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Analysis of Closed Queuing Networks with
Periodic Servers

GASTON H. GONNET AND DAVID E. MORGAN, MEMBER, IEEE

Abstract-A periodic network is a queuing network whose steady-
state behavior is not constant in time, but repeats itself in a cycle. This
behavior may be caused by the introduction of periodic servers, e.g.,
paging drums. The model presented is a generalization of some other
models of queuing networks, and provides a more general definition of
steady-state behavior. A theoretical solution is presented. Examples of
theoretical and approximate solutions are presented for a well-known
queuing network model of a computer system.

Index Terms-Bounded variation periodic functions, computer net-
works, computer system modeling, eigenvalue and eigenvector problem,
periodic servers, queuing networks, time sharing systems.

I. INTRODUCTION
A PERIODIC network is a queuing network whose steady-

L state behavior is not constant in time, but repeats itself
in a cycle. One important cause of this behavior is the intro-
duction of periodic servers in the network. A periodic server
is a special kind of server that starts service of its customers
in the queue only at certain points in time. A rotating mem-
ory device used for swapping equal size blocks, such as a pag-
ing drum or disk, is an example of a periodic server. Fig. 1
shows a schematic graph on the behavior of a periodic server.
Coffman and Denning [5] and Fuller and Baskett [71 have
comprehensively studied the behavior of paging drums and
disks. However, the authors are not aware of any compre-
hensive work that analyzes the effect such periodic servers
have on queuing networks that contain them.
The classic analyses of queing networks containing disks

or drums (Baskett et al. [2], Kleinrock [12], [13], Jackson
[10], [11], Gordon and Newell [9], etc.) are based on the
assumption that the requests to servers are started at random
(not synchronous) times. In this case an exponential server
is a good approximation. The interservice time may be con-
sidered random when we have a very low arrival rate, or the
lengths of the records (i.e., service time) are variable. At the
other extreme, when there is a heavy swapping activity of
equal size pages and the queue waiting for service is essentially
never empty, we may assume that the service time is constant
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Fig. 1. Schematic graph of the behavior of a periodic server.

and approximate the behavior of the devices with an M/D/1
server. However, because the assumptions that support such
approximations are different, they are not valid to describe
situations between these two extreme cases. Considering the
periodic nature of certain devices in a system allows us to
model system behavior better across a broad spectrum of
cases while including both extremes as special cases.
The purpose of this study is to develop theoretical solutions

of queuing networks containing periodic servers. Section II of
the paper defines terms and notation. Section III provides a
steady-state solution for a periodic network. Section IV pre-
sents an example of a queuing network analyzed with these
techniques.

II. GENERAL DEFINITIONS AND ASSUMPTIONS

Consistently we denote vectors and matrices in boldface
capital letters (e.g., A, W, P). Elements of matrices or vectors
are denoted by the corresponding lower case boldface, with
the proper subscripts (e.g., ai). A superscript + or - indicates
the limit to the quantity by the right or left, respectively (e.g.,
r'). Superscript T (e.g., PT) on a vector matrix means the
transpose of that vector or matrix.
A queuing network will be defined by a directed graph in

which each node represents a particular queue-server pair,
and each edge represents a possible path for customers from
one server to another.
We assume that there is a fixed number n of indistinguish-

able customers circulating through the network, i.e., it is a
closed network. Let k = ke + kp be the total number of serv-
ers (exponential + periodic) in the network. Each server has
arbitrary mean service time. Associated with each server there
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is a queue of capacity at least n. The analysis given here is
essentially the same for any simple queuing discipline, i.e.,
FIFO, LIFO, etc.
The state of the network will be defined by the number of

customers in each exponential server, and by the number of
customers in queue and in service in each periodic server.
Notice that for a periodic server, the server may be idle al-
though its queue may have customers awaiting service. If
R (ke, kp, n) is the number of possible distinguishable states,
then we have [12]:

n+k- I\
R(keO,n)( ) (1)

n

if there are no periodic servers. The following recursion
formula yields the number of distinguishable states r count-
ing both exponential and periodic servers. The formula re-
sults from considering how the number of states changes when
one replaces an exponential server with a periodic server.

