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Program Derivation Using Data Types: A Case Study

CARLOS J. P. LUCENA, MEMBER, IEEE, AND TARCISIO H. C. PEQUENO

Abstract—The present paper discusses some issues in program synthe-
sis by relating the idea of systematic program derivation with the con-
cepts of data type and correctness of data representation. The notion
of an incomplete definition of a data type at a high level of abstraction
is introduced. The ideas are illustrated through an example previously
discussed in the literature by D. Gries.

Index Terms—Correctness of data representation, data types, program
derivation, program schema, program specification, program synthesis.

I. INTRODUCTION

HE state of the art in the area of program verification, be-
gun in the late 1960’s by Floyd [1], is now reaching a
stage in which many of the existing results on analysis of pro-

Manuscript received November 1, 1978; revised May 18, 1979.
The authors are with Departamento de Informatica, Pontificia Univer-
sidade Catolica, Rio de Janeiro, Brazil.

grams are starting to be transferred to practice through re-
search on software engineering. Efforts have now turned to
the goal of providing a methodology for the systematic synthe-
sis of programs. In fact, many people are presently working
on the problem of deriving a program from a given program
specification. Qur goal in this paper is to contribute to the
better understanding of this process.

Depending on the system of notation which is used to ex-
press the program specification, the above problem can be seen
as deriving a practical program either from an inefficient one
(vis-a-vis the current computer architectures) or from a less op-
erational program statement. It is possible to include in the
first category the works by Burstall and Darlington [2] , Bauer
[3], and Arsac [4] . These authors have chosen to specify pro-
grams through recursion equations. The recursive form being
well adapted to manipulations (transformations) allows for the
establishment of a set of rules to transform programs (specifi-
cations), written for maximal clarity, into practical or ade-

0098-5589/79/1100-0586$00.75 © 1979 IEEE
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quately efficient programs. Most of these efforts are being
accompanied by the development of software systems for pro-
gram development.

The basic approach taken for the synthesis of the usual
Algol-style form of a program requires the use of nonproce-
dural program specifications. One approach to the problem
solution can be in this case the use of Dijkstra’s idea on con-
structive programming together with Hoare’s rules for the veri-
fication of Algol-like programs. Dijkstra explores the idea of
predicate transformers [5], [6] and proposes a methodology
for the derivation of programs from their post-conditions and
pre-conditions (specifications). Manna, together with several
collaborators, e.g., [7], developed work on a spectrum ranging
from the automatic synthesis of simple programs specified by
their input and output assertions to the design of an interac-
tive system in which the computer takes the more straightfor-
ward steps on its own, while the human guides the machine in
the more creative ones.

Since programmers will not be inventing completely new
programs all the time, efforts are being made to provide
program-writing systems with the capability to learn from old
programs. Gerhart [8], [9] has been working on the compila-
tion of a handbook of program schemas that can be abstracted

- from most current programming applications and that can be
used for the synthesis of more complex programs.

In the above, we have briefly summarized some of the cur-
rent ideas on program synthesis. While these efforts are still
taking place, an overwhelming majority of programmers con-
tinue to write programs in Algol-like languages with very little
understanding about the objects they are producing. It is im-
portant to explain to these programmers some of the more es-
tablished ideas on the program synthesis process.

Gries [10] contributed to this purpose by illustrating some
of Dijkstra’s ideas while applying them to a reasonably typical
programming example. However, our attention was brought
to the fact that the current practice of separating the algo-
rithm and the data aspects of a program in the program devel-
opment process (program = algorithm + data structures [11])
was not taken into consideration in Gries example. In fact,
the synthesis counterpart of Hoare’s ideas on the correctness
of data representations [12] can be found, in a formalized
way, only in conjunction with Burstall’s work on recursive
programs [2]. Works by Liskov and Zilles [13], Dennis [14]
and Wulf [15], have dealt with some of the advantages
(mostly from the point of view of programming practice) of
program development through the use of data abstractions.
These works are very important for the discussion of the syn-
thesis of Algol-like programs.

