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ABSTRACT

A logic for a relational data manipulation

language is defined by augmenting a known

logic of programs with rules for two new state-

ments: the relational assignment, which

assign a relational expression to a relation,

and the random tuple selection, which extracts

an arbitrary tuple from a relation. The usual

operations on relations-retriever insert,

delete, update-are then defined as special

cases of the relational assignment, and the

for-each construct scanning a relation tuple

by tuple is introduced with the help of the

random tuple selection.

1. Introduction

A database contains data that models some

aspect of the world. The description of a database

consists of a set of data structure descriptions

and a set of consistency criteria for data values.

To say that the data values in a database satisfy

the consistency criteria is to say that the data

adequately models the world. As a consequence,
users expect to observe consistent data and are re-

quired to submit updates that will preserve con-

sistency. Such updates are called transactions

[ES2] .

Most of the work concerned with the correct-

ness of multi-user database systems [BE1,ES2,LA2,

PA1,ST1,TH1] assumes that only transactions access

the database and curb the interaction among trans–

actions by a general correctness criterion. HOW-

ever, we know of no attempt to provide a data

manipulation language (DML) with a logic permit-

ting us to prove that a transaction indeed pre-

serves consistency, or that a set of transactions

executed concurrently is correct. A DML logic
becomes especially important when the set of trans-

actions is known in advance, as the general

correctness criterion can be tailored to the

application in question and verified beforehand
[LA21 . Examples of such database applications are

credit card verification, airline and hotel reserva-

tion, point-of-sale inventory control and electronic

funds transfer [BE2].

We will investigate in this paper the logic of

a (sequential) data manipulation languagej in the

future, we plan to embed it in a general parallel

language in the manner of [OW1]. We view our work

as the first step towards studying the correctness

of database applications such as those quoted above.

To support our DML logic, we start by selecting

a framework that is adequate to describe databases

and that has a reasonable underlying logic. In

fact, we will argue that the Relational Model [C02]

is so close to Predicate Calculus that the former

can be subsumed by the latter [cA1,MI1,NI1,VA1].

Hence, the question of the underlying logic is

solved gratuitously.

As for the, DML logic, we will augment a known

logic of programs, Dynamic Logic [PRl], with rules

for two new statements: the ?e~ationa~ assignment,

assigning a relational expression to a relation, and

the random tuple selection, extracting an arbitrary

tuple from a relation. The familiar operations

[cH1,co1,HE1,LAII --retrieve, insert, delete, update-

-will be defined as special cases of the relational

assignment. The for-each construct of [SC1] will

also be given a translational definition.

We finally note that our commitment to Dynamic

Logic is not essential, and our results should be

translatable to any .Logic of (non-determini’stic)

programs.

2. A Iogic for Data of Type Relation

As mentioned in the Introduction, we choose the

Relational Model [C02] as our framework for de-

scribing databases mainly because it can be assimi-

lated into Predicate Calculus. By “assimilated” we

mean that the key notions of the former can be re-

phrased as some of the very basic concepts of the

latter (see Fig. 1). The similarities between the

Relational Model and Predicate Calculus have profi-

tably been used before [cA1,MI1,VALI, but the iden-

tification of relational schema and first-order

theories, although clear, appeared only recently

(and independently) [NIII.

To substantiate the claims of Fig. 1, let us

first review some concepts. In the Relational Model,

stored data is viewed as relations (unordered

tables) and is described by relation schemes giving

names to the tables and their columns. An integrity

asser+ion then becomes a relational expression
written in some appropriate language. A relational

schema R is a set of relation schemes and a set of
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integrity assertions. If a set S of relations,

one for each relation scheme of R, satisfies all

integrity assertions, then S is called a con-

sistent database state of R.

1.

2.

3.

1.

2.

3.

