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Locking and Deadlock Detection in Distributed
Data Bases

DANIEL A. MENASCE AND RICHARD R. MUNTZ, MEMBER, IEEE

Abstract—This paper describes two protocols for the detection of
deadlocks in distributed data bases—a hierarchically organized one and
a distributed one. A graph model which depicts the state of execution
of all transactions in the system is used by both protocols. A cycle in
this graph is a necessary and sufficient condition for a deadlock to
exist. Nevertheless, neither protocol requires that the global graph be
built and maintained in order for deadlocks to be detected. In the case
of the hierarchical protocol, the communications cost can be optimized
if the topology of the hierarachy is appropriately chosen.

Index Terms—Data bases, deadlock detection, distributed data bases,
graph theory.

I. INTRODUCTION

HIS WORK is concerned with issues of locking and dead-
lock detection mechanisms in distributed data bases. The
problem of system deadlocks in multiprogramming and multi-
processing systems has received considerable attention in the
literature and is well understood [1]-[3]. There are three ap-
proaches to the treatment of deadlocks: deadlock prevention,
deadlock avoidance, and deadlock detection and resolution.
Deadlock prevention requires that all the resources be ac-
quired at once by a transaction. This requirement cannot
always be satisfied in a data base environment since the
resource needs of a transaction may be data dependent and
not precisely known at the start of the transaction. Therefore,
it would be necessary for a transaction to acquire all possible
resources required, thereby decreasing system concurrency.
Deadlock avoidance requires some advance knowledge of the
resource usage of transactions in order to determine at each
point in time whether there is a valid sequence of actions of
the already initiated but not yet completed transactions such
that all of them can be run to completion. Again, this ap-
proach is not practical in distributed data bases since the
necessary advance information to avoid deadlocks is either
absent or is distributed enough to render inefficient any
attempt to avoid deadlocks.
" Deadlock detection can be done by searching for cycles in a
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“state graph” [3]. A method for the detection and resolution
of deadlocks in a centralized data-base system was presented in
[4]. In distributed data bases, however, it is not efficient to
maintain a global state graph for the whole system. Two
methods for detecting deadlocks in distributed data bases,
which do not require that a global graph be built and main-
tained, are presented in this paper—one hierarchical and one
distributed. An outline of the proof that both protocols will
detect all existing deadlocks is given here. For the case of the
hierarchical protocol, the problem of establishing the hierarchy
in a way such that the cost of using the protocol is minimized
is introduced.

II. FORMAL MODEL OF TRANSACTION PROCESSING

This section introduces the necessary notation and formal-
ism upon which we base the locking protocols and deadlock
detection mechanisms presented in this paper. The data base
is considered to be distributed among 7 sites, S1,S2,- -, Sn,
of a computer network. Users interact with the data base via
transactions. A fransaction is a sequence of actions which can
be either read, write, lock, or unlock operations. Transactions
are assumed to be two phase, i.e., once an unlock operation is
issued no other lock can be requested by the transaction. As
shown in [6], this is necessary to preserve the data-base con-
sistency. If the actions of a transaction involve data at a single
site, the transaction is called local, as opposed to a distributed
transaction which involves resources at several sites. We
assume that distributed transactions are implemented as a col-
lection of processes which act on behalf of the transaction.
Those processes are called transaction incarnations. There
may be one or more incarnations of the same transaction at
each participating site. A transaction incarnation is respon-
sible among other things for 1) acquiring, using, and releasing
resources local to the site at which it is executing, as needed
by the transaction, and 2) exchanging messages with remote
incarnations of the same transaction for purposes of cooperat-
ing with incarnations located at foreign sites. Note that this
model of a transaction execution is general enough to accom-
modate other models.

A transaction can be in two different states, namely, active
and blocked. A transaction is blocked if its execution cannot
proceed because a needed resource is being held by another
transaction, and the transaction is active otherwise. We now
introduce a graphic model which depicts the state of execu-
tion of all transactions in the system. This model is in the
form of a graph called the transaction_wait_ for (TWF) graph.
The nodes of this graph are associated with transaction in-
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Fig. 1. A transaction_wait_for graph for a network with two sites S1
and S2.

carnations and are labeled by the pair (transaction_name,
site_name). Note that labeling transaction incarnations with
the pair (transaction name, site name) provides unique global
names for these nodes if there is at most one transaction in-
carnation per site per transaction. If more than one incarna-
tion is to be allowed, then distinct local names should be
assigned for them. Since this distinction is irrelevant for the
forthcoming discussion, we will assume that there is only one
incarnation of any transaction per site.

