PROCEEDINGS

" FIFTH IﬁTERNATiONAL CONFERENCE
ON VERY LARGE DATA BASES

Edited By Antonio L. Fu-rtadd & Howard L. Morgan |

RIO DE JANEIRO, BRAZIL
OCTOBER 3-5, 1979

005.7406 SPECIAL CONFERENCE PROCEEE’HNGS
161 : FOR CONFERENCE PARTICIPANTS ONLCY
' THIS EDITION WAS PREPAREQ*A‘ND PBINTED
BY COURTESY OF SUCESU-RJ

FIFTH INTERNATIONAL CONFERENCE
ON VERY LARGE DATA BASES

RIO DE JANEIRO, BRAZIL
OCTOBER 3-5, 1979

-

- Sponsors and Supporters

The following societies and institutions have approved
sponsorship or support of the Fifth International
Conference on Very Large Data Bases at the time of the
publication of the advanced program.

Association for Computing Machinery {ACM)-SIGMOD,
SIGBDP, SIGIR :

International Federation for Information Processing
IEEE Computer Society

SUCESU Users Association, Brazil
IBM, Brazil

MONITORING INTEGRITY CONSTRAINTS IN A CODASYL~LIKE DBMS

Rubens N. Melo

Departamento de Informatica
Pontificia Universidade Catolica
Rio de Janeiro

ABSTRACT

This paper proposes that a DBMS of
the kind typically used in a COBOL
application environment should have
facilities to implement automatically the
monitoring of the integrity constraints
specified at the conceptual level. 1In
particular it is suggested that within
certain limitations a Preprocessor can
cheaply implement such monitoring. Such
facilities which are being implemented
in a CODASYL-like DBMS are shown and the
implementation techniques are outlined.

INTRODUCTION

A databasz is not just a static
collection of data. As a model of some
real world system a database must reflect
both the static and dynamic aspects of
the system it models. At a certain point
of time the contents of a database
represent a snapshot of a possible state
of the application world. At successive
time instants this world may change in
certain limited ways and the database is
correspondingly moved to a new permitted
state.

In this paper we will deal with the
problem os specifying the permitted states
of a database by introducing 'integrity'
constraints in the definition of a
database. First, however, we must make
clear what we mean by 'integrity' because
in this context this term still deserves
some explanation.

Database integrity, in its broadest

209

sense, implies the completeness,soundness,
purity, veracity ‘and confidentiality of
data. In this sense, 'integrity' encom-
passes other .disciplines such as.security,
privacy, access control and consistency.

There -is some confusion of terms in
the literature when one refers to this
subject. ,Security, for example, is
sometimes used instead of privacy, to
mean the prevention of unauthorized access
and modification of data. In other :
context, specially in the context of
commercial DBMS?, 'security' includes
integrity, recovery and access control..
The term 'consistency' is often used when
one refers to the prevention of semantic
errors which may arise due to the
interaction of two or more processes in
concurrent use of shared data”. Some
authors®»"* however, use 'consistency
constraint' to mean assertions on the
database contents to reflect a legitimate
configuration of its application domain.

In this paper we use the term
'integrity constraint' in the same sense
as 'consistency constraint' mentioned
above. A semantic integrity constraint
is therefore, an expression which
specifies that a predicate holds for one
or more elements of the database
structure. Such predicates define the
'correctness' of data in such a way that
the violation of one of them indicates
that the state of the database is
illegitimate and that some of its contents
are erroneous.

Examples of integrity constraints
are:

'"The salary of an employee must not
be less than 1500 and not greater than
200000

'No employee can earn more than his
X
manager'

Integrity constraints. play an
important role in database design. " The
conceptual Schema® of a database must’
include not only a specification of the

CH1406-8/79/0000-0209500.75 © 1979 IEEE

data structure but also the integrity
.constraints. The Conczptual Schema
should be specified in a language where
the naturally occurring structure and
situations could be described without
resorting to artificial comstructs. For
this purpose some recent works on the
semantics of database haye developed
;s?%aggic data models' ,’ and languages ,

3 . .