r=R(ke,kp,n)=2R (ke + 1, kp - 1,n) - R(ke,kp - 1,n)

(2)
We find that

k In +k- 1\
r62k2 P (3)

n

We will number each state with an unique integer from 1, 2,
*-- r,r.
Let P(t) be any r-dimensional column vector that contains

the probability that each of the r states is the state of the net-
work at time t. Normally P(t) is a function of the topology
of the network (reflected by the global balance equations), the
initial state, and time.
We say that the network is in periodic steady state if the

probability state vector P,(t), is a function of time which re-
peats its behavior every r units of time (e.g., see Fig. 2). r

will be called the cycle of the network. Because a network
that is r-periodic is also 2r-periodic, we will take as canonical
fonn the smallest possible r. Thus we have:

(4)

Note that this definition of steady state covers the normal
notion, since given any P(t) for which P'(t) = 0 = P(t)=
constant = P(t + r).

III. THEORETICAL SOLUTION

First we will consider only the time intervals where the
periodic servers do not cause a change in state of the network;
that is, those intervals that do not include points in which an
instantaneous state transition occurs as a result of any periodic
server activity. An instantaneous state transition at time T is
a discontinuity of P(t) at t = T. An instantaneous state
transition may occur by the starting or completion of service
in a synchronous server. In any of these intervals, the global
balance equations yield:
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Fig. 2. Example component of probability state vector in steady state.

A is an r X r matrix that defines all possible state transitions
for the exponential servers. Each element a,1 of the matrix A
is determined by the global balance equations (or flow-con-
servation equations, as in Kleinrock [121 ) and results in: ai, =
0 if there exists no single customer transition that takes the
network from state j to state i; ai, = 1ji iff departures from
state j to state i occur at a rate pijL and finally aii=-Zipf
(total rate of departure from state i).

It follows immediately that the number of nonzero terms of
each row of A is bounded by the topology of the network (i.e.,
the bound is the number of outgoing edges from exponential
server nodes + 1). Moreover this matrix A is constant with re-
spect to time, and the maximum norm, lAll < 24JIk, (where
Pk is the departure rate from exponential server k), is bounded
by the characteristics of the network, but independent of the
number of customers and possible states.
Let eA be defined in the usual way (Frazer et al. [6] ) as:

eA=I+A+A-+-+-..
2 3! (6)

In the intervals (to, t) where no activity in the periodic
servers occurs, the solution of the system (5) is

P(t)= eAt.P(to), (7)
where P(to) is the initial state vector. It is important to note
that the behavior of the P(t) vector in intervals with no
periodic-server activity is completely characterized by P(to).

A. SinglePeriodicServerNetworks
Suppose there is only one periodic server in the system, and

it has both cycle and service time equal to r. Let R be the
matrix that defines the state transition caused by the start
or completion of service in the periodic server, based on the
probability state vector before such an operation, hence:

P(,r) = R.P(r-) (8)
R is an r X r matrix consisting of ones and zeros only. R de-
scribes the discontinuQus transitions that occur in the network.
Now we will define P8(O) = P3, a probability state vector,

that will characterize the steady-state solution P8(t) of the
periodic network. Using (4), (7), and (8) we obtain:

P(O+) = P(T+) = R.P(T-) = R.eAt.P(O+). (9)
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P3 = R.eATp.P (10)

(i.e., Ps is the eigenvector of R.eAT whose corresponding eigen-
value is 1). Since P. is a probability state vector, we normalize
Ps in such a way that the sum of all its elements is 1.
Then:

(16)

P3 now is calculated as the eigenvector of the product of
all the matrices whose eigenvalue is 1, and is normalized so
that its elements add up to 1. Ps(t) is sectionally defined by:

Ps(t) = eAt.Ps [O < t <Tf] (1 1)

defines the periodic steady state. Note that if R.eAT contains
no unit eigenvalue then there is no possible steady-state solu-
tion for the network.
Let Q(t)= W.Ps (t) = (W1, W2,. w,W,).Ps (t) be a performance

index that characterizes behavior of the network that we want
to evaluate (e.g., probability of certain configuration; mean
queue length; utilization of certain server; or simply moments
of marginal distributions). Clearly we are interested in the
average behavior of Q(t) rather than in its value for a certain
t. Because of the periodic behavior of P3(t) and consequently
Q(t), we only need to consider the average over a r period of
time. Then the averaged Q(t), denoted Q, will be:

Q = Ar1 W.P(t) dt = W.r-1 eAt dt.P3. (12)

We will call

fr-T eAt dt P3 (13)

the average probability state vector (APSV). Notice that for a
given network this vector does not depend on W, so we may
calculate any value Q for any vector W while only having to
perform the APSV calculation once.