1) There is a directed arc from node (Ti, S) to node (Tj, S)
if the incarnation of transaction Ti at site S is blocked and
waiting for the incarnation of transaction Tj to release a re-
source needed by Ti. (Ti, S) is said to be in “resource wait”
for (Tj, S).

2) There is a directed arc from node (T, Si) to node (T, Sj)
if the incarnation of transaction T at site Si is blocked and
waiting for a message from the incarnation of T at site S;j.
(T, Si) is said to be in “message wait” for (T, Sj).

It can be easily seen that the existence of a cycle in the
transaction_wait_for graph is a necessary and sufficient con-
dition for a deadlock to occur.

Fig. 1 shows an example of a transaction_wait_for graph
for a network with two sites S1 and S2. This graph shows
two deadlock cycles. One of them is a local deadlock since it
involves only incarnations of transactions at site S2 and,
therefore, only resources local to S2. The other deadlock
cycle spans both sites and is an example of what we call a
global deadlock.

III. DEADLOCK DETECTION APPROACHES

Deadlock detection involves building and maintaining the
transaction_wait_for graph and searching for the existence of
cycles in the graph. The graph has to be updated every time
that a transaction changes state, either from active to blocked
or vice versa. It should be noted, however, that new cycles can
only potentially arise when a transaction is blocked. Deadlock
resolution involves the selection of one or more transactions
to be preempted in order for the cycle to be broken. The
criteria used in this selection should try to minimize the pen-
alty of preemption by any suitable metric. Examples of dead-
lock resolution methods are: preempt the transaction which

owns less resources, preempt the transaction with the smallest
rollback cost, preempt the transaction with the longest ex-
pected time to complete, and preempt any transaction in the
cycle. The examination of such criteria is beyond the scope
of this paper.

A centralized approach for deadlock detection in distributed
data bases was suggested by Gray in [S]. In this approach
there is a centralized deadlock detector which is responsible
for constructing a global graph equivalent to the transaction_
wait_for graph considered here. The central deadlock detector
builds the graph out of information received from all the
participating sites in the network.

While the centralized method may be practical and efficient
for local networks, it may impose fairly large communications
cost in geographically distributed systems. This observation
stems from the fact that the central deadlock detector may be
located very “far” from some of the sites in the network. As
an example, we certainly do not want deadlocks which only
involve resources located at some host computers located in
Southern California to be detected at the East Coast. The
hierarchical approach to deadlock detection presented in the
next section lends itself to an optimization by which dead-
locks can be detected by a site which is located as “close” as
possible to the sites involved in the cycle.

IV. A HIERARCHICALLY ORGANIZED LOCKING
AND DEADLOCK DETECTION

Let the data base (DB) be partitioned into a set of subdata
bases BDi’s such that DB is the union of all the DBi’s, and DBi
and DBj are disjoint for i #j. The locking and deadlock detec-
tion mechanism presented here has as its core a hierarchy of
lock controllers which interact in a way to be explained in
this section. First, we are going to distinguish between the
controllers which are at the bottommost level of the hierarchy,
called leaf controllers or Lk’s, and the nonleaf controllers or
NLKs.

A leaf controller Lki is assigned to each subdata base DBi.
In the example shown in Fig. 2, we have three leaf controllers
LK1, LK2, and LK3 and two nonleaf controllers NLKOQ and
NLK1.

Each leaf controller Lki maintains a transaction_wait_for
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Fig. 2. A hierarchy of lock controllers.

graph, TWF(LKi). This graph contains all the nodes of the
global TWF associated with transaction incarnations local to
LKi. In addition, two special types of nodes called output-
port nodes and input-port nodes are introduced in the TWF
of a leaf controller. These nodes are associated with the arcs
of the global TWF which join incarnations in two distinct con-
trollers and are defined as follows.