It is commonly assumed that the
conceptual specification will serve as a
guide to the database administrator (DBA)
for constructing a schema in terms of the
lower level data model of an available
DEMS. Typically the DBA has some :
canonical sets of representations for
each construct of the conceptual
structure of the database. 1In this
fashion the design task of mapping the
conceptual structure to lower level
concepts of a DBMS is made more
systematically. However it is tacitly
assumed that the semantic integrity
constraints defined at the conceptual
level are going to be represented
separately by DBA procedures or
consciously considered in the
application programs.

The purpose of this paper is to
propose that a DBMS should have tools to
.implement both the data structure and
the integrity constraints specified at
the conceptual level. 1In particular we
show how these tools are imcorporated
in a CODASYL-like DBMS being implemented'’®

The remainder of this paper is
organized as follows. 1In the next
section the specification of the
integrity constraints at the level of a
data model used in a CODASYL-like DBMS
is shown. In Sectiom 3, comments on the
implementation of the integrity
constraints are made. The paper ends
with some concluding remarks.

SPECIFICATION OF INTEERITY
CONSTRAINTS ON A CODASYL~
LIKE MODEL T

In this section we discuss the
aspects related to the description of
integrity constraints at the internal
level, i.e., in terms of the data model
of a CODASYL-like DBMS. First we
briefly review the concepts of schema and
subschema, then we show by means of
examples an outline of the language used
in the schema to describe the database
structure together with its integrity
constraints. The scction ends with a
presentation of the main data manipulati-

on operations and a discussion of the
possible violations of integrity
constraints when these operations are
performed.

Schema and Subschema

A schema is a representation of the

‘database structure and its integrity
constraints in terms of certain data model

concepts. The main concepts of our data
model are the record-type &and the set-
type'®. iven without explicit integrity
constraints a schema by itsélf already
imposes constraints on the possible
contents of -the database. This kind of
constraints is not suficient as far as
limiting the database definition to the
DBA's intention is concerned. The
integrity constraints try to complete the
database definition by avoiding the
specification of undesirable data.

A database is to be used by different
applications.. fach class of application
usually is concerned with only a subset
of the data contained in tle database.

A subschema is a description of this
subset in terns of the same data model
used in the schema. In our system we
also allow the definition of access
constraints which select the occurrences
of record and set types that can be
accessed through a subschema.

As an example consider a database
about employees (emp) departments (dept)
and projects (prj). Figure 1 illustrates
a structure diagram for this database and
figure 2 shows an outline of a

.corresponding sshema definition. For
-economy of space, we do not show a

complete schema. Some clauses are enough
to show differences between CODASYL DDL'?
and the one used in our system. Examples
of integrity comstraints are also shown
and commented,

emp fe———m = prj

mgr

Figure l: Structure diagram of example
database

SCHEMA NAME IS schl.

RECORD NAME IS dept,/* Department %/
ITEM dn CHAR(2); /* Department number
ITEM budget INTEGER:

IDENTIFIER (dn) -
CONSTRAINTS :
dn = 'D1' QR 'D2' OR 'D3'.

RECORD NAME IS prj-
ITEM pn CUHAR(2): /* project number */
ITEM dn CHAR(Z); /* Department number */
ITEM status CHAR(L):

ITE™ budget INTECER;

IDEXTIFILR (pn);

COJSTRAINTS:

/* project */

status = 'A' OR budget > 200000.

/% If status 'A' then budget>2(0000 */
RECORD emp: /* employee */
ITEM en INTEGLER, /% employee number */

ITEHM dn CHAR(2), /% emp's dept number */
ITEY salary IdTLEGER;
IDEJTIFIER (en):
CO4STRAINTS
salary > 1300 AND < 104000,
dn = 'D2' OR salary < 50009.
/*Employees from dept D2 earn less than
QU000 */

SET NAME IS dp; /* projects of a dept */
OWNER IS dept;
MEMBER IS prj FIXED, AUTOMATIC
USING dn OF prj = dn CF OWNER,
ORDER IS FIFO;/*projects of a department
are in chronological order#/

CONSTRAINTS :

8UM(budget of MEMBER)<budget of OWSLR.
SET de; /* employees of a dept %/

SET pe; /# employees in a project */
CWNER prj,;
UEMBER empt OPTIONAL,MANUAL:
ORDLP I35 SORTED ASCENDING 3Y salary,
CONSTRAINTS :

dn OF HEMBER = dn OF OWNER,
SET mgr;/*employees of the same manager*/
OWHLER enmp;
UEMBER emp OPTIOWAL MAWUAL;
COJSTRAINTS ; '

dn OF MLMBER = dn OF OWNER
AND salary OF MEMBER<=salary OF
OWNER.

