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ON THE STRUCTURE OF MULTILINEAR SYSTEMS

Paulo A. 'S. Veloso

Dept? Informitica, Pontificia Universidade Cat&lica
Progr. Eng. Sistemas e Computagao, COPPE-UTRJ
Rio de Janeiro, RJ, Brazil

ABSTRACT

The structure of a class of multilinear systems is investigated
from a general system-thepretic viewpoint by algebraic methods.
This class encompasses not only stationary and time-varying systems
but also systems with discrete or continuous time.

Multilinear systems may be regarded as generalizations of linear
systems, their nonlinearity being of a special kind. They occur in
such diverse areas as pattern recognition, nuclear reactor control,
blologlcal modeling.

It is shown that many multilinear systems can be decomposed into
parallel linear systems interconnected by a tensor-product block
followed by a linear system, thus indicating that the multilinear-
ity can be concentrated.

1. INTRODUCTION

In a linear system the inputs act linearly on the output. This
is no longer the case for multilinear systems, where this dependence
is multilinear rather than linear. A bilinear systems has two input
lines and the influence of each input on the output is linear
provided the other input is held fixed. The combined effect on the
output of variations on both input lines need not be linear. Thus,

a multilinear system presents a non-linearity of a particular kind,
being somehow almost linear.

Multilinear systems are involved in the modeling of phenomena
from several areas, such as pattern recognition, nuclear reactor
control, biological population growth, etc.
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88 P. A. S. VELOSO

Imagine a potentiometer, say on an analog computer, the value
of which is linearly controlled by a signal w(t). Its response to
input v(t) will have the form k.w(t).v(t). If its output line is
fed into a linear system L, we obtain a bilinear system

v Lo o

w

Another natural way to obtain a bilinear system consists in con-
necting two linear systems Lj and Ly in parallel via a multiplier.
The result of combining both methods will be a bilinear system,

u T Y1 .
o N I
X z
. — vp Lo

Notice that the non-linearity is concentrated in a memoryless
multiplier block, all the other components being linear. It will
be shown that many bilinear systems can be obtained this way.

We shall employ a generalization of Windehnecht's (1) general
time-systems framework, designed to allow for more flexibility in
the time domains. We shall need some standard algebraic termino-—
logy and basic results (2), (3).

2. SYSTEMS

A system is frequently regarded as a relation between input
and output signals. Here we shall imagine that input is fed into
the system at certain instants p € P and its output is observed at
instants t € T, considering its input-output behavior as basic.

We shall define a system as a 7—tuple
S=<p, T, E, 2, U, Y, S> , where

and T are non—empty sets (input and output time domains);
and Z are non-empty sets (input and output alphabets);

is a nom—empty subset of EP (input space);

is a non-empty subset of zT (output space);

is a relation from U to Y with domain U.

w<Kamxd

An important property of many physical systems is non-~antici-
pation. For instance the output over the interval [tg,ty1) for real
numbers tp<t; does not depend on the input over [ti, +®) only on
the part over (-«, to). This motivates the next definition.
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Given subsets I of P and J of T consider the relation (with
"|' denoting restriction)

S5 = Lyl / (@y) €8}
and call S I-J-deterministic iff 7Sy is a function.

From now on we fix a positive natural n and a commutative ring
K with unit.

We shall a system S n—linear (over K) iff

=
1

E1 x Ep x...x Eyy with each Ej a K-module;
.U =01 x Up x...x U , with each Uj a K-submodule of Eg 5
. Z is a K-module and Y a K-submodule of 2T,
the relation S is n-linear over K, i.e.,
for each i = 1,...,n and all uy € Up,...,ui-1 € Ui-1 3
uj+] € Ui+l,---»up € Up the induced relation

{(ui,y) / (ul,...,ui,...,un) Sy}
is a K-submodule of Uj x Y.

Notice that the usual linear systems are exactly the l-linear
ones. Thus, multilinear systems generalize the linear omnes.

