“55-

TRAVERSABLE STACK WITH FEWER ERRORS

Paulo A. S. Veloso

Department of Informatics
Catholic University
22453 Rio de Janeiro, RJ; Brazil

Abstract

A complete finite "algebraic" specification for a
version of traversable stack with fewer error conditions is
presented. This is used to illustrate some issues concerning
formal specification of data types, namely naturalness and
clarity. Uncontrolled errors are considered harmful and
canonical-term specifications are considered helpful.

Introduction

The traversable stack has been posed by Mila E. Majster
as an abstract data type that cannot be specified by the
algebraic method [Goguen et al. 76, Guttag 77, Zilles 751].
[Majster 77] contends that there is no finite presentation
for this data type. This seems to be a controversial issue,
for since then several people [Martin 77, Hilfinger 78]
have unsuccessfully tried to provide the required specifi-
cation (cf. [Majster 781).

Here it is shown that a natural extension of Majster's
data type can be given a finite axiomatization. The points
stressed are: (1) too many errors can be harmful (why demand
an error if there is a "natural'" value to be assigned?);

(2) a shorthand convention for error propagation; (3) the
usefulness of canonical terms as a precise yet fairly
intuitive specification to aid an "operational"” understanding
‘of the data type (cf. [Levy 77]), and also to systematize '
the search for an axiomatic specification and its validation.

Informal description

A traversable stack of D (where D is some given data
type, say, integers) is just like an ordinary pushdown
stack with the extra feature that readout is not restricted
to the top. An inner position pointer i indicates a position
from which information can be read.

-56-

The operations createT, downT, returnT and readT have
the same informal explanation as in [Majster 77, p.39].
The difference in this version resides in comsidering pushT

and popT defined whenever possible, as follows.

pushT inserts an element d of D on top of t, incrementing
the value of i by one;

popT removes the top element of t, decreasing the value
of i by one, if possible; otherwise it gives errorT.

Notice that this is fairly natural. In Majster's
explanation this incrementing/decrementing of i occurs only
at the top; now it is allowed to happen anywhere it makes
sense.

Operations and error propagation

One generally assumes that errors propagate without
bothering to say it explicity. The following usual notation
is employed.

createT -+ T

pushT : TxD T u {errorT}

popT : T > u {errorT}

N
T

downT > T u {errorT}
T
D

T
returnT : T -
T

readT u {errorD}

Here it should be understood that the domains of these
operations include also errorT and errorD, as the case may
be. But it would be foolish to apply them to these error-
elements, for the result is again an error.

This notation is suggested as a shorthand to avoid
having to write down error—-propagation equations, such as
pushT(errorT, d) = errorT, pushT(t, errorD) = errorT, and
so forth, which would needlessly clutter the specification.

Canonical—-term specification

An arbitrary object of the data type T can be repre-
sented as errorT, createT or as downTD pushTm (dl,...,dm)
for some 0 <n<m with all the d;'s distinct and different
from errorD, in a unique way. (Here the last expression
abbreviates downT(..downT(pushT(...pushT(createT, d;),ee ,dm)) o) s
cf. [Majster 77, p.401]).

If one specifies the effect of the operations on these
canonical representatives one obtains a convenient and
precise specification of the data type, a canonical term
algebra ([Thatcher et al. 76, Goguen et al. 76]).

-57-

The effect on errorT is already covered by the above
convention. For createT, the informal description suggests

CO : pushT(createT, d) = downT? pushT! (d)

Cl : popT(createT) = errorT

C2 : downT(createT) = errorT
C3 : returnT(createT) = createT
C4 : readT(createT) = errorD

More interesting is the effect on a nontrivial canonical
term downT™ pushT™(d;,..., dp) with O<n<m (the third case
above), given by

(ctl) pushTLdownT™ pushT™(dy,..., d),d] =

= downT® pusht™ (ay,..., d_, 4

(ct2) popT[downTn pushTm(dl,..., dm)] = if n=m~1 then errorT

@D @y,)

else downT pushT

(ct3) downT[downT" puShTm(dl,..., d)] = if n+l=m then errorT
else downT(n+l) pushTm(dl,..., dm)

(ctd) returnT{ downT" PushTm(dl,...,dm)] = downT? pushTm(dl,..},dm)
(ct5) readT[downT puShTm(d seesrd)= 4
1 m

(m—n)

Axioms

The specifications (ctl - ct5) require the lefthand
sides to be transformed into the canonical terms given in
the righthand sides. This can be accomplished by means of
the following axioms.