/*an employee's manager works in the
same dept and earms not less than
him#*/

Figure 2: Example of Schema Definition

Record Types and Their Integrity
Constraints

A record type is described in this
model by:

its name
its data items

. its identifier (there can be more
than one identifier)

21

the integrity constraints which
apply to this record type
independently of its participation
in any set type.

Identifiers. An identifier is a sub-
list of the Iist of items of a record type
the value of which cannot be duplicated in
the record type. Different identifiers
may be specified for the same record type.
For example in a record type

Emp(en, firstname, lstname)

either the item en(employee's number) or
the pais (firstname, -lstname) could be
specified as different identifiers.

Record Integrity Comstraints. The
integrity constraints om a record type may
be classified as:

. Intra-record constraints

. Inter-record constraints

» Constraints on aggregation of
records

a) Intra-record constraints. These
are predicates that the items values of a
record occurrence must satisfy. The sintax
of these predicates is similar to that of
a valid logical expression in COBOL. For
instance the constraints on a record
Person (name, height, weigh®t, eye, age)
could be:

1.00 + 0.7 #'wegight < height

ARD height < 1.4 % weight + 1.00;

age > 18 AND < 35,

eye = 'green' OR 'blue' OR 'brown';
b) Inter-record constraints. These

constraints are predicates that must hold

between two or more records of the same

type. A typical constraint of this types

is:

"o employee can earn more than his
manager'

supposing that the manager is identified
by an item in the employee record. For
instance the employee record could be
imp(en, name, mgr, salary) where mgr is
the manager's number as an employee.

To describe this constrain we
usually have to resort to range variables
or synonims to selct the manager record
occurrence .

Ex. Range x is emp
¥ x (salary OF emp < = salary

OF x OR mgr QF emp # en OF x)

In this model we have two ways to
specify this constraint:

1. Using a synonim x of emp

salary OF emp(x)
en OF x)';

'salary OF emp < =
WHERE (mgr OF enp =

2, Via a set between emp and emp and a
set constraint (see below). Probably the
relationship of employee with his manager
would be better modelled by a set between
emp and emp (a construct allowed in our
system) which also indicate that each
employee has only omne manager. In this
case this constraint would be specified
very easily by a set constraint:

'salary OF OWNER 3 salary OF MEMBER;'

¢c) Constraint on Aggregation of
Records. These constraints are predicates
on 'aggregation' of records because
typically they express that the value of
some aggregation function (AVG, SUM, etc)
applied to a subset of the record type
is restricted.

For example:

salary of employees
than 30 must be greater

'The average
whose age is more
~than 100000'.

The specification of this constraint
could be stated as:

'AVG(salary OF emp RECORD WHERE
(age OF emp > 30)) > 100000'

These constraint are very difficult
to monitor because they may imply many
database accesses. Again, in most cases
the aggregation of records are implemen-
ted as sets, and these constraints are
expressed as constraints on the members
of a set.

Set Types and Their Integrity Constraints

A set type is described in this model

by

. its name

. its owner record type and member
record type

. the storage class of its member
(AUTOMATIC or MANUAL)

. the retention class of its member
(OPTIONAL, MANDATORY and FIXED)

. the (permanent) order of record
member in its set occurrences
(FIFO, LIFO, WEXT, PRIOR,
IMMATERIAL, SORTED by ...)

. the additional integrity
constraints that owner record and
its members must satisfy in the
context of a.,set occurrence.

A set type 1is a function f: MEMBER ~*
OWNER from the MEMBER record type into the
OWNER record type. '

AN

The same record type may play the
role of OWHER and MEMBER in a set type.
Singular set types owned by the special
record SYSTEM are also allowed.