In what follows we discuss an alternative solution to the ex-
ample proposed by Gries in [10]. In explaining the synthesis
ideas we use the language of first-order predicate calculus
which is adequate for a critical approach and discussion of the
problem. We leave out all considerations of efficiency in order
to concentrate on the viability of integrating the notion of a
data type specification with Hoare’s or Dijkstra’s style of
proof rules. Our intent is not to propose a methodology for
program derivation but rather to try to contribute to the un-
derstanding of the program derivation process.
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II. THE LINE-JUSTIFIER EXAMPLE : SYNTHESIS
OF THE PROGRAM SCHEMA

As stated above, we will present our view on the program
synthesis process as we discuss the derivation of a program
that uses the concept of an abstract data type, as suggested for
example by Gries. The emphasis will be on the interaction be-
tween the derivation of a program schema and the construc-
tion of a data representation model for the program.

The suggested derivation procedure can be summarized in
the following steps.

Step 1: Choice of a suitable data type; the operations of the
data type provide a language in order to talk about the prob-
lem domain.

Step 2: Statement of some properties of the type (those
that seem appropriate to derive a program schema).

Step 3: Derivation of the program schema.

Step 4: Choice of a data representation and definition of
the data type in terms of this representation.

Step 5: Proof of the correctness of the representation (con-
sistency with the properties of the data type).

Step 6: Derivation of the “cluster” [13] (programming
mechanism that implements the representation).

A. The Problem Statement

A line-justifier is the part of a text editor that inserts blanks
between words in a line in a way that avoids the existence of
blanks after the last word or before the first word in the line.
We want to construct a line-justifier program according to the
following specifications:

1) It accepts as input a numbered left-justified line having
more than one word in which there will be just one blank be-
tween words and possibly several blanks after the last word.

2) It will produce as output a justified line, that is, a line in
which the extra blanks to the right of the last word will have
been distributed in the spaces between the words on the line.
The difference between the number of blanks in two arbitrary
intervals will be at most one. When there is a difference, the
number of blanks between words will be the same up to a
given word in the line; and after this word the number of
blanks between words will again be uniform, but there will be
either one more or one less than the previous number of
blanks. For aesthetic reasons the even lines will have more
blanks at the beginning of the line and the odd lines more
blanks towards the ends.

B. The Type Line

As indicated in the problem statement, the line-justifier pro-
gram will manipulate objects called lines. For that reason we
shall define a data type /ine formed by the set of these abstract
objects (ambiguously also called lines).

The informal problem statement refers to restriction asso-
ciated with lines that are to be accepted by the program. It
also refers to the characteristics of the output lines and distin-
guishes between the treatment to be given to odd and even
lines. These facts suggests the definition of the following func-
tions and predicates:

1) A unary predicate is-initial (x) determines if a line x satis-
fies the input restrictions.
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2) A binary predicate issjust(x,y) determines if a line y is
the result of the justifications of a line x.

3) A pair of unary operations for line justification: The first
will perform the justification by inserting a larger number of
extra blanks to the left of the line and the second by inserting
a larger number of extra blanks to the right. They will be
called just-left(x) and just-right (x), respectively.

4) A unary predicate even(x) determines if the number as-
sociated with a line x is even.

Of course, the choice of the above functions and predicates
will affect the initial form of the program. Our intention in
making these choices has been to adhere naturally to the infor-
mal problem statement. As stated in the introduction, no con-

“sideration is given in the example to problems of efficiency.
Nevertheless, it should be noted that a choice made at this
point is, by no means, final. If one aims at efficiency, one can
always apply the adequate transformations and change the ini-
tial version of the program into a more efficient one. These
transformations could, for instance, combine the effects of
just-left and just-right in a single operation [3], [4].

The above set of operations defines a first-order language L =
<js-initial, is-just, even, just-left, just-right>, which we will
use to talk about lines. The informal program specification
given in Section II-A requires that the above described opera-
tions satisfy the following self-explanatory axioms.

Axiom 1:

is-initial (x) A even (x) - is-just (x, just-left(x)).
Axiom 2:

is-initial (x) A Teven (x) - isjust(x, just-right (x)).