FIGURE 1

Relational Model

schema

2.1 attribute name

2.2 relation name

2.3 integrity assertion

consistent state

3.1 union of underlying domains

3.2 relation extension

Predicate Calculus

theory

2.1 standard unary predicate symbol

2.2 non-standard predicate symbol

2.3 non-logical axiom

model

3.1 domain

3.2 relation

Hence, we have paved the way to the following
definition:

DEFINITION 2.1. A first–order theory

T= (LT,DT) is called a re~ationa~ schema iff

(i) LT, the set of non-logical symbols of T,

includes a finite set of predicate symbols Ri ~Pki

(l~i<m) and Aj~lF1 (l~j~n);

(ii) ‘T ‘ the non-logical axioms of T, includes

for each Ri exactly one axiom of the form (where

l:iP~n)

(
k,

VX1 . . . Vxk, Ri(xl, . . ..xk. )*A~ Ai (X )

1 I p=l P’ )

—

—

—

—

Moreover, we say that:

Ri is a database relation name and
‘j

is an

att~ibute nome (l<i<m; l<j<n);.- --

the special axiom for Ri is the relation scheme

of Ri (which we abbreviate Ri[Ail, .--,Aiki]);

IEDT is an integrity assertion;

a model s of T is a consistent database
state. ❑

However, not all integrity assertions can be

translated as axioms. The so-called dynamic inte-
grity assertions [ES1,HA1] impose restrictions on

the possible state transitions of the database,

rather than on the set of acceptable states. A

well-known example is:

(1) the salary of each employee listed in
table EMP must be non-decreasing.

In [ES1], the prefixes ‘NEW-r and ‘OLD–’, as in

NEW-EMP and OLD-EMP, were proposed to indicate

which state must provide the value of EMP. We do
not judge this approach elegant because it alters

the definition of interpretation from Predicate

Calculus in a fundamental way. Therefore, we pro-
pose a novel rewrite for dynamic integrity

assertions, using pairs of formulae, that avoids

this problem. (1) is then rewritten as follows:

(2) (VeVs(EMPo(e,s) ~EMP(e,s)),

‘de’Vsb’s ’(EMP(e,s) AEMPo(e,s ’)*s> s’)) where EMPO

is a defined predicate symbol whose sole purpose is

to freeze the value of EMP in the initial state

(that is, EMPO plays the role of OLD-EMP).

We then define the notion of schema with

dynamic integrity assertions as follows:

DEFINITION 2.2. A triple T= (LT,DT,D+) is

called a relatiowl schema with dynamic integrity
assertions iff

(i) (LT,DT) is a relational schema;

(ii) D+ is a finite set of pairs of formulae

of LT, the dynamic integrity assertions. ❑

The role of relational schemas WI1l become

clear later on when we discuss the notion of trans-

action. For the time being, it suffices to

remember that stored data is viewed as relations.

Finally, we introduce the notion of a key of a

relation:

DEFINITION 2.3. Let ‘= ‘LT’DT) be a re-

lational schema and Ri[Ail, . . ..Aiki] be the

relation scheme of RigLT. A key ‘of Ri is a

set kC[l,ki] such that

(
l-TVIV~R~)AR(~)A~ Xj=Yj-;=i

j Ek )

where =}, ;= {Ylr. ..rYki}.;={xl, . . ..xk. ❑

In words, the value of Ri at any consistent

database state of T must be a relation such that

if two tuples agree on the coordinates m k, they

are equal. Note that we allow subsets of k to be

themselves keys of Ri. Hence, our definition,

although sufficient for our purposes, differs from

that in [c02].

3. A Logic for a Data Manipulation Language

Our efforts in this section are directed

towards defining a DML logic by augmenting Dynamic

Logic [PR1] with rules for two new statements--the

relational assignment and the random tuple selection.

The logic thus obtained w~ll be called Relational

Dynamic Logic (RDL) .

In $3.1 we discuss the overall architecture of

RDL and then proceed to Introduce the two new state-

ments in $$3,2 and 3.3.

3.1 The Architecture of Relational Dynamic Logic

Let DL[LE,LA,DA,U] be the Dynamic Logic over

‘E, ‘AJ ‘A and U (see Appendix I). We assume

that there is a set of d~stinguished predicate

symbols of LE, LR, the stored relation names. We

construct RDL by adding two new statements to DL,

the relational assignment and the random tuple

selectlon, together with their corresponding axioms,

as discussed in ~~3.2 and 3.3. To stress the para-

meters of Relational Dynamic Logic, we write

RDL[LR,LE,LA,DA,U] .