An AUTOYMATIC member of a set is
automatic and immediately inserted in
the set vhen it is stored in the database.
To select the appropriate set occurrence
on storage of a record the system uses the
USING subclause in the AUTCMATIC clause.

A record can only be removed from a
set if it is an OPTIONAL member. The
difference between MANDATOFY and FIXED
is that a MANDATORY member can be moved
from a set occurrence to arother and a
FIXED member cannot.

The order of member records in a set
is automatically maintainec when a member
is inserted or updated.

Set Integrity Constraints. The OWNER
and MEMBER clause define whkich records can
participate in a valid association between
records. The set integrity constraints
are the predicates which give meaning to
these associations. These constraints are
additionally imposed to the records
participating in a set besides the
constraints on the record types to which
they belong.

The set comnstraints may be classified

as:
. Constraints between owner and
nember
. Inter member constraints
' . Constraints on aggregations of
menmbers
a) Constraints between owner and
member. These constraints are predicates

involving items of both owner and member
record types.

Ex. Set NAME 1is mgr;

OWNER is emp;
MEMBER is emp;:
CONSTRAINT:
salary of MEMBER < salary of
OWNER ;
sex of MEMBER = 'female'

b) Inter member constraints. These
are predicates that must hold between two
or more members of a set, These
constraints may be expressed in terms of
the relative position of members in the
set, TFor instance, a further constraint
on the set type mgr of the last example
could be: -

FETCH PRIOR salary of MEMBER <=salary
of MEMBER;

salary of MEMBER < = FETCH NEXT
salary of MEMBER

In other words the above constraints
are equivalent to

'ORDER IS SORTED ASCENDING BY salary'

In fact the ORDER clause is an
'implicit' integrity constraint. However
it is considered a 'hard' constraint and
is not specified in the constraint section
because it is inherent to the model. 1In
this example if the ORDER clause is
specified the order of members is
automatically maintained after an
insertion or update. In this case these
operations are not conditiomal and they
cannot violate the order constraint
because the check of order and the
necessary internal modifications to
maintain it are performed as part of the
operation.

If the explicit constraints were used
as in the last example and no ORDER clause
was given (which is equivalent to
IMMATERIAL ORDER) then any member
insertion or update would be conditional.
The operation would only be concluded if -
the specified integrity constraints were
not violated. Then the check would not
be a part of the operation.

c) Constraints on aggregation of
members. Thls type of constraint
T — :
speclfies that when some aggregation
function (AVG, SUM, etc) is applied to
the member records of a set occurrence,it
must yield some limited value.

Ex, In a set between Dept (deptno,
budget) and Emp (empno, salary)
a constraint of this type could
be:

SUM(salary of MEMBER) <=budget
of OWNER

to express that 'the sum of salary of
employees of each department must be
limited by the department budget'.

Data Manipulation vs Integrity Constraints

The integrity constraints are
concerned with the meaning of data. The
meaning of data can only be achieved by
defining not only its structure but also
its uses (operations on data). As we are
dealing with databases where the data is
shared by many users, the complete
specification of the use of the database
includes many aspects such as access
constraints, authorization constraints
besides the semantic integrity constraints.
This paper however deals only with the
latter aspect.

213

The use of a database is through
subschemas. As we mentioned before, a
subschema in our system besides the
common subsetting transforration .
usually possible in a CODALYL subschema,
the record and set types ir our
subschema consist only of selected
occurrences of the correspending schema
types.,

For example a subscher.a of the
scnema illustrated in figure 2 could be
defined as follows:

SUBSCHLMA suvl OF SCuLMA schl
RECORD teacher FROM er.p WHERE

(dn = 'D1'"):
ITeM teacher-no FROM en;
ITEY salary,

RECORD e-project FROM prj
WHERE (budget > 100000).
SET pp TROM pe WnERE (dn of OWNER
='D

—

"):

MEMBER 1s teacher.

The applications whicl. use tais
subschema refer to 'employee of
department D1' as teacher and the
relevant items of teacher records for
these applications are teacher-no and
salary. An expensive project (with-
budget > 10U000) is remamed as e-project
and the only set occurrences of set type
pe (renamed as pp) considered in this
subschema are those where the owner is an
e-project which has the item dn equal to
'Di'.