B. Multiple Periodic Servers
Assume now that there is more than one periodic server,

or that there is more than one discontinuous event in the
cycle of the periodic server. Both situations imply that we
will have more than one discontinuity in the probability state
vector. If there is no rational relation between their periods,
it is intuitively clear that there is no way to define a periodic
steady state as before. Suppose then that there exists a
rational relation between their cycles, such that after a se-
quence 0 = ro0 < r ... <T =T of transition points in
time, we complete a period, and the network is in the same
state as in time 0. Associated with the end of each interval
[r -1', ri] there is a corresponding transition matrix Ri. Let
Ai = Ti - T1T
The solution of this general system, using similar notation

to that of Section Ill-A is as follows.
For each period of time between transitions we have:

P'(t) = A.P(t) * P(t + Ti) = eAt.P(Ti) [0. t< Ai+1].
(14)

Ps(t+ r) = eAt<.Pi(rUi)]
P3 (0))=R A ips(p
PS (° ) = PS -

(17)

(18)

(19)
The average probability state vector is calculated as follows:

i Ai
APSV=rT e (dt.P l).

=l Jo
(20)

C. Complexity of the Computations
In the following evaluations we will assume that k = o(r).

The fact that A is sparse becomes quite important for the
numerical computation. The common Taylor expansion is
best suited to compute the exponential forms. Since IAAII
is bounded, only a fixed number of terms of the expansion
will be used. Since the number of nonzero elements in A is
O(r), each power of A can be calculated in 0(r2) multiplica-
tions. Moreover, since the number of terms in the expansion
is constant, the evaluation of eA also takes 0(r2) operations.
The same arguments apply for the evaluation of fC eAt dt.
Since R is a matrix of r l's, the product R.eA will be per-

formed in 0(r2) operations.
The evaluation of the eigenvalue that determines P3 is ac-

complished by the solution of a system of linear equations of
dimension r - 1. The solution of such a system of equations
could be done in 0(r2) operations depending on some condi-
tions of the matrices that are not always true (Varga [16]).
Unfortunately if we cannot use 0(r2) techniques or if we have
j > 1 and we have to actually multiply the matrices in (16),
the solution process becomes O(r3).
The actual size and, in some cases, exponential growth of

the problem indicates that only small networks may be solved
exactly.

D. GeneralApproximate Solution ofPeiodic Networks
To obtain an approximate solution we observe the fact that

in periodic networks (as described in Section IlI-B), all the
components of the network oscillate with the same cycle.
In this steady state, each node has an arrival probability dis-
tribution, and probability state vector (of the node itself, ig-
noring the rest of the network) that repeats its behavior every
T units of time.
In [8] we discuss a method of computing approximate solu-

tions based on the above remark. These approximate solutions
are most accurate when we have only one periodic server.

IV. EXAMPLE RESULTS

For each transition we have:

P(T7+) = Ri.P(')-).
In the periodic steady state, putting this together we have:

In this section we will analyze three networks. The first is a

15) simple loop containing two servers each with its queue, and
the second and third are well-known models of a time sharing
system [1], [141. The first example will be used mainly to
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PERIODIC SERVER

Fig. 3. Topology of simple loop.

illustrate the mechanisms of the theoretical solution. The
other examples will be computed for situations similar to the
ones studied in [1], 1 4], so we can compare results.