We say that RDL[LR,LE,LA,DA,U] has an

adequate universe iff
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(i) for any variable x of $ and any

individual a EVU, there is a state 16U such

that xl=a;

(ii) for anybinary stored relation name REIPn

and any binary relation u, there is a stateR* c Vn

I~U such that R1=R*.

The motivation for this concept follows

closely the note in Appendix I and will become

clearw hen we discuss relational assignments.

Finally, we say that a schema ‘T=<LT,DT> is

a schema of RDL iff LT coincides with L$A, the

database relation names and attribute names of T

are stored relation names, and the underlying

deductive system of T is DA. Similarly, we

define a dynamic schema of RDL.

3.2 The Relational Assignment

Examples of relational assignments, using the

relation schemes BOOKS IISBN,EDITOR,AUTHOR,TITLE]

and WRITERS INAME,CITY], are:

(1) BOOKSl(a,t) := Zi3e(BOOKS (i,e,a,t)

AWRITERS(a, ‘PISA’))

that retrieves into BOOKS1 authors and titles of

all books written by Piss citizens;

(2) WRITERS(n,c) := 3c’(WRITERS(n,c’)

A (n+ ‘GALILEI’+c!= c’)

A (n= ‘GALILEI’+c= ‘PADUA’))

that updates the city listed with Galilei to Padua.

Likewise, we could give examples of insertions and

deletions written as relational assignments. Thus ,

we achieve a certain economy by adding the

relational assignment to DL, as just one statement

suffices to describe the operations commonly pro-

vided by existing relational DMLs [CH1,CO1,HE1,

LAII (i.e., retrieve, insert, delete and update).

Our approach to the relational operations iS

further justified by the simplicity of the

relational assignment:

DEFINITION 3.1. Formation Rules for the

Relational Assignment.

“R(=) :=A[lI “={(I,J) 6u2/

I ~JA(V~CV~)(RJ(=) iff I ~ A[~/~1)}

is called a relational assigment of RDL[LR,LE,LA,

DA,U~, where R is an n-ary predicate symbol of

LR, X={X~, . . ..Xn} is a set of distinct variables

of LE, and A[X] is an open Wff of ‘E With

free variables xiEZ. ❑

Hence, (I,J) is in the binary relation

associated with ‘tR(~) := A[~] !! iff I and J

differ only on R and RJ consists of those

tuples =Ev: such that, when Z IS given 5 as

value, A becomes valid in I. The central result

about relational assignments goes as follows:

THEOREM 3.1. Suppose that RDL[LR,LE,LA,DA,U]
has an adequate universe. Then, for any wff q of
LA, ~u [R(x) := A[x] ]Q ❑ Q: where Q: denotes the

Wff of XA obtained by replacing each atomic

formula in Q of the form R(tl,. ..,tn) by
A’ [tl/X~,..., tn/xn] , where A’ IS a variant of A

created by renaming bound variables of A that

also occur. in Q. R

An example may clarify the construction of Q::

(3) s= ’’BOOKSl(a,t) := 3i3e(BOOKS (i-,e,a,t)
AWRITERS(a, ‘PADUA’))”

(4) Q~qi(BOOKSl (’GALILEE’ ,i) AINDEX-PROHIBITORUM(i))

(5) [s]Q~~i (2i ’qe(BOOKS(i’,e, ‘GALILEI’,i)

AWRITERS (’GALILEE’, ‘PADUA’))

AINDEX-PROHIBITORUM (i))

Calling A the right-hand side of s, the

equivalence in (5) is obtained by replacing

BOOKS1(’GALILEI ‘,i) in Q by A’[’GALILEI’/a,i\t],

where A’ is created by renaming i in A by i’

(avoiding conflict with the use of i in Q).

The usual relational operations are defined as

follows:

DEFINITION 3.2. Relational Operations.

(a) retPieve R(Z) 2J?’2ere A[~l “’R(;) := A[~l”, where

R does not occur in A

(b) insert R(;) tikere A[=I = “R(X) :=R(~) vA[=I”

(c) deZete R(z) tikere A[=I = “Fi(~) :=R(~) A-A[~]”

(d) update R(~(;)) wkere A[;I’= ’’R(;) :=
~~(R(j) A (=A[~]*==~) A (A[~l+~= =(~)))”.