It could be the case that, by an
error of design, these access
constraints, may be specified
inconsistently with some other constraint
given in the schema. In this case, the
access constraint implies empty record
or set types.

Operations. Before we discuss the
possible violations of integrity
constraints when an operation is perfor- -
med we must distinguish between the ’
different levels of constraints that are
imposed on the database by the system.

Some constraints are considered
inherent to the data model. The data
structure by itself .already imposes
constraints. For instance the rule 'a
member record cannot be simultaneously
in two different occurrences of the same
set type' can be seen and used as an
'implementation' of an integrity
constraint ‘like "an employee cannot work
simultaneously for two departments'.

Some clauses like the IDENTIFIbK,
AUTOMATIC, MANDATORY, FIZED and ORDER
clauses can be seen as 'implieit' integri-
ty constraints. The check of these
constraints ars however, considered part
of the databass operations.

The user applications are supposed to
be written in extended COBOL or FORTRAW.
The data manipulation is expressed in the
programs by means of high level commands
incorporated ina the Host language. A
preprocessor analyzes and transforms the
user program iato a standard COBOL or
FORTRAN program with some extra code
corresponding to the invocation of these
high level commands.

. The record and set types referred to
‘by these commands must be defined in the
subschema used by this application.

In the segquel the relevant commands
as used in COBOL are briefly introduced
and their implication on the integrity
constraints ares discussed.

a) Retrieval Operations.

NE KT
PRIOR rec-type RECORD
FINDFIRST
: LAS set-type MEMBER
ANY

WHERE (logical expression)

A record occurrence (or member) of
the specified record (or set) type which
satisfies the positional and WHERE
conditions is set as the current record
(or member) of the record (or set) type.

rec~type RLCORD
..0F|set-type MEMBER
set-type OWNER

.GETIil,iZ,.

|18TO dy, dy, el

The specified items 1., i,, ... of
current record (or member or oWwner) of the
specified record (or set) type are brought
to the UWA (us2r work area). If no item
is specified a complete subschema record
is brought to the UWA. If the IWNTO clause
is given then the items are further moved
to data names 11, d2, PN

rec—type RLCORD
OF|set~type MEMBER

.FETCH|i1, i
set—type OWNER

g3 ot

WHERE (logical expressiomn)
IINTo‘dl, dys ve [
This is a combined form of FIND and

GET. .
These three operations do not change

the database state. Therefore they are not
concerned with integrity constraints. By
hypothesis, the database is 'correct' when
they are applied. They are concerned,
however, with the access constraints
specified in the subschema.

b) Hodification Operations. The

following operations change the database
state. ’ :

.STORE rec~type |FROM d]

If the FROM clause is used then the
contents of (data name) d are first moved
to the record in the UWA as the data to be
stored.)

If this operation is allowed in a
subschema, the schema items not included
in the subschema record are set to MNULL,

The record in the UWA corresponding
to the specified record type is stored in
the database and made the current of the
record type.’

tioreover, for each set type where
this record type is an AUTCMATIC member
type, the new record is insgerted in the
appropriate set occurrence determined by
the USIiHG clause of the MEVMBER definition.

As part of the STORE cperation the
system has to check some irplicit
constraints., The identifiers can be
neither set to NULL nor dujlicated. The
selection of the appropriate set
occurrence in each set type where the
record is AUTOMATIC member and is to be
inserted, must be possible. Otherwise
the operation fails. These checks and
the proper insertion of the record in the
sets are considered part of the operation
when applied to any database.

The explicit integrity constraints
are specific to the database in question.
Tuese constraints will be checked
separately from the operation. These
checks determine if the operation will
violate the 'correctness' of data of this
particular database.

The integrity constraints possibly
affected by a STORE are: :

Intra-record constraints. The items
of the new record (including those with
WULL values) must satisfy the intra-
record constraints of the record type to
which it beloungs.

Inter-record constraints. The new
record must also satisfy any inter-record
constraint of its record type.

Constraints on aggregation of records

These constraiats may also be violated by
the arrival of a new record occurrence.