1) A node in the TWF graph of LKi is called an output port
and denoted O(LKi, T) if the global TWF contains an outgoing
arc from an incamation of transaction T local to LKi into a
nonlocal incarnation of T.

2) A node in the transaction_wait_for graph of LKi is called
an input port and denoted I(LKi, T) in TWF(LKIi) if in the
global TWF there is an incoming arc into an incarnation.of
transaction T local to LKi from a nonlocal incarnation of T.

Note that labels assigned to input and output ports are
unique since there is only one transaction incarnation per
transaction per site. In the example of Fig. 2, the output port
O(LK1, T1) and the input port I(LK2, T1) correspond to an
arc in the global TWF from T1@LK1 (the incarnation of Tw at
LK1) to TI@LK2. The dashed lines indicate arcs in the global
TWF. These arcs are represented explicitly at the upper levels
of the hierarchy as will be explained below.

Nonleaf controllers maintain a graph called input-output-
ports (IOP) graph. Nodes of an IOP are associated with input
and output ports of leaf controllers. We will refer to them as
i-nodes and o-nodes, respectively. Some of the i-nodes may be
themselves input ports for the IOP, and some of the o-nodes
may be output ports for the IOP. The IOP for controller
NLKi, denoted IOP(NLKi), is defined by the following rules.

1) Arcs from i-nodes can go only to o-nodes and vice versa.

2) There is an arc from o-node Oa to i-node Ib if Oa is an
output port of a leaf controller in the subtree rooted at NLKi
and Ib is a corresponding input port of another leaf controller
in the same subtree. In the example of Fig. 2, there is an arc
from O(LK1, T1) to I(LK2, T1) in the IOP of NLKI since
O(LK1, T1) is an output port of LK1 and I(LK2, T1) is its
corresponding input port in LK2. LK1 and LK2 are in the
subtree rooted by NLK1.

3) There is an arc from the i-node Ia to o-node Ob in
IOP(NLKi) if there is a path from an input port Ia to an out-
put port Ob of a son of NLKi. In the example of Fig. 2 there
is an arc from I(LK1, T4) to O(LK2, T9) in NLKO since in
NIK1 there is a path between I(LK1, T4) and O(LK2, T9).

4) An input (output) port of IOP(NLKi) is also an input
(output) port of a leaf controller in the subtree rooted by
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NLKi. In the example of Fig. 2 the input port of IOP(NLK1)
is also an input port of LK1.

V. HIERARCHICAL PROTOCOL —A DESCRIPTION

Before we describe the protocol, let us define the lowest
common ancestor between controllers K1, K2, * - -+, Kn, de-
noted LCA(K1, K2, - - -, Kn), as the common ancestor be-
tween them at the lowest level in the hierarchy (the root is at
the highest level). Rules 1) through 3) below describe the
hierarchical protocol.

Rule 1

(Transaction incarnation T requests a local resource): The
requested resource R is in the same subdata base as the trans-
action incarnation T. Let LKi be the controller for resource R.

Rule 1.1: The resource cannot be granted. Let {T1, T2,
-+ -, Tk} be the set of transactions which currently hold re-
source R. Add an arc from (T, LKi) to (Tj, LKi) for j= 1 to k.
Check the transaction_wait_for graph at LKi for the existence
of cycles.

Rule 1.1a: If cycles were formed, then one or more local
deadlocks have been detected and an appropriate action is
required for deadlock resolution.

Rule 1.1b: The addition of the arcs mentioned in Rule
1.1 may have created one or more paths between input and
output ports of LKi. For each such path, send the (input port,
output port) pair which delimits the path to the father of LKi.

Rule 2

(Transaction T requests a nonlocal resource): The requested
resource R is in a different subdata base from the previously
requested resource. Therefore, it has to be acquired by
an incarnation of T local to R. Let LKi be the controller for
the previously requested resource and let LKi be the con-
troller for resource R. The incarnation of T at LKi becomes
blocked and waiting for a message from the incarnation of T
at LKj. The node (T, LKi) is now an output port of the
transaction_wait_for graph at LKi, and the node (T, LKj) is
an input port of the transaction_wait_for graph at LKj.

