
A Formal System for Reasoning
about Programs Accessing
a Relational Database

MARCO A. CASANOVA

Pontificia Universidade Cat61ica do Rio de Janeiro

and

PHILIP A. BERNSTEIN

Harvard University

A formal system for proving properties of programs accessing a database is introduced. Proving that
a program preserves consistency of the database is one of the possible applications of the system. The
formal system is a variant of dynamic logic and incorporates a data definition language (DDL) for
describing relational databases and a data manipulation language (DML) whose programs access data
in a database. The DDL is a many-sorted first-order language that accounts for data aggregations.
The DML features a many-sorted assignment in place of the usual data manipulation statements, in
addition to the normal programming language constructs.

Key Words and Phrases: relational databases, data definition languages, data manipulation languages,
aggregation operators, transactions, synchronization, consistency preservation, serializability, program
correctness, formal systems, dynamic logic, many-sorted first-order logic
CR Categories: 4.33, 5.21, 5.24

1. INTRODUCTION

A d a t a b a s e c o n t a i n s d a t a t h a t m o d e l some aspec ts of the world. T h e desc r ip t ion
of a d a t a b a s e cons is t s of a se t of da t a s t r u c t u r e desc r ip t ions a n d a se t of
cons i s t ency cr i te r ia for d a t a values . T o say t h a t the d a t a va lues in a d a t a b a s e
sat isfy the cons i s t ency cr i te r ia is to say t h a t the da t a a d e q u a t e l y mode l the world.
As a consequence , users expect to observe cons i s t en t d a t a a n d are r equ i r ed to
s u b m i t u p d a t e s t h a t will p rese rve cons is tency . S u c h u p d a t e s are cal led t r ansac -
t ions [17]. I n th i s pape r we prov ide a logic for a da t a m a n i p u l a t i o n l anguage

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported in part by the Conselho Nacional de Pesquisas, Brazil, under Grant
1112.1248/76 and in part by the National Science Foundation under Grants MCS-77-05314 and MCS-
79-07762.
Authors' addresses: M.A. Casanova, Departmento de Informatica, Pontificia Universidade Cat61ica
do Rio de Janeiro, Rua Marqu6s de S~o Vincente, 225, 22.453, Rio de Janeiro, RJ, Brazil; P.A.
Bernstein, Center for Research in Computing Technology, Aiken Computation Laboratory, Harvard
University, Cambridge, MA 02138.
© 1980 ACM 0164-0925/80/0700-0386 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980, Pages 386-414.

Reasoning about Programs Accessing a Relational Database • 387

(DML) permitting us to prove, among other properties, that a transaction indeed
preserves consistency. Although the concept of transaction is widely used [4, 17,
24, 27, 31, 34], very little work has been done on DML logics [6, 19], and none
accounts for the full use of aggregation operators [21].

In Section 2 we explain, in intuitive terms, the database and programming
language concepts used throughout the paper. The section ends with the plan
used in the rest of the paper to transform a given logic of programs into a DML
logic.

Briefly, the plan goes as follows. Section 3 rigorously defines a language to
describe relational databases [11] that allows the full use of aggregation operators.
Section 4 defines a variation of the regular programs of [28] that fills the role of
DML. Section 5 introduces a logic for the DML that is closely related to the
regular first-order dynamic logic of [20]. Section 6 briefly discusses how the DML
logic can be used to study concurrent transaction systems. Finally, the appendix
contains examples of database descriptions, transactions, and derivations in the
DML logic.

2. BACKGROUND

2.1 Database Concepts

In this section we give a brief and intuitive description of some database concepts
in order to set the stage for the plan described in the following sections.

We loosely characterize a database as an abstraction of a real world enterprise,
that is, of a set of objects forming a coherent whole. By a state of an enterprise
we mean the instances of all objects at a given time. Objects and states are the
real-world counterparts of two complementary technical concepts that dominate
the discussion about databases: database schemata and database states. A data-
base schema describes the enterprise via a set of data structures abstracting the
objects of the enterprise and a set of consistency criteria capturing the logical
interconnections between these objects (the format of the data structures may
also capture some of the interconnections). A database state assigns values to
the data structures and corresponds to a state of the enterprise. If a database
state satisfies all consistency criteria and thus adequately represents a state of
the enterprise, then the state is said to be consistent. We collect all possible states
in a database universe. We may then define a database directly as a database
schema and a database universe.