Set constraints of the set types
where the record is an AUTOMATIC member .
As the new record must be inserted in the
sets’ all tha set constraints checked on
an imsertion operation are also checked
here. '

DELETE rec-type. The current record
of the specificd record type is to be
deleted from tne database. First, it is
removed from all sets containing it as a
member. For each set where the record is
owner, if the members are OPTIONAL then
these are removed, otherwise they are
deleted. In this case, each deletion
follows the same rules above.

Several integrity constraints have to
be checked in a delete operatiom.

Constraints of the record type. The
delete operation may possibly violate the
inter-record constraints and the
constraints on aggregation of records.

Constraints of the set types where
the record is a member. Because the
record is to be removed from these sets,
the delete operation may violate some set
constraints.

The above rules have to be recursive-
ly applied for each implied deletion(for
example, of : MYANDATORY or FIXED members).

. INSERT rec-type

INTO set-typel, set-type2,...

The current of the specified record
type is to be iaserted in the current
occurrences of the specified set types.
The specified record type must have been
defined in the subschema as member type
of the given set types. The implicit
order constraint is considered by the
operatlon and tiae new member is inserted
in the -proper sosition in each set. The
explicit set integrity constraints have
to be checked for each set type involved
in the operatioa.

.+« REMOVE rec-type

FROM set—-typel, set-type2, ...
The current of the specified record
type is to be remaved from the current
occurrences of the specified set types
that contain it as a member. The record
still exists in the database but not more
as a member of these sets. Only OPTIONAL
members can be removed. This is an
implicit constraint tliat has to be

215

checked. The explicit set integrity
constraints can be violated by the removal
of a member and have to be checked before
the operation is completed.

. MODIFY Iil, i, ...CF|

23
rec-type RECORD
set-type MEMBER |FROM d1 dyy oo
set-type OWNER

First, if the FROM clause is used
then the contents of data vames d., d
are' moved into the corresponding‘items
i ... in the UWA. If no item-is
spec1f1ed a complete record is considered.
The specified items (or the complete
record) in the UWA replace the
corresponding items (or all) of the
specified record (or set) type.

P

Some implicit integrity constraints
are checked as part of this operation.
Tor example, an identifier cannot be
modified. The order of the sets where
this record is a member is also
maintained by this operation. The
constraint defined by the USING clause
is also maintained. An attempt to change
some item in the record constrained to be
equal to some item of its owner in some
set containing it is an error. In order
to be possible to change these items
~onstrained by the USING clause, a
variante of the MODIFY operation is used.

rec-type RECORD
OF |set-type MEMELEK
set-type OWHLR

HODIFY|i1,i2,...

FROMH d. ,d

Lrdyseet]

USIWG set-typel, set-type 2,
MENLERSHIP

In this case the record automatically
changes to the appropriate set occurrence
where the USING constraint holds between
owner and member.

fiote that this is an iuplicit
constraint. Its check and r.aintenance
are part of the operation.

The explicit constraints which can
be violated by this operatien are checked
separately before the operation is really
done. This operation may violate both
record type constraints and set type
constraints.

ON Tide IMPLEMENTATION
OF IWTLGRITY COWSTRAINTS

In this section we outline the imple-
mentation techniques for monitoring the
integrity constraints. The discussion
shall concentrate on the simpler
constraints. The implementation of the
" more complex ones are still under
investigation.

There are three phases when an
integrity coustraint can be checked:

a) During the prdcessing of the
schema~DDL description of the database.
During this phase only 'syntatical' checks
can be made. For example, checks for
invalid qualifications, inexistent items,
recotrd or set types used in the logical
expression defianing the constraint.

b) During the preprocessing of user
programs. Some of the implicit iIntegrity
constraints violations can be detected.
For instance a YMODIFY operation applied to
an identifier or a REMOVE applied to a
MANDATORY or FL{ED member type.

¢) During the execution of user
programs. The axplicit integrity cons-
traints involve the values of data which
are only known, during execution time.
These constraints have to be checked in
some way during the execution of the-
user program but only the possibly
affected constraints need be checked for
a given operation invocation.