Rule 2.1: An arc from O(LKi, T) to I(LKj, T) is created in
the IOP graph of the lowest common ancestor between LKi
and LKj.

Rule 2.2: An o-node labeled O(LKi, T) is added to the
IOP graph of each controller in the path between LKi and
LOA(LKi, LKj). Each such o-node is also an output port of
the corresponding IOP graph.

Rule 2.3: An inode labeled I(LKj, T) is added to the
IOP graph of each controller in the path between LKj and
LOA(LKi, LKj). Each such i-node is also an input port of the
corresponding IOP graph.

The protocol followed by a nonleaf controller NLKi is de-
scribed by Rule 3 below.

Rule 3

An arc is added to IOP(NLKi).

Rule 3.1: If a cycle is generated by the addition of the new
arc, then a global deadlock has been detected and an appro-
priate action is required to resolve it.

Rule 3.2: If no cycle was generated, check whether any
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input-output port connection has been generated in
IOP(NLKi) and report the endpoints of any such connections
to the father of NLKi.

We have not yet mentioned how lock releases are reflected in
the appropriate graphs in the hierarchy. Let each controller
(LK or NLK) maintain a list of the i-o paths (i.e., the paths
which connect input ports to output ports) in its graph. A
possible representation for this list could be in the form of a
bit matrix where each row corresponds to an i-o path, and
each column is associated with an arc in the graph. The value
‘I’ in the i, j entry of this matrix indicates that arc j is in the
i-o path i. An unlock operation causes an arc (maybe more)
to be deleted from a TWF graph of a leaf controller. All the
i-o paths (if any) which contained this arc are broken. This
may be reported to the father of the LK. There, the arcs
which represented the broken i-o paths will be used to find
which i-o paths were broken in the nonleaf controller. This
propagation continues up in the hierarchy until the deletion of
an arc from a graph does not cause any i-o path to be broken.

The method described above for deadlock detection requires
that nonleaf controllers be kept up-to-date continuously.
Other variations can be used when appropriate. For example,
the information concerning connections between input ports
and output ports can be sent periodically. For a sufficiently
long period this would reduce the amount of traffic generated
but may result in a deadlock existing for too long a period of
time. Another method which is intermediate to continuous
and periodic deadlock detection is to report connections be-
tween input and output ports after they have persisted longer
than some threshold. Since, if a deadlock occurs the cycle
persists until it is detected and relieved, this method will
detect a deadlock after some delay. It appears that a judicious
choice for the threshold can result in less traffic being gener-
ated than with continuous checking and less delay in detect-
ing a deadlock than with periodic checking.

VI. HIERARCHICAL PROTOCOL—PLAUSIBILITY
ARGUMENT

The hierarchical protocol has the following properties:

1) deadlocks which involve resources of a single subdata
base DBi are detected by the formation of a cycle in the
TWF of the leaf controller associated to DBi;

2) deadlocks which involve resources controlled by the leaf
controllers LK1, LK2, - - - | LKi are detected by the for-
mation of a cycle in the IOP graph of the nonleaf con-
troller which is the lowest common ancestor between the
LKi’s.

Property a follows directly from Rule 1 of the protocol. The
validity of property b is not so straightforward and will be
shown to hold by the following theorems.

Let us introduce some notation first. Let the arcs which
connect an i-node to an o-node in an input-output-ports graph
be called i - o arcs and let o —>1i arcs be the ones which con-
nect o-nodes to i-nodes. Let tree(K) be the subtree of the
hierarchy rooted at controller K. Let us now extend the nota-
tion TWF(K) to indicate the subgraph of the global TWF ob-
tained by considering only the resources controlled by all the
LK’s in tree(K).
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Let us show that if a cycle is detected in the IOP graph of a
nonleaf controller, there is a deadlock.

Theorem 1: If there is a cycle in the input-output-ports
graph of a nonleaf controller NLKi then there is a deadlock.