Clearly, a system S is n-linear and I-J-deterministic iff
Sy ¢ (U] x...x UR) [T~ Y|J

is an n-linear function, which becomes a linear function in the
case of linear system.

Some remarks about our concept of system may be in order.
Firstly, it is possible to consider P and T as subsets of a common
time domain, which may be ordered (but it is important to notice
that this ordering need have a minimal element). Secondly, it is
not necessary to take P and T as related to "physical time'. In
fact, it may be more convenient in some cases not to do so. We
shall now give some examples to illustrate these points.

For a continuous—time system (say, simulated on an analog
computer by means of integrators, potentiometers, multipliers,
switches, etc), we may take P to be the reals and T the non-nega—
tive reals. For a discrete-time system (say, described by difference
equations) we may consider P to be the integers and T the naturals.
In both cases we do not care to observe the negative part, regarding

it as setting the initial condition.
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gives a linear I-I-deterministic system L;. Now define R by

R = {((ug + Ni,...oup + Ny) , y) / (ug,...,up) My }

Notice that R is n-linear,inheriting I-J-determinism from M
QED.

Notice that if system M in the above lemma has input and out-
put time domains P and T, resp., them Lj,...,L, have P as both time
domains. In the next proposition, R will be further decomposed,
yielding L, with T as both time domains.

Proposition. An n-linear I-J-deterministic system M can be decomposed
into a parallel interconnection of n linear I-I-deterministic systems
by a P-T-deterministic temsor product R followed by a linear J-J-
deterministic system Lg.
Proof. We have M = (L1 x ... X Lp).R with an n-linear function
1Ry ¢ (Vg x...x Vn)|I + Y|J from the previous lemma. Consider the
tensor productsover K

R=Vy xe..x Vg * W=V X ... X Vo
R=V] %euux V| > X = V1[I x ... x VI
and the tensor product D : W - X of the restrictions from V; to
VilI for i = 1,...,n. There exists a linear function L : X > Y|J
such that 7Ry = D.L. Define L, by

Lo = {

Gi,y) / wD.L = y|3}
Then R = R.Ly with Lo as required.QED

Deterministic systems form a broad class. A particular case of
special interest is that of systems where the output can be deter-
mined pointwise as in the following definitionm.

Call a system S I-J-causal iff for each t ¢ J there exists
ItE; such that S is It - {t]-deterministic and I = tEJ 1t,

For an I-J-causal system we have y(t) as a function of u]It.
But frequently we can obtain more information about the output from
the knowledge of u|1t. Indeed, given t € T, consider the family of
all J'c J such that ItSJv is a function.By Zorn's lemma (2), this
family has a maximal element Jt, with t € Jt c J.

Theorem — An n-linear I-J-causal system M can be decomposed as
M= (L].T] x...x Lp.Ly). R with Ly,...,L, 1linear I-I-deterministic,
Il,...,ln linear I-J-causal and R n-linear I-J-causal.
Proof - Let t ¢ J and notice that M is It-Jt-deterministic according
to the above remarks. So, the previous lemma gives a decomposition
M= (L; x...x Ly).R with R n-linear 1t-Jt-deterministic. Thus we have
an n-linear function

<F o, .ooovE ) RE = (0) (vl,...,vf) ptRyt
where vi = vg 1t , for i = 1,...,n. Now, we have a K-submodule
Ni(t) of VE with canonical projection iE : VE - WE , for 1 = 1,...,n
and an n-linear function R factoring RE = (iE Xuew X ﬁg).ﬁ. Thus we
have the required systems.QED.
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Now, for A/D (resp. D/A) converters it may be more convenient
to take P=R and T=N (resp. P=Z and T=Ry).

Finally, consider the case of Turing machines with a designated
initial state. Here the initial contents of the tape(s) determine
the final contents, if any. So, we regard the input as having the
form u : N > I (initial contents) and the output of the form
y ¢ Z > Z (final contents), and take P = N and T = Z. Thus we have
an N-Z-deterministic system (for halting machines), which we would
not have had we taken time related to the number of steps in the
computation. For the case of one input read-only tape with k
working read-write tapes, we can consider P = ® and T = ZK,.