Although the modification operations
are known and fixed (only the parameters
vary) the problem of discovering at
preprocessing time which tests should be
inserted into the user program can become
a very difficult task specially if we con-
sider the more complex integrity
constraints. An interesting investigation
of this kind for ligher level operation
which may cause multiple changes to a
database is done in'?,

The implementation technique proposed
here is based on the use of a preprocessor
which extends the base language (COBOL or
FORTRAN) with high level operations of
data manipulation. During the
preprocessing phase the . operations and
their parameters are analyzed and
transformed into a series of tests to
detect any violation of the possibly
affected constralnts, followed by the
'internal operation' corresponding to the
high level operation invoked by the user
program.

Note that the user program refers to
the records by taeir subschema names. The

preprocessor transforms the invocation of
the subschema in the program DATA DIVISION
into a set of record definitions. For
each record, member and owrer type

defined in the subschema the preprocessor
defines a record in . the DATA DIVISION.
Therefore, references to items in integri-
ty comstraints are easily transformed in-
to the corresponding data names in the
user program.

For example, consider a subschema of
schema in figure 2 involving only the emp
record and the mgr set between emp and
emp. The preprocessor will generate the
following records in the DATA BIVISION of
the user program:

Gl EMP.
02 EN-w-~~
02 DN==--
.02 SALARY-~-~=-
01 MGR.
02 OWHER.
03 EN-=~-
03 DN===- .
03 SALARY~—~-
02 MLEMBER.
03 Ed=w—w-=
03 DR--~--
03 SALARY-~--

Therefore the integrity constraint
for the set mgr:

'dn OF MEMBER = dn OF OWNER

AND salary OF MEMBER
< = salary OF OWNER'

is easily transformed into an unambiguous
COBOL logical expression

dn OF MIMBER OF mgr = dn OF OWNER OF mgr
) AND salary OF MEMBER OF mgr
NOT > salary OF OWNER OF mgr

Check of Intra-record Comstraints

An intra-record constraint has to be
checked when a record is stored or modi-
fied. The new contents of the record,
however -are always available as data
names in the user program. The
preprocessor can, therefore, generate the
IFs corresponding to the checks of
integrity constraints of this kind.

For ‘example consider, for the
moment, only the record type emp and its
integrity constraints of figure 2, then
the operation

MODIFY dn OF emp

would correspond to the following text in
the user program: ’

MOVE modify-error TO failure-code
IF NOT (dun OF emp NOT = 'D2'
OR salary OF emp < 50000)
GO TO LABEL
MOVE ZERO TO failure-code
CALL 'internal modify operation'
USING 'emp record in UWA'.

LABEL,

Note that only the record type
constraints which involve the items
mentioned in the IMODIFY operation produce
IFs in the user program. Note also that
no database acc2ss is needed to check
this type of constraint..

Check of Constraints Between OWNER and
MEMBER of a Set

fow considar as the subschema invoked
by the user program, both the record type
emp and the set type mgr, as defimed in
the schema of figure Z. 1In this case a
modification of emp may violate both
record and set constraints involving the
record type emp.

For example the operation:
MODIFY salary OF emp

then would correspond to the following
text:

MOVE modify-error TO failure-code.
NOTE check if new record is a
'correct' emp record.
IF NOT (salary OF emp > 1500
AND < 100000) GO TO LABEL.
IF NOT (dn OF emp NOT = 'D2'
OR salary OF emp < 50000)
GO TO LARBEL.
(Save memba2r and owner currency of
mgr set),
NOTE check if new record would be a
'correct' member of mgr.
MAKE emp 'CURRENT MEMBER OF mgr.
IF error-status = ZERO THEN
IF NOT (dn OF MEMBER OF mgr
= dn OF OWNER OF mgr
AYD salary OF MEMBER OF mgr
NOT > salary OF OWNER OF mgr)
GO TO LABEL.
NOTE check if new record would be a
'correct' owner of mgr.
MAKE emp CURRENT OWNER OF mgr.
(For each member of mgr set)
IF NOT (dn OF MEMBER OF mgr
= dn OF OWNER OF mgr
AND salary OF MEMBER OF mgr
NOT>salary OF OWNER OF mgr)
GO TO LABEL.
(End for)
" (Restore member and owner currency
of mgr set)

217

MOVE ZERO TO failure-code.
CALL 'internal wodify operation'
USIHG 'ewp record in UWA'

LABEL ~==~

Note tnat in this case some database
accesses ray be needed. The MAKE command
which appears in the above example is a
data manipulation operation that explici-
tly sets currency indicators and leaves
the correspounding records available in
the UWA. The currency indicators are
explicitly handled in our system.