Proof: We need to prove that if there is a cycle C in the
IOP graph of a nonleaf controller NLKi, there is an associated
cycle C' in TWF(NLKi). Let us show how to construct the
cycle C'. Let C be a cycle in IOP(NLKi). For the purpose of
this construction, let us label each i > o arc (Ij, Oj) in C with
the label Kj if Kj is an immediate son of NLKi such that the
creation of an input-output-port connection in Kj caused the
arc (Ij, Oj) to be created in IOP(NLKi)—see Rules 1.1b and 3.2
of the protocol. Arcs of the type o—~>1i in IOP(NLKi) will
not be labeled. Using the notation (a,b,c) to indicate an
arc labeled ¢ from node a to node b let the cycle C be C=
(11, 01, K1), (01, 12, -), (12, 02, K2),**+,(In, On, Kn),
(On, 11, -).

The repeated application of Operation 1 below will trans-
form the cycle C into a cycle in which all the labels indicate
leaf controllers.

Operation 1: If Kj in (Ij, Oj, Kj) is a nonleaf controller,
replace (Ij, Oj, Kj) by a path connecting Ij to Oj in IOP(Kj).

After this transformation, there is a path in the TWF of an
LK in tree(NLKi) associated with each i - o arcin C. There is
also an arc between incarnations of transactions in the TWF’s
of distinct LK’s associated with each o =i arc in C. More pre-
cisely, for each i > o arc (Ii, Oi, Ki) in C there is a path in
TWF(Ki) between the input port Ii and the output port Oi of
TWF(Ki). Now, by Rule 2.1 of the protocol each o =i arc
(Oi, Li+1, -) in C connects two incarnations of the same
transaction. These incarnations are local to leaf controllers in
tree(NLKi). Finally, the sum of all the paths and arcs thus
obtained defines the cycle C' in TWF(NLKi).

In order to conclude the proof we must show that the arcs in
the cycle C' defined above exist simultaneously, and, there-
fore, C' is a deadlock cycle. Assume not. Then there is at
least a pair of arcs Ti - Tj and Tm - Tn which did not appear
simultaneously in C' and such that there is a path from Tj to
Tm in TWF(NLKi). Consider first the case in which Ti = Tj
existed (i.e., appeared and disappeared) before Tm - Tn.
Then, transaction Tj released the resource it was holding
(which was needed by Ti). This implies that all the transac-
tions in the path from Tj to Tm in TWF(NLKi) must have had
released at least one resource also. Since transactions are
assumed to be two phase, then none of them (including Tm)
can issue any further lock requests. Therefore, the arc Tm -
Tn cannot exist. This contradicts our assumption and shows
that it is not possible for Ti—>Tj to have existed before
Tm - Tn. Consider now the case in which Tm - Tn existed
before Ti - Tj. This case is perfectly possible as long as these
two arcs are not part of the same cycle; otherwise, one would
have to conclude that every arc in the cycle existed before
itself. Therefore, all the arcs in C’ coexist in TWF(NLKi), and
C' represents a deadlock cycle, and the theorem is proved.

We want to show now that given a cycle in the global TWF
there is a corresponding cycle in one of the controllers in the
hierarchy. In order to state this property more precisely,
some definitions are in order. Let the graph G’ be called an
arc condensation or simply condensation of the graph G if the
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node set of G’ is a subset of the node set of G, and if (v1, vn)
is an arc in G’ then there is a path from node v1 to node vn
in the graph G.

Theorem 2: Given a cycle G in the global TWF there is
an arc condensation of C in one and only one controller in the
hierarchy. This controller is the lowest common ancestor of
all the controllers which manage the resources in the cycle C.

Proof: et C be a cycle in the global TWF which involves
resources controlled by leaf controllers LK1, LK2,-- -, LKn.
Each of the n leaf controllers only knows the portion of the
cycle which contains resources local to the controller. Let us
consider an initial condensation of the cycle C obtained by
substituting every path in the TWF from an input port to an
output port of a leaf controller by a single arc connecting
these ports. For the purpose of this proof, let us introduce a
representation for a cycle which clearly illustrates how the
knowledge about portions of the cycle is distributed through-
out several controllers in the hierarchy. So, let a cycle be
represented by a sequence of labeled arcs (I0, OO, KO),
(I1,01,K1),---,(, 04,Kj),---,(In-1,0n-1,Kn-1)
where (Ij, Oj, Kj) indicates that there is a connection between
the input port Ij and the output port Oj in the graph of the
controller Kj. Also, the output port Oj is connected to the
input port Ij + 1(mod n). Let father(K) be the father of con-
troller K in the hierarchy. The repeated application of opera-
tions 1 and 2 below gives us the desired condensed cycle C.