❑

The translation of the update, the only non-

trivial one, should be read as follows (where R is

the relation name affected in a transition from I

to J):

(6) fm eack t~ple ?I in RI do

if Y1 does not satisfy A

tken add ~1 _to Rj;

ebe add ~l(yl) to Rj;

3.3 The Random Tuple Selection and the For-each

Construct

The purpose of introducing the random tuple

selection is confined almost entirely to the defi-

nition of the for-each construe-t, the main theme of

this section. The for-each construct has the same

flavor as the synonymous construct of [SCII:

(1) for each WRITERS(a,c) where c= ‘USA’ key NAME

do .:=0;

for each BOOKS(i ’,e’,a’,t’)tihePe a’=akey ISBN

do n:=n+l end;

if .>10 then dispZay a;

end

that only displays American authors with more than

10 books published.

In terms c$ a loose ALGOL with the relational

assignment, the for-each construct is defined as

follows:

(2) for each R(=) where A[~] key Kdo s end =

A. Ro (~) := fake A Ro (;) ;

B. R (~) := R(~) AA[?);

z ~-C. u zZe 37(R (y)) do
D. begin RAND MTUPLE (~iz);

E. ~(;) :=~(y)vy =x;
F. s;

G. RT(~) := R(j) AA[~] A-3~(Ro(~) A~[K]

=~[K]);

end

where ;= {xl,..., ~} is a set (of distinct variables

of ‘E; K encodes ,3 key of R; and ~ and ~ are
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auxiliary <predicate symbols of LR.

The definition of the for-each sketched above

can be explained as follows:

A.

B.

c.

D.

E.

F.

G.

the set of tuples already scanned is the value of
~ (equal to @ initially);

the set of tuples eligible for scanning comprises

the value of ~ (equal to the set of tuples in

the initial value of R and satisfying A,

initially) ;

the loop will terminate when all tuples have

been scanned.

a random tuple is selected from those not yet

scanned, hence giving the system freedom for

implementing the scanning operation;

the tuple selected above is added to the value

ofR.
o’

s is executed;

as s can modify the value of R, we have to

recompute the set of tuples not yet scanned.

This is done with the help of the key K as

follows: a tuple in the current value of R iS

eligible for scanning if it satisfies A and,

moreover, its key value does not match that of

any tuple already scanned (hence the third

conjunct in G).

In order to express (2) in DL, we need the

relational assignment, which we already have, tests

over quantified wff’s, which are readily obtained,

and a new statement, the random tuple selection,
defined as:

DEFINITION 3.3. Formation Rule for the Random

Tuple Selection.

“RANDOMTUPLE( R;~)’’={(I,J) EU2/I~JAR1(;J)}

x

is called a random tuple selection of RDL[LR,LE,
LA,DA,U], where R is an n-ary predicate symbol

of LR and X= {xl,... ,xn } are distinct

variables of
‘E “

❑

Hence, (I,J) is in the binary relation

associated with “RANDOMTUPLE(R;~)” iff I and J

differ only on ;, and ~J comes from RI. The

central result about the random tuple selection

goes as follows:

THEOREM 3.2. Suppose that RDL(LR,LE,LA,DA,U]
has an adequate universe. Thenr for any wff Q of

LA, ~u[RANDOMTUPLE (R; Z)l Q= Vi2(R(=)+Q). ❑

We emphasize that the random tuple selection

is in itself uninteresting, but it gives precision

to the definition of the for–each construct

sketched in (2) .

DEFINITION 3.4. The for-each Construct

for eaeh R(;) whe~e A[x] keu Kdo s end =
‘~(y) :=fa2se A~(Y); “
RT(~) :=R(~) AA[7];

(dy(~(j?) RANDOMTUPLE( R.;;);?;

?

is called a for-each construct of RDL[LRrLE,LA,DA,

Ulr where R? % and ~ are n-ary predicate

sYmbOIS in LR (R. and ~ are chosen anew for

the translation of each for-each construct occurring

in a program) , z={xl, . . ..xn } are distinct

variables of LE, A[~] is a wff of with free

variables XiC%, Kc{l, . . . ,n} is aL~On-minimal

key of R, s is a statement of RDL. ❑

Although no special rule for reasoning about

the for-each construct is needed, an induction rule

on the number of tuples already scanned has been

found useful [CA2]. The basic idea lies in intro-

ducing an invariant with certain properties in

order to hide the translation contained in Defini-

tion 3.4. With such a rule one can prove, for

instance, that p- [w]Q, where:

(3) P = true

Q = ‘di’Va’’dt’ (BOOKSo(i’, ’SPRINGER’ ,a’,t’)

= BOOKS(lOi’, ‘SPRINGER’,a’,t’))

w = for each BOOK(i,eJart) key EDITOR,AUTHOR,

TITLE

do if e= ‘SPRINGER’

then update BOOKS (lOi’,e’,a’,t’)

where i’=iAe’=eAa’= a A t’=t;

end

using as inductive assertion:

(4) I = Vi ’’da’’d(B OOKSo(i (,’ SPRINGERER’ ,a’,t’)

- BOOKS(lOi’, ‘SPRINGER’,a’rt’))

The rule we have in mind is stated below.

THEOREM 3.3. Suppose that RDL[LR,LE,LA,DA,U]

has an adequate universe. Then Rule FE stated

below is valid in U

(FE)

1. -@;(Ro(j)) AP+I,

2. R(~) AA[; ]AI’+[s]I,

V;(R(;)AA[;l-31(Ro(~)A A Yi=Xi))AI+Q
, (-,.

P+[w]Q

where

R,RO

P is

I is

I’ is

and
w = “fop each R(=) ti?tere A[~] key K do s end”.n

are predicate symbols in LR, as in

Definition 3.4,

a wff of LA, possibly containing ~,

a wff of LA, possibly containing R.

but with no occurrences of XiCZ,

obtained from I by replacing each atomic

formula of I of the form ~(~) by

Ro (;) A=+=,

Rule FE should be read as follows (we remind

that R. holds the tuples in R already

processed) :

—

Premisse 1 assexts that, before entering the

for-each, P and the fact that no tuple was

processed must imply I.

premisse 2 asserts that if s is started in a

state J where ~J holds a tuple in RJ

satisfying A, ~J iS already in ~ (see Defi-

n~tion 3.4) and I holds for all tuples in NJ,

except ~J, then s must lead to state K

where I holds for all tuples in R. (in-

cluding =J) . K

Premisse 3 asserts that, when the fo~-eaeh ends,

I and the fact that all tuples have been
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processed must imply Q.

3.4 Summary

The relational data manipulation language we

consider in this paper is created by adding two

new basic statements to those considered in DL, the

relational assignment and the random tuple

selection. The corresponding logic of programs,

called Relational Dynamic Logic (RDL) , is obtained

by adding two new axioms to the system of DL:

(RS) [WNDOMTUP~(R;z) lQ~Vz(R(z)+Q)

Theorems 3.1 and 3.2 assert that Axioms RA and

RS are sound and, moreover, that the assertion

language is “expressive” (in the sense of [HA2])
for the new statements. Hence, following [HA2],

we can state:

THEOREM 3.4. RDL Arithmetical Completeness.

Suppose that RDL[LR,LE,LA,DA,U] has an adequate

universe, LA contains arithmetic, each stake in

the universe U assigns the standard interpretation

to arithmetical symbols and the deductive system

for LA is complete for U. Then, for any wff Q

❑

The relational operations--retriever insert,

delete, update–-and the for-each construct, as

defined symbols of FU)L, need no special treatment.

However, an induction rule (omitted for reasons of

brevity) on the number of tuples already scanned

can be stated in order to hide some details of the

definition of the for-each construct.

4. Transactions

Given a relational dynamic schema

T= (LT,DT,D;), we say that a program s is a

transaction w.r.t. T if s preserves the con-

sistency of the database described by T, that is,

iff s satisfies two conditions:

(i) s maps consistent states into con-
sistent StateS;

(ii) for each dynamic integrity assertion

(A,B) ED:, if s starts in a state satisfying A,

s mUSt terminate in a state satisfying B.

It would certainly be helpful if we could

find a formal characterization of (i) and (ii).