The language used to define databases is called a data definition language
(DDL}. A DDL specifies a notation for writing data structures and consistency
criteria, defines what types of concrete objects can be values of data structures
(and the other symbols used in consistency criteria), and gives a method for
determining when a database state satisfies a consistency criterion. In short, a
DDL introduces the tools to define the concepts given in the previous paragraph.

Data retrievals and changes to the database state are expressed in a special
kind of programming language, called a data manipulation language (DML).
Four types of DML statements are commonly identified: a retrieve statement
extracts data from the current database state; an update, insertion, or deletion
statement creates a new database state by modifying, inserting, or deleting data

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

388 M.A. Casanova and P. A. Bernstein

f rom the current database state, respectively. If the D M L expresses all desirable
data retrievals and state changes, then it is said to be complete [1, 8]. (Chandra
and Harel [8] give a precise definition of what we mean by "desirable.")

We are especially interested in DDLs and DMLs tha t admit aggregation
operators, such as SUM, MAX, or MIN, which map a subset of a database state
into a single data item. For example, if SAL is the set of all salaries in a PAYROLL
database, SUM(SAL) re turns the summat ion of all salaries. Aggregation opera-
tors add a new dimension to the consistency criteria and D M L s ta tements tha t
can be expressed. For example, the criterion SUM(SAL) __ 100K means tha t the
total payroll cannot exceed 100K. Our interest in aggregation operators is fur ther
substant ia ted because they are supported by some current ly existing database
systems [7, 21].

A D M L program expresses observable changes in the state of the enterprise
only if it maps the set of consistent database states into itself, or preserves
consistency of the database. Such D M L programs are called transactions. Several
tools tha t facilitate writing t ransact ions exist. For example, the D M L might be
enhanced by high-level operat ions tha t always preserve consistency; the D M L
program might be modified at compile t ime so tha t it preserves consistency
[33]; routines, called triggers or demons, may be invoked at execution t ime to
ensure consistency preservat ion [16]. Note tha t the ability to check whether a
D M L program is a t ransact ion or not, which we investigate in this paper, underlies
any of these three approaches.

Example 2.1. To help fix the concepts in t roduced thus far, we describe in this
example an overly simplified database, AIRLINE, of an airline reservat ion system
and two transactions, R E S E R V E and CANCEL, which access it. We choose
tables (or relations) as our data s t ructures and use the language of set theory to
write consistency criteria. The D M L s ta tements are self-explanatory.

T h e database schema of A I R L I N E has only one table, F L I G H T . Each row
(n, s) in F L I G H T represents a flight, where n is the flight number and s is the
number of available seats. The schema imposes two consistency criteria: no two
rows have the same flight number, and the number of available seats is always
nonnegative.

da tabase schema AIRLINE
table FLIGHT with columns NUMBER, #SEATS
consistency cr i ter ia (V(n, s), (n', s') E FLIGHT)(n = n' ~ s = s')

(V(n, s) ~ FLIGHT)(s >_ 0)

T h e database universe of A I R L I N E consists of all finite binary relations over the
natural numbers.

T h e R E S E R V E transact ion reserves a seat in flight N, if a seat is available,
and the CANCEL transact ion cancels a seat reservat ion in flight M.

RESERVE (N):
update (N, s - 1) where (N, s) E FLIGHT/k s -> 1

CANCEL (M):
upda te (M, s + 1) where (M, s) E FLIGHT

Both t ransact ions certainly preserve consistency of the database. []
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 389

2.2 Programming Logic Concepts

In this section we outline some basic concepts of programming logics and indicate
their relevance to databases.

Traditionally, a formal system is divided into three components: a syntax for
describing objects and properties of objects; a semantics defining what the
concrete instances of the objects are and giving a meaning to sentences within
the syntax; and a proof theory for reasoning about the objects and their properties.
A programming logic is a formal system whose objects are programs.

To investigate transactions, we essentially need a formal system whose objects
are programs accessing a database. Another useful formal system would be one
whose language is a DDL, since its proof theory could be used to detect redun-
dancies or contradictions in the consistency criteria of a database schema.