Operation 1: If all the labels in C are the same, then stop.
Substitute every maximal path P in C composed solely of arcs
labeled with sons of a common controller K by a single arc
having as endpoints the endpoints of P and having as label the
common father controller K. This operation is illustrated in
Fig. 3 and can be thought of as a short circuit between con-
secutive brothers. Repeat Operation 1 until all the labels in
C are different and then do Operation 2.

Operation 2: Find all the arcs in C which have as label a
controller whose level in the hierarchy is the lowest of all the
controllers which appear as labels in C. Substitute the label Ki
in each of these arcs by father(Ki). Do Operation 1. Opera-
tion 2 is illustrated in Fig. 4.

In order to show the validity of Operation 1, let us refer to
Fig. 3 and consider the following observations.

1) There is an arc from Oi to li+1 fori=1 to(1- 1) in
IOP(K), since the controller K is the lowest common ancestor
between K1,K2, - - - ,Kl. See Rule 2.1 of the protocol.

2) There is an arc from li to Oi, fori=1 to 1 in IOP(K),
since every time a connection between an input and an output
port is created it is propagated to its father. See Rules 1.1a
and 3.2 of the protocol.

3) Since the controller KO is not a son of controller K, the
input port I1 is also an input port of K which is in the path
between KO and LCA(K1, K0). See Rule 2.3 of the protocol.
The same observation applied to controller KI+1 and the
output port O1 (see Rule 2.2 of the protocol).

The reader should notice that Operation 1 preserves the low-
est common ancestor between all the controllers involved in
the cycle.

The validity of Operation 2 follows from observations 2) and
3) above. Notice that the choice of a controller at the lowest
possible level to substitute during operation 2 preserves the
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lowest common ancestor between the controllers involved in
the cycle. The reader can easily convince himself that this
must be the case.

Therefore, when all the labels are the same we have a repre-
sentation of a condensed version of the original cycle. The
common label is the name of the controller where the cycle is
completely represented. Since operations 1 and 2 preserve the
lowest common ancestor between the controllers involved in
the cycle, the original cycle will be represented in a condensed
way in LCA(LK1,LK2, - -, LKn).

Theorems 1 and 2 together give us a necessary and sufficient
condition for a deadlock to be detected in a distributed data
base involving resource at different sites. This result will be
stated as the following theorem.

Theorem 3: A necessary and sufficient condition for a
deadlock involving resources in controllers LK1, LK2, - - -,
LKn to exist is that there is a cycle in the IOP graph of
ICA(LK1, LK2, - - -, LKn). This cycle is a condensation of
the corresponding cycle in the global TWF.

VII. DEADLOCK RESOLUTION

As pointed out in an earlier section, we are nat going to ex-
amine in this paper the criteria involved in optimal deadlock
resolution since this is mainly a policy issue. This section
discusses, however, the mechanisms which are necessary to

2 in Theorem 2.

allow the implementation of any such policy. The reader may
have noticed that the condensed cycle in the IOP graph con-
tains less information than the corresponding cycle in the TWF
graph. In particular, not all the transactions which participate
in the cycle in the TWF graph appear in the IOP graph.

One way to compensate for this loss of information is to re-
quire that, whenever an i-o arc is received by an NLK, the
name of the controller which generated the arc be stored with
the arc. Then, when an NLK ‘detects a deadlock cycle, it can
send down the tree to its appropriate sons a message which
will continue to propagate down (through the appropriate
sons) until it reaches the leaves of the tree. At this point the
LK’s can report directly to the NLK which detected the dead-
lock all the necessary information to implement the desired
policy for deadlock resolution.

Notice that the additional messages necessary to support the
above described mechanism do not substantially increase the
total communications cost of the protocol since they must
only be sent when deadlocks are detected and not during
normal operation.