But as we noted in $3.4, Relational Dynamic

Logic is arithmetically complete (in the sense of

[HA2], with the necessary provisos stated in

Theorem 3.4). Therefore, we have:

THEOREM 4.1. Let RDL be constructed as in

Theorem 3.4 and T= (LA,DT,D~) be a relational

dynamic schema of RDL. Then, a program s of RDL

is a transaction iff

(i) for any axiom A~DT, DT l-~LIs]A

(ii) for any dynamic integrity assertion

‘A~B) ‘D’$~ ‘T I-RDL ‘+ [sIB. c!

Thus , at least in theory, we will not fail to
prove that a program is a transaction due to weak-

nesses of RDL. Evidentlyr the much more difficult

question of finding a proof procedure for our

logic remains unanswered.

5. Conclusion

In retrospect, Dynamic Logic was augmented to

include a relational data manipulation language,

creating a logic of programs that we called

Relational Dynamic Logic (RDL). RDL contains two

axioms, in addition to those of DL, for the

relational assiqnrnent and the random tuple selec-

tion. These new axioms are sound and the whole

formal system can be made complete, with certain

provisos as in [HA2].

The virtue we see in our work lies in its

simplicity: the four operations on relations--

retrieve, insert, delete, update--were defined in

terms of the relational assignment and the for-each

construct was accounted for with just one more

statement, the random tuple selection.

( Finallyr from the point c)f view of program

verification, the Relational Model was shown to
provide a reasonable programmin~ language inter-

face to databases. No special. purpose logic is

needed, as the Relational Model can

as an application of the very basic

Predicate Calculus.
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APPENDIX I

Concepts from Dynamic Logic

We review here just what is essential to under-

stand Sections 3 and 4, referring the reader to

[PRII for a full description of Dynamic Logic (DL

for short).

Dynamic Logic is based on a few parameters: a

first–order language LE, the expression language,

specifying the expressions allowed in programs; an

extension of ‘E ‘ LA, the assertion Zanguage, whose

wffs are used to express correctness assertions; a

deductive system DA for formulae of ‘A; and a

univeYse U of states with common doma~n vu, each

state being a structure for ‘A ‘ with domain vu ‘
together with an assignment of values [YA1] for the

variables of LA. To stress these parameters of

Dynamic Logic, we often write DLILE,LA,DA,UI .

A program in DL is defined as a binary

relation on U. TWO basic programs (or statements)
are provided:

(1)
l,X ;= t,, ={(I,J)EU2/I = JAXJ= tl} is called

x
an assignment, where x is a variable and t

is a term of LE(I=J indicates that I
x

and J differ only on the value of x).

(2) T!p?Tf = {(I,J) EU2/I ~P} is called a test,

where P is a wff of LE (I ~P indicates

that P is valid in I).

Programs are created by the following

operations :

(3) S1US2 and S*, the composition, union
‘1;s2’

and reflexive transitive closure of their

components.

In order to express facts about

new formation rule is added to those

languages:

(4)

<S>p

(5)

(6)

if P is a wff of DL or
‘A

programs, a

of first-order

and s is a

program, then, <S>P is a wff of DL .

The notion of interpretation is extended to

as follows:

I ~<s>P if 3J((I,J)Es AJ ~P)

[s]P is then introduced as ~<s>~P with

interpretation;

I \ [SIP iff VJ((I,J)ES+J ~P)

DL contains the

inference, in addition

wff of LA):

following axioms and rules of

to those of
‘A

(Q is a

106



(7) [x:=t]Q ~ Qt

(8) [P?]Q : PX* Q

(9) [sl U S2]Q = [SIIQA [S2]Q

(lo) bi; s21Q = lS1l [S2]!2

(11) Necessitation : ~
ls]=[sIQ

(12) Invariance :
P=+[S]P

-[S*JP

DLILE, LA, DA, UI has an adequate universe iff

for any variable x of LE and any individual

aEVu, there is a state 16U such that xl=a. For

adequate universes, Axioms 7 to 10 are sound and

Necessitation and Invariance are valid. We refer

the reader to [HA2] for a discussion of the

“relative completeness” [C03] of DL.

Note: Universes are in principle arbitrary. How-

=, when discussing a logic of programs, atten-

tion must be paid to the choice made. For

instance, if no state I in U valuates x as

5, the binary relation associated with “x:=5” is

empty, permitting us to derive l% [x:’= 51~aZse ~ true,
Hence, Axiom 7 is not sound in U. The notion of

adequacy of universes cures this anomaly.