T1: pushT[downT(t),d] = if downT(t) = errorT then errorT
else downT[pushT(t,d)]

T2: popTLdownT(t)] = downT[popT(t)]

T3: popTlpushT(t,d)] = if d = errorD then errorT

else t

T4 s downT[pushT(createT, d)] = errorT

T5: returnT[downT(t)] = if downT(t) = errorT then errorT

else returnT(t)

T6: returnTl pushT(t,d)] = pushT(t,d)

T7: readT[downT(t)] = readT[popT(t)]

-58-

T8: readT (returnTlpushT(t,d)]) = if t =errorT then errorD

else d

Tl through T8 together with Cl through C4 give a
complete specification for the data type traversable stack
of D, the error—-propagation equations (five of them, as
returnT(errorT) = errorT can be obtained from the other
axioms) being implicit in the notational convention.

Notice that axioms T3, T5, T6 and T8 are similar to
axioms L6, L13, L12 and L7 of [Majster 77, 78 and Hiifinger 78]

(T6 is axiom 8 of [Martin 77]). Axiom T4 is pretty reason-
able (cf. [Martin 78, p.10]). Axiom T7 says that readT
does not distinguish between popT and downT. This points

to the key axioms Tl and T2, stating that downT commutes

with popT and conditiomnally with pushT. They are correct
because of the wider domains of popT and pushT; for Majster's
original specification they would be incorrect (cf. L5 and

L4 of [Majster 77, p.391).

It should be pointed out that these axioms were fairly
systematically obtained from the canonical-term specifica-
tion by means of a apparently widely applicable methodology
([Pequeno-Veloso 78]), which was found useful in specifying
the following data types: queues, strings, binary trees,
finite sets of naturals, SNOBOL patterns, among others.

Conclusion

The traversable stack of [Majster 77] was used as an
example to illustrate the following points.

(a) Errors are a serious business (cf. [Goguen et al. 761);
the abundance of errors in Majster's version is here
considered harmful, a natural version with fewer errors
having a finite presentation.

(b) The error-propagation part of the specification is
suggested to be separated from the nontrivial part in
order to enhance clarity.

(¢) A canonical-term specification can be a very helpful
complement to a specification (formal or informal)
[Levy 77, Hoare—Lauer 74], provided that a good
canonical form can be found.

(d) A good canonical-term specification is also a guide in
the selection and validation of the axioms for a formal
specification [Pequeno-Veloso 78]

Acknowledgements

Many enlightening discussions with Tarcisio H. C. Pequeno
on the subject of abstract data types are gratefully
acknowledged.

-59.

References

J.

A. Goguen, J. W. Thatcher and E. G. Wagner - An initial
algebra approach to the specification, correctness and
implementation of abstract data types; IBM Res. Rept.
RC 6487, Yorktown Heights, NY, Oct. 1976.

V. Guttag — Abstract data types and the development of
data structures; CACM 20(6), June 1977, pp. 396-404.

N. Hilfinger =~ Letter to the editor; SIGPLAN Notices 13(1),
Jan. 1978, pp. 11-12.

A. R. Hoare and P. E. Lauer - Consistent and complementary
formal theories of the semantics of programming languages;
Acta Informatica 3(2), 1974, pp. 135-153.

R. Levy - Some remarks on .abstract data types; SIGPLAN

Notices 12(7), July 1977, pp. 8-10.

E. Majster — Limits of the "algebraic specification of
abstract data types; SIGPLAN Notices 12(10), Oct. 1977,
pP. 37-42.

E. Majster — Letter to the editor; SIGPLAN Notices 13(1),
Jan. 1978, pp. 8-10.

J. Martin - Critique of Mila E. Majster's paper "Limits

",

of the 'algebraic' specification of abstract data types";
SIGPLAN Notices 12(12); Dec. 1977, pp. 28-29.

H. C. Pequeno and P. A. S. Veloso - Do not write more
axioms than you have to: a methodology for the specifi-
cation of abstract data types; forthcoming, 1978.

W. Thatcher, E. G. Wagner and J. B. Wright - Specifica-
tion of abstract data types using conditional axioms
(Extended abstract) ; IBM Res.Rept. RC .6214, Yorktown Heights, NY, Sept. 1976.

N. Zilles — Algebraic specification of data types; in
Computation Structures Group Memo 119, MIT, Mar. 1975,

pp. 1l-12.

