We are
thus led to .
C8: t # errorS -

- readS(retﬁrﬁS[pushS(t,a)]) = a

which is valid and may be applied to the above
term after the introduction of a returnS by
means of C6.

We now have a sufficiently complete
specification for our data type.Notice that we
have not tried to write strong axioms, quite
on the contrary. Also, we did not worry aboﬁt
independence: some axioms may be obtainable

from others (in fact, this is the case in the

current example). We think it is a ‘good policy

first to concentrate on writing a correct
complete specification, only afterwards should
one try to improve in some other aspects, as
independence for instance.

In this case one might notice that

returnS(errofS) =

returnS{pushS (errorS,errorD)J(by Al or A2}
(by C6)
(by Al or A2)

pushS(errorS,errorD)

= errorS$
Thus A5 could be removed if one wiéhed to

reduce the number of axioms.

CONCLUSTON

We have described and illustrated a
methodology to write a correct and complete
axiomatic specification for a given data
type. The mefhod may be summarized as follows.
First, elect a set C of (canonical) represen-—
tatives. Second, use them to specify the ‘
operations. Third, write valid axioms to

guatarntee that C is "closed" under the

operations (in the sense that the result 1is

transformable into C). It is apparent that
the method does require some insight but we
think it provides good guidelines together
with hints, Its main advantage appears to be
that it shows when to stop writing axioms.
.The justification of the method is based
on results on canonical term algebras3’4.
These results were derived to prove the
correctness of. a given specification. Here we
use these tools to obtain a specification.
The first step of the method, the
election of a canonical form, is the most
critical ome, requiring some good insight into
the data type. For, the selection of a nice
férm will make the remaining steps smooth,
whereas én unlucky one can make them
cumbersome and obscure. Of course, the known
existence of some initial canonical term al-
gebra is no great help here.This [difficulty
can be alleviated by supplying a canonical form
together with the given data type. This
demand is in accordance with the suggestion
that "a very high level(set theoretic) opera-
tional model should accompany the equational
description of the data type, as an aid to the
intuitive understanding of the type"15
In this connection we would like to add that a
canonical term algebra consisting of a cano-
nical form together with the operations

specified on the representatives can be a

very good aid to understanding the data type.

It has the advantage of beiﬁg a formal
specification without any variables ranging
over the type being specified, besides giving
a good idea about how the type operates.

The third step of the method may also’
require some ingenuity. But the very Qutlook

of the transformation to be performed gives

496

Proceedings of International Computer Symposium 1978 (Vol. 1)

true

félse

Fig. 1: WNatural numbers with equality

1=)

del

succ

Fig. 2: Finite sets of naturals

* " create$

errorD

returnS

Fig. 3: Traversable stack

- 497

Proceedings of International Computer Symposium 1978 (Vol. 1)

good hints on how to proceed, either by de-

composing it into simpler transformatioms or

by suggesting the candidate axiom . Here two
features should be stressed. First, the vali-
dity check in case of failure generally
suggests some minor modifications on the can-
didate to make it into an axiom. Also, if one
tries to take care to put into the axioms just
what is required for the transformations one
agets a complete system with individually weak
axioms. This contrasts with the axiom sysfems
usually found in the literature.

We have been trying this method on several
examples and find it very helpful.Also it helped
us in detecting mistakes in published specifi-
cations of well-known examples.

REFERENCES

1. B.H.Liskov and S.N.Zilles,"Specification
Techniques for data abstractions', IEEE
Trans. on Software Engin., vol SE-1,pp
7-19, Mar. 1975.

2. J.V.Guttag, "Abstract data types and the
development of data structures', Comm. of
the ACM, vol. 20, pp. 396-404, June 1977.

3. J.W.Thatcher, E.G.Wagner énd J.B.Wright,
"Specification of abstract data types using
conditional axioms'(extended abstract), IBM
Res. Rept. RC 6214, Yorktown Heights, NY,

1976. '

4. J.A. Coguen, J.W.Thatcher and E.G.Wagner."An

Sept.

initial algebra approach to the specification
correctness and implementation of abstract
data types', IBM Res. Rept RC 6487,Yorktown
Heights, NY, Oct. 1976.

5. J.A.Goguen, J.W.Thatcher, E.G.Wagner and J.

11.

12.

13.

15.

498

B.Wright, "Abstract data types as initial
algebras and the correctness of data
representations”, Proc. Conf. on Computer
Graphics, Pattern Recognition and Data

Structures, May 1975, pp. 89-93.

. G.Grdtzer, 'Universal Algebra', Princeton,

N.J., D.van Nostrand, 1968.

. M.E.Majster, '"Limits of the 'algebraic'

specification of abstract data types',
SIGPLAN Notices, vol. 12, pp 37-42, Oct.
1977.

J.J.Martin, "Critique of Mila E.Majster's
paper 'Limits of the 'algebraic' specifi-
cation of abstract data types'', SIGPLAN
Notices, vol 12, pp 28-29, Dec. 1977.

. M.E.Majster, "Letter to the editor", SIG-

PLAN Notices, vol, 13, pp 8-10, Jan 1978.

. N.Hilfinger, "Letter to the editor", SIG-

PLAN Notices, vol. 13, pp.11-12, Jan 1978.
M.E.Majster, "Comment on a note by J.J.
Martin', SIGPLAN Notices, vol. 13, pp.
22-23, Apr. 1978.

D.W. Jones, A note on some limits of the
algebraic specification method", SIGPLAN
Notices, vol. 13, pp 64-67, Apr. 1978.
P.A. Subrahmanyan, "On a finite axioma-
tization of the data type L', SIGPLAN No-
tices, vol 13,bpp 80-84, Apr. 1978.

. T.A. Linden, "Specifying data types by

restriction'", Software Engeneering Notes,
vol. 3, pp 7-13, Apr. 1978.

M.R. Levy, "Some remarks on abstract data
types", SIGPLAN Notices, vol. 12, pp.

126-128, July 1977.°