APPENDIX 11

Proofs

Before proving Theorem 3.1, We state a le~

about the construction of @
from M (as de-

scribed in the statement of the

MwN to indicate that N is a

(that is, N is obtained from

variables) .

LEMMA 3.1. a~~ (.M)~

N~v N~N(MvN)~

3XM; *(~xM)A
R

(Mi)A N (M:) ~
xx

theorem) . We use

variant of M

M by renaming

x is free in M and i is a constant.

(The proof follows trivially from the con-

struction of M;) . ❑

THEOREM 3.1. SUppOSe that RDL[L ,L ,L D
R E A’ A’

U] has an adequate universe. Then, for any wff

of L A? Pu [R(l) :=AIZll Q~Q; . ❑

Q

Proof: Suppose that RDL[LR,LE,LA,DA,U] has

an adequate universe. Let Q be a wff of LA and

s = “R(~): =A[;l” be a relational assignment of

RDL . (In the sequel, denotes the domain of
‘u

U and n denotes the arity of R).

We observe initially

(1) $Q;~ [s]Q

= (VI@) (IF Q; =

=(VIEU)(I/+Q~=

= (h’I@J) (11= Q; =

. by Def. 3.1. and

that

[sIQ)

(VJEU)( (:[,J)6S+JEQ) )

s(I) I=Q)

RDL has an adequate universe,

s is a total function on U.

Therefore, all we have to prove is that for

(I,J) Es:

(2) I/=Q:=J~Q

Moreover, by Def. 3.1, we know that (I,J) E s

i ff

(3) I ~ J A (V;E~)(RJ(;) iff I l=A[;/;])

We then fix (I,J) CU2 satisfying (3) and prove

(2) by induction on the height of Q.

Basis: Assume Q = S(;),

L
A“

Case 1: S=R

(4) J /= Q

. J l=R(~)

= RJ(;J)

. I /=A[~J/;] . by

. I l=A[~@ . by

. I l=A’[~/;] . A’

no

S a,predicate symbol of

(3)

is a, variant of A with

variable of Q bound

.
I I=Q; . construction of Q;

Case 2: S # R (follows similarly)

Induction step: Assume (2) for formulae of height

less than k and let Q be of height k. We

consider only the case where Q = 3XM:

(5) J I=Q

. J /=&l

. J /=Mi
x

. 1 1= (Mi)A
XR

. I I=(FR):

. I @X~

. I ~ (axM);

. I I=Q;

i is the name of some in-.

dividual of J, by clef. of

J l=~xM

induction hypothesis, as ML

and M h,ave the same
x

height

Lemma 3.1 and Variant

Theorem

i is also the name of some

individual of I, as I and

J have the same domain, and

by clef. of J ~~xN

Lemma 3.1

A
construction of Q

R

This conciudes the proof. ❑
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THEOREM 3.2. Suppose that RULILR,LE,LA,DA,U]

has an adequate universe. Then, for any wff Q of

LA, hUIRAWDOMTUpLE (R; ~)1 Q~’&(R(l) *Q) . D

Proof: Suppose that

an adequate universe. Let

s = ‘IRANDOMTupLE(R; ~) ,, be

of RDL. (In the sequel,

of U and n denotes the

Let

(1)

From

(.2)

iff

iff

This

IEU. Then we have:

I I=[s]Q

RDL[LR,LE,LA,DA,U] has

Q be awff of LA and

a random tuple selection

v denotes the domain
u

arity of R).

= (VJEU)( (I,J)ES=+JI=Q) . clef. of

I l=k]Q

= (VJEU)(R1(;J) AI E J+JI=Q) . clef. 3.3

x

= (VJCU)(R1(;J) AI ~ J+Il=Q[~J/~] . I and

x

= (V;CV~)(Il=R1(;)*Q[~/;])

. 11=’/j(R(j) =+Q[~/;])

—— Il=V;(R(~) *Q)

(1) we can conclude our result:

(VICU)(I~ [s]Q = Il=V~(R(~) *Q))

(VIEU)(II=[SIQ ~ V=(R(Z) *Q))

&s]Q ~Vi(R(=) -Q)

concludes the proof.