The conceptual complexity of a programming logic is directly linked to the
richness of the underlying programming language, a fact that had a profound
influence on the design of programming languages and the development of
programming methodologies. The maxim was to retain only those constructs that
had clear and manageable proof rules and to seek programming styles that
facilitated correctness proofs. In general, the design of a proof theory almost
always forces a healthy purification of the language and its semantics, a stage
DDLs and DMLs have not yet reached.

Programming logics differ in their power to express properties of programs.
Most of these logics concern themselves with input-output properties of pro-
grams, since these are central to the current programming methodologies. But
one may also be interested, for example, in program equivalence or in the ongoing
behavior of a program. The latter is critical to the investigation of programs that
are not supposed to halt, such as operating systems.

Consistency preservation is an input-output property, since it asserts that
programs must map the set of consistent database states into itself. In Section 6
we discuss another property of programs accessing databases which is a form of
program equivalence.

Much effort has been devoted to mechanizing the proof theory of programming
logics, aiming at relieving completely or in part the programmer's burden of
verifying the program. The traditional questions of soundness and completeness
have also been extensively studied. Soundness requires that every deduced fact
is true, which is the minimum one would ask from a proof theory. Completeness
requires that every true fact is deducible. The completeness of programming
logics presents special problems [12] that were factored out in part by assuming
complete subtheories for the data types, among other things. This permitted
concentrating on the adequacy of proof rules for the program constructs. But
even with such an assumption, it was shown that certain complex programming
languages cannot possibly have complete logics [9].

Both proof theory mechanization and metatheoretic investigations are very
significant to transaction verification. Since the number of consistency criteria of
a database is likely to be large, transaction verification can be tedious and error
prone. Therefore, a program verifier, coupled with heuristics trimming down the
number of criteria that must be checked, is almost a necessity. Restrictions on

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

390 M.A. Casanova and P. A. Bernstein

the format of consistency criteria may have to be imposed to speed up the
process. Soundness and completeness become important because the former
means that we will not wrongly declare that a program is a transaction and the
latter signifies that we will not fail to prove that a transaction preserves consis-
tency.

2.3 Constructing a Data Manipulation Logic

In this section we describe a concrete strategy for constructing a programming
logic for proving the correctness of transactions. We assume that we are given a
family of programming logics with the following characteristics:

(1) the logics are based on the notion of a program as a set of operations acting
on a {memory) state;

(2) each logic has an assertion language to talk about states, which is extended
by new formation rules to express properties of programs, including input-
output properties;

(3) the logics share a core programming language whose constructs include
assignments and are supported by sound proof rules.

We argue that, under certain circumstances, the assertion language can act as
a DDL and, with trivial changes, the programming language can become a DML.

More explicitly, the assertion language .~ must meet the requirements for
DDLs given in Section 2.1. That is, ~e must provide a notation for writing database
data structures and consistency criteria, define what concrete objects can be
values of these structures, and give a method for determining when a database
state satisfies a consistency criterion. In the jargon of programming languages,
.~ must then have a data type appropriate for describing database data structures.

Our way of viewing the assertion language as the DDL tends to weight choices
differently from past research. Traditionally, DDLs aimed at reflecting the real
world, a goal that created room for a plethora of proposals and favored elaborate
data structures. However, because the DDL now plays the role of an assertion
language, it must be accompanied by a proof theory. Hence a language based on
simple data structures with a clear proof theory should be preferred.

We now address the question of transforming a programming language into a
DML. The key observation is simply that a program manipulating a database
contains among its data structures those listed in the database schema, so that
database states become part of the memory states. Then the database state can
be changed by an assignment whose left-hand side belongs to the data structures
of the database and whose right-hand side describes new data values. Thus
updates, insertions, and deletions become just special forms of such assignments.
Retrieves follow likewise, except that the left-hand side does not belong to a data
structure of the database. Therefore, by assuring that we have assignments of the
type chosen for the database data structures, say T, we obtain a DML. The left-
and right-hand sides of such assignments can be taken as variables and expres-
sions (or terms) of type T in the assertion language (and hence of what we
consider to be the DDL). Thus if we are interested in using aggregation operators
in consistency criteria and DML statements, they must be allowed to occur in
the expressions of type T in the DDL.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 391

Our method of constructing a DML trivializes the traditional approach of
embedding a data sublanguage into a programming language. All four statements,
retrieve, insert, delete, update, collapse into forms of special assignments. Al-
though we do not elaborate on this point, the method also discards the complete-
ness question posed in [1] if the core programming language contains some type
of whi le loop (see [8]). Moreover, if the proof rule for assigmnents does not
depend on the data types involved, no new proof rule is actually needed, which
facilitates recycling program verifiers and metatheory results.