Another, less flexible alternative is to select the transaction
to be preempted from those which appear in the IOP graph
only. While no additional messages are required here it is
likely that a nonoptimal choice will be taken in resolving the
deadlock.
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VIII. HIERARACHY ESTABLISHMENT

So far we have assumed the existence of the hierarchy with-
out considering how it is established in the first place. The
performance of the hierarchical protocol, in terms of the over-
head message traffic incurred by it, can be minimized if the
hierarchy is appropriately chosen. This choice should consider
the pattern of the DB traffic with respect to the locality of
access to a controller or group of controllers. For instance,
assume that one is able to identify groups or clusters of leaf
controllers such that a high percentage of the DB traffic in-
volves controllers in the same cluster while very little traffic
is of the intercluster type. One possibility here would be to
assign nonleaf controllers to each cluster and try to further
cluster the non-leaf controllers or put all of them together
under the same root.

The problem in general can be stated as follows. Given a set
of leaf controllers assigned to the nodes of a computer net-
work, given the DB traffic pattern, and given the cost of send-
ing messages between every pair of nodes in the network, find
a hierarchy which minimizes the total cost incurred in using
the protocol.

There are clearly some heuristic rules which, if applied to a
given hierarchy, result in another hierarchy of less cost. The
general optimization problem, however, is the subject of cur-
rent research effort.

IX. A DiSTRIBUTED LOCKING AND DEADLOCK
DETECTION PROTOCOL

A locking protocol which uses distributed control and a dis-
tributed deadlock detection mechanism is presented here.
Before we describe the protocol, some definitions are in order.
Each data-base site controls a set of resources. Transactions
request resources by sending their requests to the controller
of the resource. Each controller is responsible for

1) processing lock and lock release requests for local re-
sources. Requests may originate from any node in the
network.

2) building a simplified version of the transaction_wait_for
graph and detecting deadlocks. The TWF maintained by
a controller is a subgraph of the global TWF.

For the purpose of stating this algorithm, we will use a sim-
plified version of the transaction_wait_for graph. The reader
should be aware that this version is a redefinition of the graph
used in the section on the hierarchical protocol although the
same name for the graph is retained. In this version, there is
no notion of transaction incarnations. Nodes are associated
with transactions, and there is a directed arc from transaction
T' to transaction T" if T' is blocked and must wait for T" to
release a resource (not necessarily a resource needed by T')
before T’ is able to proceed.

Some definitions are in order. A nonblocked transaction is a
node in the transaction_wait_for graph with no outgoing arcs
or a sink node. Let us now define blocking set(T) as the set of
all nonblocked transactions which can be reached by following
a directed path in the TWF graph starting at the node associ-
ated with transaction T. This is the set of transactions which
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are ultimately blocking transaction T. The pair (T, T') is said
to be a blocking pair of T if T’ is in blocking_set(T).

The execution of a transaction can be described as follows.
A transaction has a site of origin which is the site where the
transaction entered the system. The transaction starts running
at this site, performing local operations until operations on
nonlocal data are necessary. Then, a lock request in the
appropriate mode is built and sent to the controller for the
requested resource. This controller will either accept or reject
the lock, sending the reply to the site of origin of the transac-
tion. If there are multiple copies of data, lock requests have to
be sent to all controllers which keep a copy of the data.

X. DiISTRIBUTED PROTOCOL—A DESCRIPTION

Let Sorig(T) be the site of origin of transaction T, and let
TWF(K) be the TWF graph at site Sk. The protocol is de-
scribed by Rules 1 and 2 given below as carried out by con-
troller Sk. Let T be a transaction requesting resource R.

Rule 1

The resource R cannot be granted to T because it is being
held by transactions T1, T2, - - - , Tk. Add an arc from trans-
action T to each of the transactions in the set {T1, T2, -,
Tk}. If the addition of these arcs caused a cycle to be formed
in TWF(K), then a deadlock was detected, and an appropriate
action is required for its resolution. For each transaction T' in
blocking_set(T), send the blocking pair (T, T') to Sorig(T) if
Sorig(T) # Sk and to Sorig(T") if Sorig(T") # Sk.