J differ

only on

G

. FU)L has

an ade-

quate

universe

clef. of

II=M*N

. clef. of

11= V;M

1

clef. of

I 1= MEN

❑

THEOREM 3.3. Suppose that RDL[LR,LE,LA,DA,U]

has an adequate universe. Then Rule FE is valid in

u. ❑

Proof: The proof is a straightforward appli-

cation of the system of RDL. For brevity, we

present just a summary in the style of [OW1].

‘1
: {P}

‘1
: Ro(~):=@&AR o(x);

‘2
: {T3Z(Ro(Z))Ap}

‘3
: {T3X(RO(Z)) AI}

W2: RT (:) :=R(i?) AA[~];

‘4
: {VZ(~(Z)~R(2)AA1xl A&~(Ro(~)) AI}

P5: {V~(~(X) =R(i)AAIZl A&(Ro(~)A~n=~n) )AI)

({3=(~(z))*P5}

W3: 3;(@) ?;{P51

P6: {VZ(~(Z) ZR(Z)AAIZl AT3~(R.o(~) A~k=~k) AI}

W4: RANDOMTUPLE(RR;z);

P7: {R(2) AA[Z]A72j(Ro(j) Ajk=2k) AI}

{R(Z) AAI1] AI}
‘8:

‘5:

P:
9

‘6:

‘lo:

w:
7

u

’11:

‘8:

’12’

P
13:

’14:

THEOREM 3.4. RDL Arithmetical Completeness

Suppose that RDL[LR,LE,LA,DA,U] has an adequate

universe, L
A

contains arithmetic, each state in

the universe U assigns the standard interpreta-

tion to arithmetical symbols and the deductive

system for L
A

is complete for U. Then, for

any Wff Q of RDL, ~UQ iff I=mL Q . ❑

Proof: We argue here that the completeness

of DL [HA2] extends to the completeness of RDL.

It follows from Theorems 3.1 and 3.2 that, for any

relational assignment or random tuple selection s

and any wff P and Q of LA:

(1) there is a wff R of LA such that

I=u [s]Q2R

(2) \uP*[s]Q iff I-DL p+[sIQ

(3) I=u P*<s>Q iff I-DL P=<s>Q

Hence, using the completeness of DL and the above

results, by induction on the structure of a formula

S of RDL and on the structure of a program s

of RDL, we can prove:

(4) for any wff S of RDL, there is a wff S’

of L
A

such that /%s;s! (“expressibility”

A for RDL)of L

(5) for any program s of RDL and any wffs P

and Q of LA, l~p*[sIQ iff twLR[sl Q

(6) for any program s of RDL and any wffs P

and Q of LA, lfiP+<s~ Iff l-mLP*<s>Q

From (4), (5), (6) we can then conclude the result:

(7) for any wff P of RDL, & P iff I-mL P ❑

THEOREM 4.1. Let RDL be constructed as

in Theorem 3.4 and T = <L ,D ,D’> be a dynamic
TTT

schema of RDL. Then, a program s of RDL is a

transaction of T iff
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(i) for any axiom A~DT, D~ l-mL [s.IA; and

(ii) for any dynamic integrity assertion (A, B) ~D;,

DT t~L A+[s]B ❑

Proof: Let s be a program of RDL. Let

~ = A A’ , where Al is the univexsal closure

A~D
T

of A. Then s is a transaction of T iff

(1) (VI@) (VJf3J)(Il=i +( (I,J)Es*J~=~)) and

for any (A,B) ~D~,

(VIEU)(VJEU)(Il=fi *(II=A*( (I,J)6s-J1=B)))

BY definition of [s]Q, (1) is equivalent to:

(2) ~u ~-[sl~ and, for any (A,B) ED; ,

~u ~=+(A- [.s]B)

By Theorem 3.4 and assumptions on RDL, (2)

is equivalent to:

(3) I-mL ~+(s]~ and, for any (A,B) CD; ,

l-mLI*(A+[S]B)

Finally, by the Deduction Theorem and ~ is

closed, s is a transaction iff

(4) i I-mL [S]z and, for any (A,B) (lD~ ,

~ I-mL A+ [s]B. ❑
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