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ABSTRACT

This paper shows that many properties of linear time-invariant
systems are due to the underlying group structure, even if not
commutative. Within a general time-systems framework some proper—
ties of additive time-varying systems are examined : attainability,
observability, reachability,controllability, realizability and
state-space construction. These are regarded from the viewpoint of
mathematical foundations of general time-systems theory.

In Windeknecht's general time-systems theory (1) a system is
defined as a relation between input and output signals (2). Another
distinct concept is that of realization, which involves internal
states (3). The problems of analysis and synthesis can be described
as that of correlating a system with a realization with the same
input—-output behavior. Thus, non-anticipatory systems represent
the behavior of deterministic realizations. This paper employs this
framework extended to time-varying systems in order to investigate
the role played by linearity. The aim is showing that several pro-
perties usually attributed to linearity are actually due to a group
structure, which does not have to be commutative (4).

We shall fix a time domain T # @ ordered by < together with a
output—observation domain @ #JCT . Also fixed are the groups
T and Z ( input and output alphabets ) and subgroups U of functions
from T into I and Y of functions from J into Z ( input and output
spaces ). We shall be dealing with ( sets of ) functions with do-—
main included in T and using the suffixes *t and §t to denote res-—
triction to the set of instants prior to t , resp. from t onwards
( including t ).
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66 P. A. S. VELOSO

In order to simplify the treatment we shall assume the input
space U to have a closure property : for all t in J and all u and
v in U utv = u*t U v§t is in U . Because of this, we have a com-

mutative separation : for all u and v in U utO + Otv = utv = Otv +
+ ut0 . This will be used frequently in the sequel.

By an additive t-register R we mean a state group Q together
with a pair of group homomorphisms m*t : U*t-=Q ( memory map )
and n§t : QxU§t —Y§t ( output map ). Because of the separationm,
we get an equivalent definition of additive t-register via the
representation n§t(q,uft) = c§t(q) + d§t(uSt) , where we have two
homomorphisms c§t : Q —Y§t and d§t : USt—Y§t .

The set of t-attainable states is a subgroup , the image of
m*t , whereas the set of states t—equivalent to the zero state is
a normal subgroup kerc§t of Q. Since q is t-equivalent to q' iff
(q—q") is in kerc§t , we can transform R into its reduction R .
which is completely t-attainable and t-observable. This reduction
is minimal among all t-registers having the ( input-output) behavior
n§t (m*t (u*t),uft) of R, in the sense of being a homomorphic image
of a subgroup.

A register embodies the idea of the state space being used to
store information with part of the input signal setting the initial
condition. ( Notice that T is not assumed to have minimal elements,)
The next definition starts incorporating state structures for sev-
eral instants of time.

An additive transition structure consists of a family Q(j) of

state groups together with homomorphisms M(j,i) from Q(i)xU§i%j
into Q(j) for i%j in J, satisfying the identity and semigroup com—
position properties. Equivalently, because of separation,
M(j,1) (q,u§i*]) = A(j,i)q + B(j,i)u§i*j , where A(j,i) and B(j,1i)
are homomorphims such that A(i,i)q=q , B(i,i)u§i*i=0 , A(j,i)q=
=A(j,t)A(t,1)q , B(j,1)uli*j = A(j,t)B(t,i)uli*t + B(j,t)uft*j ,
for i%t%j in J .

Now consider the sets Rch(j,i) of states reachable at j from
the state O at i and Ctr(j,i) of states at i controllable to O at j.
Clearly, Rch(j,i)=ImB(j,i) is a subgroup of Q(j) and Ctr(j,i) =
= A(j,i)_”ImB(j,iﬂ is a subgroup of Q(i) . The next result general-
izes a condition for a finite-dimensional linear time-invariant
system to have all its reachable states controllable (7).

Proposition - Let i#t#t'£j¢k in J and assume Rch(k,1i) C Rch(k,j) .
Then Rch(t',t) C Ctr(k,t'), thus Rch(j,i) C ctr(k,j) .
Proof. Follows from qeCtr(k,t') iff A(k,t')qeRch(k,t') . QED

From an additive i-register and an additive j-i transition
function one can obtain naturally an additive j-register. However,



ON ADDITIVITY AND LINEARITY IN GENERAL SYSTEMS THEORY 67

the output of non—anticipatory systems can generally be determined
pointwise, which suggests the following definition.