3. DECOMPOSITIONS

We shall examine the rough structure of multilinear systems.
These shall be described in terms of decompositions.

Consider two systems S , R with output components (T,Z,Y) of
S coinciding with the corresponding input components of R. By
their serial connection S followed by R we mean the system S.R
with relation

S.R = {(u,w) / for some y ¢ Y,(u,y) ¢ S and (y,w) € R}

If the input components of § coincide with the corresponding
ones of R and likewise for the output components then we define its
direct product S x R to be the system with relation.

SxR ={((u,v),(y,w)) / (u,y) € S and (v,w) e R}

Finally, the parallel connection of S and S' by R, assumed
compatible, is the system (S x S"). R

In decomposing n-linear systems we shall try to isolate the
non-linear, so as to, roughly speaking, diminish its dimensionality.
We consider first the case of deterministic systems.

Lemma — An n-linear (I~J-deterministic system M can be decomposed
into the parallel connection of n linear I-I-deterministic systems
by an n-linear system R(which will be I-J-deterministic if M is)

- so that M = (L1 X...x Lp).R.

Proof — Let 1 = 1,...,n and define

Ni|T = {ug|T / CuplT,..ouilT,.o.un| DMy 00, for all
u: € Us with j # i}

] J

Notice that Nj|I is a K-submodule of Uj|I inducing a K-submodule

Ni = {uj € U; / ui|I e Nj|I} of Uj.

The canonical projection Li of Uj onto the quotient V; = Uj/Nj
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We can further decompose R in a manner analogous to the deter-
ministic case.

Corollary - An n-linear I-J-causal system M can be decomposed as
(L1 . Ty x.o.x Ly o L)) . R.Ep with Ly,...,L;,T9,...,T, as above.
R a P-Q-causal tensor product and I linear J-I-causal.

A further specialization of interest is that of memoryless
systems, such as adders, multipliers, where the input-output trans-
formation is instantaneous. The next definition embodies a sllght
relaxation of this constraint.

Call a system S I-J-static iff for each t € J there exists
Pg € I such that S is {pt} - {t}-deterministic and I = {p /t € J}.
Clearly an I-J-static system is an I-J-causal one where y(t) is a
function of the input value u(py) at instant py € I. The case pg=t
corresponds to combinational switching circuits, whereas the more
general case py < t corresponds to definite machines.

Multilinear static systems have decompositions similar to the
other cases.

Proposition — An n-linear I-J-static system M can be decomposed into
n linear I-I-static systems in parallel by a P-T-static tensor
product followed by an J-J-static linear system, so that

(Ll Xe.oX Ln) <RIy

4. CONCLUSION

A very broad definition of time-system was given, accounting
for different time behaviors onthe input and output sides. Serial
and parallel decomposition for such systems were taken as the na-
tural extensions of the familiar concepts. Three increasingly
restrictive subclasses were considered, deterministic, causal and
static systems, which formalize various notions of non-anticipation
and causality.

Multilinear systems over a commutative ring with unity were
defined as encompassing the linear ones and then their overall
structure described by decomposing them into parallel connections
of linear systems via a tensor product followed by another linear
system.

These results do not give much information about the fine
structure of multilinear systems. This can sometimes be obtained
in special cases, e.g. discrete 'stationary systems (6). However,
they do have some interesting consequences. For instance, many,
though not all, problems concerning multilinear systems can be
attacked by studying the effect of a tensor—product connection of
linear systems.
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Moreover, the decompositions were obtained without explicit
state—-space construction, thus allowing unconstrained state assign-
ments to the component systems. As an illustration, only multipliers
have to be added to the stock of building blocks for linear systems
(adders, scalers, delays and integrators) in order to construct
any multilinear system described by differential/difference
equations.
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