It is interesting to note that the above axioms define a class
of data types. In fact, to be able to define the type com-
pletely, we would have to state some further properties about
the operations and predicates which would capture the details
of the justification method contained in the informal problem
definition. We will see that we will be able to do that when
we associate a particular representation to the type (an inter-
pretation of the specification). The properties expressed
through the given axioms are sufficient for the derivation of a
program schema which will, as a first approximation, solve a
class of line<justification problems.

C. Program Schema Derivation

Using the L-language defined above, the program specifica-
tion can now be restated in the following manner:

{is-initial (x)} P(x, ») {is-just(x, y)}

In the input assertion (pre-condition) {is-initial (x)}, variable
x is an input variable. In the output assertion (post-condition)
{is-just(x,»)} the variable y is both a program variable and an
output variable. Our goal, at this point, is to derive the pro-
gram P(x, y).

For an x, such that, is-initial (x) is true, the two axioms given
above can be restated as

[even(x) = isjust(x, just-left(x))]

[Teven(x) —> isjust (x, just-right (x))]
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The axioms so expressed suggest the use of the ifthenelse, with
even(x) as the predicate. Thus, we have the program of the
following form:

{is-initial (x)}
P(x,y)=if even(x)
M Sl (x5y)
gl_& S2 (xa y)
fi
{isqust(x, y)}
The ifthenelse verification rule reads as follows [16] :

QA s, (R}, {QA14 S, {R}
{Q}if t then S, else S, fi {R}

In this particular case, we have
Q = is-initial (x);
t = even(x);
R =isjust(x, y).

In program analysis, verification rules are applied by check-
ing the pre- and post-conditions of the antecedent of the rule
to allow the statement of the expression used as its consequent.
When deriving a program we must invert this process. The ap-
plication of the rule consists now of using the expression pro-
posed as the consequent to derive the pre- and post-conditions
of the program segments structured by the control mechanism
defined by the rule. Using the above rule for synthesis pur-
poses, we can state:

i) {is-initial () A even(x)} S, (x, y) {isjust(x, )}
and

ii) {is-initial (x) A Teven(x)} S, (x,y) {isjust(x,»)}.

By modus ponens of Axiom 1 with the pre-condition of i)
above, we have

{is-just(x, just-left(x))}.
Analogously, for ii) we can write
{isjust(x, just-right(x))}.

We are now ready to apply the assignment axiom [16] , which
reads

{0, FEN} y:=1(x) {Qx, )}

Its application will produce

S (x,y) =y:=just-left(x)

and

S$2(x,y) = y:= just-right(x)
which implies the following program:
{is-initial (x)}
P(x,y)=if even(x)
then y:=just-left(x)
else y:= just-right (x)
fi
{is-just(x, )}
This program schema can be encoded in the following CLU-
like [13] notation:
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line-justifier = procedure (x:line) returns (line)
y:line;
¢ is-initial (x) ¢
if line$ even(x)
then y:= line $just-left(x)
else y:= line$just-right(x)

fi
retumn ();

¢ isjust(x,y) ¢
end line-justifier

The reason for encoding the program schema in CLU is that
we shall later make use of CLU’scluster mechanism for expres-
sing data types. We must, however, call the reader’s attention
to the fact that we are not bound to any particular program-
ming language. A programmer, in the context of our work,
can choose to use any control or data structure, providing he is
able to state its axioms formally.

III. THE LINE-JUSTIFIER EXAMPLE: DEFINITION
OF THE DATA REPRESENTATION

So far we have abstracted some properties of any representa-
tion of the object line. We are now going to associate a spe-
cific model (representation + operations) with the theory de-
fined by the axioms in language L.

By the problem definition, our program receives as input a
line expressed in a given representation and produces as output
a line expressed in the same representation. Therefore the line
representation is an integral part of the problem definition.
We are going to solve the proposed problem through the use of
two different representations. The first one exactly matches
the specific problem; the second is similar to that adopted in
Gries’ solution [10].

We are initially going to think of a line as a six-tuple of natu-
ral numbers, having the following components:

p number of blanks in the leftmost intervals of the line.

q number of blanks in the rightmost intervals of the line.

t index of the word after which the number of blanks
changes.

n number of words on a given line.

s number of extra blanks at the end of the line.

z line number.