A. Simple Loop
Fig. 3 illustrates the topology of the first example. A fixed

number of customers n circulate through the network. For
this example (using the exact derivation), assume that n = 2.
The number of possible states of the network, using (2) is

r=R(l, 1,2)= 2R(2,0,2)-R(1,0,2)= 5. (21)

A detailed description of each state is:

Periodic Exponential
State server server

1 0-0 2
2 0-1 1
3 1-0 1
4 0-2 0
5 1-1 0

CFPIU (EXPONENTIAL
SERVER)

S EC ONDARY ME MOR Y
( PERIODI C S ERV ER )

FILE DISK ( EXPONENTIAL
S ERVER )

Fig. 4. Topology of resource loop model.

I 0 1 0 0\

R= 0 1 0 0 1

O O 0 1 01

If we denote a = pr, then the matrix that describes a com-
plete transition, from time 0+ to time r', using (9), is

e-of 0 e-a 00
0 0 0~ 0 0

R.eAr afe-o e-t 1- e-' 0 1
0 0 ~~0 1 0

1(I+ Oe) 1 - e-' 0 1 0
where the two numbers for the periodic server give the num-
ber of customers in service and in queue.
The global balance equations define the matrix A so that:

-p 0 0 0 Pi
p -p 0001 (P2\

PV(t)= P'( 0 0 -, 0 0 . P3

p4 0 p 0 00 P4
95 0 0 p 0 0/ Ps

In this case we compute eAt explicitly, i.e.,

e-It 0

pte-It eC t

eAt = 0 0

1- (1 + pt)e-$Lt 1 - eMt

\ OO0

0 0 O

0 0 0
e At 0 O

0 1 0

1 -e't O

The eigenvector whose eigenvalue is
steady-state solution, is

1, that defines the

1

|Pi =|e + 1-(1 +a)e-'P2 0

/ e' +1 -(1I+ a)e-|

p4 0

\P5/ \et +1- (1 +a)e-'

Clearly this is not the way one would normally compute
solutions; instead, they would be numerically computed.

The matrix R is derived from the transitions that occur at r

caused by the periodic server. This in words is as follows: for
the periodic server, when the customer in the server (if any)
completes its service, one of the customers in the queue (if
any) starts service.

B. Resource Loop Model ofa Time Sharing System
Fig. 4 illustrates the network with which we intend to model

part of a time sharing system. This model has been carefully
described and analyzed in [1], [3], [14], among others. The
model consists of three servers: CPU, secondary memory, and
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other I/O in the form of a file disk. The secondary memory is
likely to behave like a periodic server since we will probably
use a drum or disk to swap fixed size pages in and out. In this
model the secondary memory plays a decisive role in the be-
havior of the overall performance, so an inaccurate representa-
tion in its modeling may invalidate the results.
In this case we find 16 different states. They are indicated

by (customers in CPU, in periodic server, in periodic queue,
file disk):

1 (0,0-0,3)
2 (0,0-1,2)
3 (0,0-2,1)
4 (0,0-3,0)
5 (1,0-0,2)
6 (1, 0-1, 1)
7 (1,0-2,0)
8 (2,0-0,1)

9 (2,0-1,0)
10 (3,0-0,0)
1 1 (0,1-0,2)
12 (0, 1-1, 1)
13 (0,1-2,0)
14 (1, 1-0, 1)
15 (1, 1-1, 0)
16 (2,1-0,0)

The following paragraph shows a typical output of the
program that computes the exact solution.

SOLUTION OF RESOURCE LOOP MODEL

degree of multiprogramming (number of customers) = 3
number of available memory pages= 128
mean compute time between i/o requests= 20.0
mean total compute time= 1000.0
locality and memory management parameter= 1.50
secondary memory service time= 5.0
file-disk mean service time= 30.0

DERIVED VALUES

mean time between memory faults= 2.787
rate of cpu= 0.4098
rate of file disk= 0.0333
probability of exit from the resource loop= 0.00244

probability of memory fault= 0.87555
probability of i/o fault= 0.12201
Average Probability State Ve-ctor (APSV)
0.08146 0.06053 0.01127 0.00189
0.05430 0.01513 0.00332 0.02179
0.00634 0.00959 0.10023 0.16283
0.17247 0.10645 0.15199 0.04040

probability of 0, 1, * *, 3 customers at node 0
0.590669011 0.331203296 0.068537984 0.009589709
expected number of customers= 0.4970484 variance= 0.666787

probability of 0, 1, * *, 3 customers at node 1
0.167146126 0.329084019 0.329416604 0.174353252
expected number of customers= 1.5109770 variance= 0.965856

probability of 0, 1,.. , 3 customers at node 2
0.386003520 0.317475401 0.215064009 0.081457069
expected number of customers= 0.9919746 variance= 0.962721