Other possibility for implementing
the integrity constraints checks is to
interpret the constraints during executidn
time. 1In this case, both the operation
and its parameters are passed to a
subroutine that checks for possible
constraint violations.

The advantage of the former techni-
que is that we can use the base language
to check the logical expressions., Tiis
is a cheap way of implementing the
constraint monitoring. Furthermore,with
a2 careful analysis of which constraints
should be checked the amount of extra-
code inserted in the user program is
limited.

The monitoring of other constraints
such as the access constraints of the
subscihema and the authorization
constraints may be implemented in a
sinilar way. The cost of constraint
monitoring by this technique then becomes
small compared to the benefits. A
similar techniques has already been used
by Stonebracker in'" .,

CONCLUSION

This paper proposes that a DBMS of
the kind typically used in a COBOL
application environment should have
facilities to implement automatically the
integrity constraints specified at the
conceptual level. Such facilities which
are being implemented in a CODASYL-like
DBMS were shown and the implementation
techniques were outlined.

It is also claimed that the high
cost usually associated with the
implementation of such facilities may not
be so high if one considers that the same
mechanisms used to implement integrity
constraint monitoring also be employed to
implement other facilities such as access
control and authorization. Furthermore
it is suggested that within certain
limitations a preprocessor can very
cheaply implement the constraint
monitoring.

Aknowlegements

The author wish to thank Antonio

Fernando C. Goaes and Helena Barbosa for
their useful comments on this paper.

10.

11.

12,

REFERENCES

Eswaran, K. P. and Chamberlin, D. D.
"Functional Specification of a
Subsystem for Database Integrity"
Proc Int. Conf. on Very Large Data-

bases. Framingham, Massachussetts
(Sept. 1975).
Davis B, "The Selection of Database

Software", NCC Publication, 1977

Florentin, J. J., "Consistency
Auditing of Databases", Comput. J.
17, 1 (1974).

Huits, M. H. H., "Requirements for
Languages in Database Systems" Data-
base Description, North-Holland,
Elsevier, Amsterdam, 1975.

ANSI/X3/SPARC, "Study Group on Data-
base Management System" Interim
Report ANSI 75-02-03.

lHammer, M. M., "The Semantic Data
Model: A Modelling Mechanism for
Database Applications™ Proc. Int.
Conf. on Management of Data, Austin,
Texas (June, 1978).

Chen, P. P,, "The Entity~Relationship
Model: Towards a Unified View of Data"
ACM Trans. Database System 1, 1

(Mar. 1976).

Biller, H.and Neuhold, E. J.
"Semantics of Databases: The
Semantics of Data Models" Information
Systems, Vol. 3, Number 1, 1978.

Cabral, V., "Em Busca de uma Lingua-
gem para a Especificagao Conceitual

de Sistemas Apoiados em Bahco de Da-
dos". Tese de llestrado - PUC-RJ,1978,.

Teixeira, 3. A., "Especificagio For-
mal de Banco de Dados e suas Restri-
goes de Integridade™. Tese de Mes-
trado, PUC~-RJ, 1979.

CODASYL DDL Journal of Development,
June 1973 Report

Steel, T. B.,"Formalization of
Conceptual Schemas" Proc 2nd SHARE
Working Conference on DBMS, Montreal,
Canada, April, 1976.

13.

14.

Hammer, N. M. and Sarin, S. K.,
"Efficiente Monitoring of Database
Assertions" Proc. ACM SIGMOD (1978).

Stonebraker, M., "Implementation of

Integrity Constraints and Views by
Query Modification" Proc. ACM SOGMOD
Conf. San Jose, Calif. (May, 1975).

Melo, R. N., "Projeto MIDAS: Relato-
rio Intermediario™, PUC-RJ (1979)
(To be published)

CODASYL Database Task Group, April,
1971, Report.