Note that the program being developed does not handle the
text itself. We, as Gries did, suppose that the text was pre-
processed to produce a representation that contains only the
aspects directly related to the problem. In fact, Gries includes
some extra information in his representation, and we will do
approximately the same in our second choice of representation.

The domain of the type line, which we will also call line,
will be the following subset of N¢:

line = {<p,q,t,n,5,2>ENS | t<nAn>1A|p-q|
<1Ap>1Ag>1}.

We now define the operations of line in our model. For that
purpose we will use the variables

x=<p,q,t,n,s,z>
and
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x'=<p'.q,t',n' s, 2>
The proposed definitions are the following:
1) isinitial (<) <
2) even(x) & even;
3) justleft(x) « <p+s+(n-1)+1,

p=q=1At=n;

q +s+(n-1),
mod(s, (n-1))+ 1,
n,0,z>;

4) just-right(x) & <p+s+(n-1),

qts+(m-1)+1;

n - mod(s,(rn-1)),

n,o,z>;
s=0As+p.(t-1)+q@m-)=p'.(¢-1)

5) is-just(x,x')d=f
+q'.(n'-t'YAn=n"Az=Z'

The computation used for the definitions of the operations
was borrowed from Gries [10].

A. Verification of the Representation

To verify the proposed data representation we need to prove
first that its functions and relations are well defined in the
specified domain. The relations are obviously well defined
since they are expressed in terms of the operations and predi-
cates defined over the naturals numbers. We must then start
by proving the closure of the functions which alter objects of
type line.

The next step is to prove that we have defined a model (rep-
resentation) of the theory (type) proposed in Section II. In
other words, we need to verify that the model satisfies axioms
1 and 2.

B. Proof of the Closure Property

Although just-right and just-left are applied only once in the
present example, the closure of these operations will be
checked to guarantee that the output predicate is applicable.

justleft(x)=x"=<p’,q',¢',n',s',2'>

1) p'=p+s+(n-1)+1. Since n>1, n-1 is a natural num-
ber different from 0, therefore s+(n-1) is a natural number.
Since p €N and N is closed under addition,p’ ENand p' > 1.

O

2) We can analogously conclude that ¢' €N and since ¢’ =
q+s+(n-1) we have p'=q'+1 or p'-q' =1 and therefore
|p" - q'| <1. Wealso have ¢’ > 1. O

3) ¢t =mod(x,(n-1))+ 1. Since mod(s, (n-1))<n-1 we
have that -1 <n-1 or #'<n. Since n' =n, then ¢ <n'. O

4) Since n' =n,s' =0, z' = z we trivially have that n’,s",z' €
Nandn'>1. O

The closure of just-right can be verified through the same
procedure.

C. Proof of the Satisfiability Property

We will now prove that we do have a model that satisfies the
given theory. We will show that the model satisfies Axiom 1
of Section II and will leave the proof of satisfiability of Axiom
2 to the reader. )

Axiom 1 is
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is-initial (x) A even(x) = isjust (x, just-left(x)).

Assume even(x) A is-initial(x), we can write

ziseven,p=1,g=1andt=n.
Now, let x" = justleft(x), that is,

p'=p+si(n-1)+1=2+s+(n-1)
g =q+st(n-1)=1+s5+(n-1)

t =mod(s, (n-1)) + 1
n=ns=07z =z

We must show that isjust(x, x') is true. Sincen’ =nandz’=
z, we need only verify that

s+p(t-1)+qn-0)=p'(t'-1)+q'(n'-t").

Let us now replace in the right-hand side of the above equality
the value of p’, ', q', n":

2 +s+(n-1))(mod(s,(n-1))+1-1)
+ (1 +s+(r-1))(n-mod (s, (n-1)) -1)
=2 mod(s, (n-1)) +s+(n-1) mod(s, (n-1)) + (n-1)
+(m-1)s+(n-1) - mod(s, (n-1))
- s+(n-1) mod(s, (n-1)) = mod(s, (n-1)) + (n-1)
ts+(n-1)(r-1)=s-s+(n-1)(n-1)+ (n-1)
+ts+(n-D(n-1)=s+n-1.