Rule 2

A blocking pair (T, T') is received. Add an arc from T to T’
in TWF(K). If a cycle was formed, then a deadlock exists,
and it must be resolved by an appropriate action. If T is
blocked and Sorig(T) # Sk, then for each transaction T" in
the blocking_set(T), send the blocking pair (T, T") to
Sorig(T") if Sorig(T") # Sk.

Some comments are in order.

1) The arcs of the transaction_wait_for graph considered
here may represent one of two types of relationships between
transactions, namely, a direct wait and an indirect wait. Trans-
action T1 is said to be waiting directly on T2 if the resource
needed by T1 for its continued execution is being held by T2.
A transaction T1 is said to be waiting indirectly on Tk if there
is a set of transactions T2, T3, - - -, Tk - 1 such that Ti is wait-
ing directlyon Ti+1 fori=1tok - 1.

2) From the previous observation it can be seen that cycles
in a TWF graph may be a condensation (in the sense defined in
the section on the hierarchical protocol) of the cycle that
would exist in the global transaction_wait_for graph for the
whole system.

XI. DiSTRIBUTED PROTOCOL—PLAUSIBILITY ARGUMENT

That the protocol described in the previous section is able to
detect all deadlocks is shown in the following theorem.
Theorem 4: The above described protocol detects all possi-
ble deadlocks.
Proof: In order to show this result we will consider a
global deadlock cycle, as shown in Fig. 5, and we will show
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Fig. 5. Deadlock cycle involving transactions T1, T2, - - -, Tk.

that this cycle will appear in the TWF of the site of origin of
at least one of the transaction in the cycle.

There are many orderings of resource requests that can lead
to the same deadlock cycle. Each time a request is rejected,
the newly formed blocking pairs will increase the knowledge
that some controllers have about the global graph. Therefore,
the more advance knowledge obtained when a request is
rejected the more rapidly the deadlock will be detected. The
ordering of resource requests used in this proof is such that
controllers will get the minimum possible knowledge of the
rest of the graph when a request is rejected. The reader should
not have any problem in convincing himself that if the theorem
holds for this ordering, then it holds for any other. The
chosen ordering is the following. Initially, transactions T1
through Tk - 1 are blocked and each of the controllers at the
site of origin of these transactions have the knowledge of
a single transaction ahead in the cycle. At this point the
transaction_wait_for graph at the site of origin of each trans-
action is shown as follows.

Sorig(T1): T1->T2
Sorig(T2): T2->T3

Sorig(Tk - 1): Tk-1-Tk.

Now, when Tk makes a request and is blocked by T1, the
blocking pair (Tk, T2) will be sent to Sorig(T2) where a new
blocking pair (Tk, T3) is formed and sent to Sorig(T3). There
the blocking pair (Tk, T4) is formed and sent to Sorig(T4) and
so on until the blocking pair (Tk, Tk - 1) reaches Sorig(Tk - 1).
This causes the arc from Tk to Tk - 1 to be added to the TWF
graph at that site. Since this graph already contained an arc
from Tk -1 to Tk, a cycle is formed and the deadlock is
detected.

XII. CONCLUSION

This paper presents two solutions to the problem of dead-
lock detection in distributed data bases. The first solution
consists of a hierarchy of lock controllers and is intended to
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achieve better performance, in terms of communications cost,
than a centralized approach. For this purpose, the hierarchy
should be established in a way such that deadlocks can be
detected by a site which is located as “close” as possible to the
sites involved in the deadlock. The problem of finding a hier-
archy of lock controllers which minimizes the total cost in-
curred in using this protocol is the subject of current research.
The design of a distributed protocol for deadlock detection
was motivated by the desire to support reliable operation in
environments subject to failures.

Both protocols use a graph model to depict the current state
of execution of all transactions in the system. A cycle in this
graph is a necessary and sufficient condition for a deadlock to
exist. The protocols presented here do not require that a
global graph be built and maintained in order for deadlocks to
be detected. An outline of the proof of the correct operation
of the proposed protocols is included in the paper.

The communications cost involved in using the solutions
presented here depends on several factors such as data-base
traffic pattern, distance between participating sites, hierarchy
topology (for the hierarchical protocol only), and others. A
detailed analysis of the performance characteristics of these
protocols is the subject of further work.
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