An additive machine M consists of an additive transition
structure together with a homomorphism N(t) : Q(t)xU(t)—27 , for
each t 4in J. Equivalently, the instantaneous output map can be re-
presented as N(t)(q,u(t))=C(t)q+D(t)u(t) , with homomorphisms
c(t) : Q(t) —2Z and D(t) : U(£)—Z . For each i in J we have an
induced output map n§i : Q(i)xU§i —Y§i given by, for j=1i in J,
n§i(q,u§i)(j)=N(j)(M(j,i)(q,u§i*j),u(j)) , with similar expressions
for c§i and d§i . Thus kerc§i = jgkker(c(j)A(j,i)) and for j=i
A(j,i)kerc§i E_kerc§j .

Proposition - Given M there exists a unique machine @, which is
completely observable on J, such that for j=i in J,NA(j,i)p(i) =
= p(NAG,1) , B(,1)=p()BG,1) , THPpd=Cc() , D)= ;
where p(t) denotes the canonical projection onto Q(t)/kerct .

The idea of using a register together with a transition struc-
ture is taken up in the following definition.

Given t in J, an additive realization P consists of an addit-
ive machine together with a memor homomorphism m*t : U¥t—Q(t) .
Notice that for each i=t in J P gives rise to an additive i-~regis-
ter, thus being reducible to a completely observable and attainable
P with the same behavior, which is, for j=t in J,

C(NHAG,t)m*t (u*t) + C(HB,)ust*j + D(Puld) .

By an additive system we mean an additive relation S from U
to Y , i.e. a subgroup of UxY,with domain U .

Given an instant t in T we define the t-—section S§t of S to
consist of those (u,y§t) with (u,y) in S and call S t-functional
iff S§t is a function, which is then a homomorphism such that
for all u in U S§t(u) = S§t(utld) + S§t (Otu) .

Now, the behavior of an additive t-register gives a t-section
of a t-functional additive system. We shall now extend Nerode's
construction to obtain the converse.

Theorem - Any t-section of a t—functional additive system S is the
benavior of an additive t-register R , which is minimal.

Proof. As kerS§t(.t0) is a normal subgroup of U*t we can take Q to
be the corresponding quotient and use the canonical projection to
define m*t and n§t in a natural way. QED

Now consider for i in J the relation S£i consisting of those
((u*i,u(i)),y(1)) with (u,y) in S . We shall call S t-J-causal iff
for each it in J S£i is a function, whence a homomorphism from
U%ixU(i) into Z. With these concepts we can characterize which
systems have a realization.
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Theorem — A t—-section of an additive system S is the behavior of

an additive t-J- realization iff S is t—J-causal. \
Proof, If S is t-J-causal then for each i®t in J S is i-functional
and the preceding theorem -gives an additive i-register with Q(i)=
U*1/K(i) where K(i)=kerS§i(.t0) . So we can define , for j>i in J,
M(3,1) (u*i+K(i),v§i*j) = uiv¥j + K(j) and N(j,i) (u*i+K(i),v(i)) =
= S£i(u*i,v(i)) . The other direction follows from previous remarks
on the behavior.0QED

We have examined the role played by additivity as opposed to
linearity with respect to some basic concepts and results of general
time-systems theory. These results have been derived from simple
facts about groups. In contrast to the commutative additive machines
of (3) we did not assume commutativity, for whatever should commute
does commute and we only need quotients by kernels of homomorphisms.
Of course, linearity is a very useful, and frequently natural, as-—
sumption, especially in providing convenient representations. But
we can at least get started simply with additivity, which is inter-—
esting from the viewpoint of foundatioms.

Some points deserve comments. We have used heavily the closure
property assumed for the input space. Had we not assumed this all
the results would still hold at the expense of considering the
sets of continuations of input signals. Also, by extending Nerode's
construction what we actually get is a phase space for each instant.
These can then be merged into a single attainable and observable
state space when some extra machinery is applicable.

Finally, most definitions make sense with the word 'additive'
omitted or changed to, say, 'continuous'. This translates the con-
cepts to another ( concrete ) category, where most proofs can be
suitably adapted, in general.
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