Replacing the values of p, g, and ¢ in the left side of the
equality above, we get

stl(@m-1)+1(n-n)=s+n-1.

In Section II-B we formalized through Axioms 1 and 2 some
aspects of the informal problem definition. These aspects
were chosen to be those informally considered necessary for
the derivation of a program schema that captures the general
idea suggested by the informal problem definition. Therefore,
Axioms 1 and 2 were not meant to define the type line com-
pletely. As we moved to the representation level our model
was intentionally required to satisfy some more properties
which refer to the additional program requirements contained
in the problem definition.

Following our approach the complete type specification
comprises both the so-called abstract and representation levels
[17], [18] and each cannot be used independently to derive a
program to solve the problem completely. Therefore, the no-
tion of modularity is not used here in the usual way. This is
because we relax the requirement of having a complete ma-
chine at some levels.

D. Derivation of the Cluster for the Data Representation

Having shown that we have a legitimate model, we need now
to produce a programmed version of the model. For that pur-
pose we are going to use the cluster mechanism, as proposed in
[13]. The cluster will contain a representation (global to the
procedures in the cluster) whose invariant is to be a line (de-
fined above). The invariant has been verified in Section III-C
and will remain valid if the operations in the cluster follow
their respective definitions. For the various procedures imple-
menting the operations within the cluster, the post-condition
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is the definition of the operation and the pre-condition is the
invariant line .

The derivation of the programs implementing the various op-
erations is a very simple exercise for the present example. All
that needs to be done is the successive application of the rules
of assignment and concatenation to the procedures’ post-
conditions. Since we have already derived in Section II a pro-
gram segment by using the assignment axiom, we will omit the
straightforward discussion.

The cluster program has, for the present case, the following
form:

line = cluster is even, just-left, just-right;
rep = record (p:integer;q:integer; ¢:integer;n:integer;
s:integer ; z:integer);

create
l:tep;
even = oper (x:cvt) returns (boolean);
“return (EVEN (2));
end even;
just-left = oper (x:cvt) returns (cvt);
T l.g:=x.a+x.57(x.n-1),
l.p=l.g+1;
l.t :=mod(x.s, (x.n-1)) +1
l.s =0;l.n:=x.n;l.z =x.z;
return(/);
end just-left;
just-right = oper (x:cvt) returns (cvt);
T lp=x.ptx.st(x.n-1);
l.q:=l.p+1;
1.t :=x.n-mod(x.s, (x.n-1));
l.s=0;l.n =x.n;l.x =x.z;
return(?)
end just-right;
end cluster

We have then derived a program for the given specification,
that is, a program that captures what was stated by the original
problem definition.

IV. CHANGE OF DATA REPRESENTATION

The derivation of the programmed data representation, as it
was proposed before, was extremely simple because we adopted
a minimal (in some sense) configuration for the representation
data space. It contained just the necessary elements for the
satisfaction of the problem specification. In Gries’ example
[10] some extra features were added to the representations:
an array of indices is used to indicate where each word in the
line begins. The reader who wants to compare the two solu-
tions must pay attention to the fact that the meaning of the
natural numbers p and g in Gries’ example is slightly different
from ours, since in his example they stand for the number of
blanks to be inserted between the words. It is interesting to
show how our program can be modified so that we can use a
similar model.

Let A be the set of all arrays of natural numbers and b a vari-
able ranging over its domain. We need now to restate the do-
main line.

Let us now call line, the following set
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line = {<p,q,t,n,5,2,b>EN*X A |t<nAn>1A|p-q|
SIA|b|=nAb, =1 A1 <i<t)>bjsy >b;
+pAN@<i<n)~>b;,, >b;+q},

where p,q,t,n,s,z have the same meaning as before and b is
an array which stores the position of the beginning of each
word in the line.