CPU UTILIZATION 0.4093310

z
0

4
N

-

a.
u

MEAN COMPUTE TIME
20 ms

___ 10 ms

BETWEEN I/0

1f.
0 1 2 3 4 5

DEGREE OF MULTIPROGRAMMING

Fig. 5. Exact values for the resource loop model.

EXPON.
SERVER

PERIODIC SERVER(Tj)

PERIODIC SERVER ( T2)

S.. 3

EXPONENTIAL SERVER

F.D. 4

Fig. 6. Topology of resource loop model with two periodic servers.

The following table and Fig. 5 show the exact values for
several degrees of multiprogramming. These results compare
very well to those obtained by [11, [141. The graph shows
a slight shift to the right that may be interpreted in terms of
the behavior of the secondary memory server, which is a
periodic server.

Degree of CPU Queue length
multiprogramming utilization at secondary memory

1 0.330 0.174
2 0.410 0.662
3 0.409 1.511
4 0.339 2.780
5 0.257 4.143
6 0.197 5.391

C. Resource Loop Model ofa Timesharing System with
Two Periodic Servers

Fig. 6 shows the topology of a particular timesharing model
with two secondary memory devices modeled as periodic
servers. The service times of these servers are r, = 7.5 ms and
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TABLE I
RESULTS FOR THE RESOURCE LooP MODEL WITH Two PERIODIC SERVERS

Degree of
multiprogramming A j ll M42 n2 A3 nF3 M4 114

1 0.2725 0.2725 0.0993 0.0993 0.2198 0.2198 0.4048 0.4048
2 0.3015 0.3539 0.2777 0.3041 0.6114 0.7764 0.4506 0.5655
3 0.2822 0.3567 0.4400 0.5511 0.8593 1.5368 0.4112 0.5554
4 0.2369 0.3074 0.5452 0.7882 0.9631 2.4535 0.3375 0.4509

IL0r

0.9

0.8 -

N

. 0.7
cn

w
1- 0.6

O05
w0n

0

z
0
0 0.3

-J0-

0.2

EXACT

lH

_

_-

_-
0.1 _

0 1 2 3 4
DEGREE OF MULTIPROGRAMMING, N

Fig. 7. Comparison of utilization of resource loop with two periodic
servers under different models.

T2 = 15 ms, respectively. Note that the total throughput of
the secondary memory is the same as for the previous example.
In this case we used the solution described in Section III-B.
Table I and Fig. 7 show the average number of customers

(Qi) and utilization factor (pt) of each server for various num-
bers of customers.

V. CONCLUSIONS AND FURTHER WORK

In this paper we present a method for the exact solution of
queuing networks that contain periodic servers. The method
is primarily applicable to networks with a small number of
servers.
The example applications presented here deal with computer

systems, featuring values of the period r in the order of milli-

seconds. Neither the problem statement, nor the assumptions,
nor the methods of solution presented depend on the periods
of the periodic server being small. Thus, the method is ap-
plicable to any kind of system that can be modeled as a queuing
network having either periodic or exponential servers, regard-
less of the values of 'r. A wide variety of kinds of systems can
be modeled, from banks to supermarkets to computer net-
works. Note that any daily process is by nature periodic.
A number of example queuing networks were analyzed using

these methods, and the results were compared with simula-
tions. Discrepancies were found to be very small. No attempt
has yet been made to compare measurements of a real system
with results of using these methods. The necessary measure-
ment tools are available [151, and plans exist to make such
comparisons in the near future.
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The work extends the class of functions that can be used as
service distributions to include the class of all bounded varia-
tion periodic functions.

It appears possible to extend this work to provide solution
of open networks, i.e., when external arrivals and departures
are allowed. Further research should be done to see if it is
possible to generalize the class of nonperiodic service distribu-
tions (e.g., M/G/1) that can be included with periodic servers
in queuing networks.
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