We shall now define the operations of the new model. The
operations is-initial and even will have the same definitions as
before. The operations justleft and just-right will now be de-
fined as follows:

justdeft(<x,b>)=<x',b'>
and
just-right(<y,b>) =<y',b'>

where X' and 7' are to be computed as in the previous defini-
tions of just-left and just-right and &', for both definitions,
will have the following meaning:

{for 1<i<t, b;=b;+(p-p)-(-1)
fort <i<nm, bj=b;+(p-p):(I-1)+(q"-q) (-1")

Finally, given x =<p,q,t,n,s,z,b> and x'=<p',q’,t',n’,
§',z',b'> we can define the predicate isjust

isjust(x, x") dy=0A stp(t-D+q@m-0)=p'(t'-1)
+q'(n'-t)YAn=n'Az=z' AN(1<i<?)
>b;=b;+(p-1)(E-DA({E'<i<n)
>b;=b; +(p-1)(I-1) +(q'-1) (-1)

The verification of this representation can be done in a way
similar to that shown above. It is too tedious and will be
omitted.

A. Derivation of the Cluster for the New Representation

We have to encode the new representation as a cluster of
procedures. As mentioned before, the procedures which im-
plement the operations can be derived from the definitions of
the operations. We shall illustrate this procedure by deriving
the operation just-left. This way we have the opportunity
of using for the first time in this paper the proof rule for an
iteration.

Input variables: <p,q,t,n,s,z,b>=X.
Program variables: <p',q',¢,n',s',2',b'>=7.
Pre-condition: T.
Post-condition:
(@) p'=pts+(n-1)+1Aq' =q+s=(n-1)A\¢
=mod(s, (n-1)) + 1,n'=n,5'=0,2z'=z A
(b) For 1<i<t', b}=b; + (p'-1) (i-1) A
(¢) For{'<i<n,b;=b;+(p-1)('-1)+(g'-1)i-1t).

We shall call Q the predicate that express the post-condition
and will split it into three components, such that

0(,7)=@A®B) A ().

To the predicates (a)-(c) correspond three program segments,
which can be expressed in the following form:
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{1} 5:(x,7) {@)} S2(%,¥)
@A @) S3(x,7) {@A@)A )}
We shall derive the program segment S, :
{@)} S,(x,y) {(@Afor 1<i<{t', bj=b;+(p'-1)(-1)}

The predicate (b) suggests the utilization of an iterative con-
trol structure with the following form

{@)} fork =110t doS {@A®)}

The proof rule for the for statement can be expressed as fol-
lows [16]:

{@<k<b)AP ([a..k-1])} S {P([a..k])}
{T} fork :=atob doS {P([a.b])}

In the present case P = (b), hence through the application of
the rule we get

{@AQ<k<IYA@®)[a..k-1] S{(®) [a..k]}
If we now apply the assignment axiom, we can state
S=by :=by +(p'+1)(i-1)

The program segment S, will then have the following form

{(@)} for k :=1tot' do
by =by +(p'+1 (i-1)
{@A )}

The segment S; can be obtained in a similar manner. The
derivation of S, will be the result of the successive application
of the assignment axiom, leading to a result which is identical
to the one produced for the first data representation (tuple of
natural numbers). The expression of the cluster follows di-
rectly from what was said and is left as an exercise to the
reader.

V. CONCLUSIONS

We have discussed the synthesis process of an Algol-like pro-
gram by dealing separately with the algorithm and data aspects
of the program. For the establishment of this separation we
have used the concept of a cluster which is instrumental for
providing a programming mechanism for the encoding of the
data representation. The same effect could be obtained by
mechanism such as classes [12] and forms [20].

In deriving a program statement we have proceeded through
three distinct phases: derivation of a program schema from a
formalized version of the problem definition; derivation of the
problem data type ultimately in terms of formally well known
and more primitive types (naturals and arrays in the given ex-
ample); derivation of a programmed version of the data type
definition (synthesis of the cluster). We not only defined the
problem data type but also checked its correctness. The
checking procedure differs from Hoare’s [12] since we do not
start from a completely defined type and a completely defined
representation and try to define a mapping function connect-
ing them.

We are presently trying to expand and formalize the con-
cepts presented above through a simple example in search for a
better understanding of the program derivation process. We
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are also investigating the idea of dealing with the problem of
program transformations (in Gerhart’s sense [9]) viewing these
transformations along the two axes dealt with in this paper:
algorithm and data.
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