3. A FAMILY OF RELATIONAL DATA DEFINITION LANGUAGES

In this and the next two sections, we describe a programming logic for proving
the correctness of transactions, following the strategy outlined in Section 2.3. We
begin by defining a family of formal languages whose members meet three
conditions:

(1) as DDLs, they provide the syntax and semantics of the data structures and
consistency criteria describing a database;

(2) as assertion languages of a programming logic, they must be supported by a
proof theory;

(3) as expression languages for the assignments accessing databases, they must
have a class of terms adequate to use as right-hand sides of such assignments.

We express our interest in data aggregations by adding a fourth condition:

(4) the term-formation rules must include aggregation operators.

All these conditions reflect the discussion in Section 2.3.
We base our development on the relational model for databases [11], which

assumes that data are organized as finite unordered tables or relations. The
relational model appeals both to the layman, since tables are, after all, a common
method of maintaining data, and to the specialist, since a relation is a simple and
familiar mathematical concept. A table t is described by a relation scheme giving
a name to t and its columns; relation schemes are then the basic data structures
of the relational model. A relational database B is in turn described by a relational
database schema S, consisting of a finite set of relation schemes and a set of
consistency criteria. A relational database state of S is a set of tables conforming
to the relation schemes of S. A database universe is a set of database states, as
usual. An aggregation operator in the relational model is a mapping from relations
to individuals.

First-order languages have been favored to play the role of relational DDLs [2,
6, 19, 25, 26, 35] since predicate symbols can be used to denote tables and well-
formed formulas (wffs) can be used to denote consistency criteria. This choice
meets our first three conditions, but not the fourth one. To support our last claim,
we observe that there is no symbol in a (one-sorted) first-order language that can
be interpreted as a mapping from relations to individuals. In view of this objection,
we opted for a family of many-sorted first-order languages with a sort for the
individuals and a sort for the n-ary relations, n > 0. A function symbol from the
sort of n-ary relations to the individual sort can then denote a mapping from n-
ary relations to individuals.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

392 • M.A. Casanova and P. A. Bernstein

The only alternative language known to us that is still first order and yet is
powerful enough to express data aggregations is the language of set theory.
However, we believe that the language of set theory is in a sense too rich, since
we want to talk about individuals and relations over individuals, and not arbitrary
sets.

This section is organized as follows. Section 3.1 describes the basic notions of
many-sorted languages. Section 3.2 introduces the family of many-sorted lan-
guages adopted. Section 3.3 discusses special theories for reasoning about rela-
tional databases. Finally, Section 3.4 redefines the basic concepts of the relational
model.

Since all formal languages we discuss are first order, we omit this qualification
from now on.

3.1 Many-Sorted Languages

In this section we summarize the essential concepts of many-sorted languages.
The reader is referred to [15, Ch. 4.3] for a fuller discussion. Assume that we have
a nonempty set M of sorts. The symbols of a many-sorted language .50 (with sorts
from M) are as follows.

L o g i c a l S y m b o l s

(1) Parentheses and the usual logical connectives: (,), -7, A.
i (2) Variables: for each sort i, the symbols xi, x2,

(3) Equality symbols: for each sort i, there may be the predicate symbol =i
said to be of sort (i, i).

P a r a m e t e r s

(1) Quantifiers: for each sort i there is a universal quantifier symbol Vi.
(2) Predicate symbols: for each n > 0 and each n-tuple of sorts (il, . . . , in)

there is a (possibly empty) set of n-place predicate symbols of sort
(i l , - - - , in).

(3) Constant symbols: for each sort i there is a (possibly empty) set of constant
symbols of sort i.

(4) Func t ion symbols: for each n > 0 and each (n + 1) tuple of sorts
(ib • • •, in, in+~) there is a (possibly empty) set of n-place function symbols
of sort (i l , in, i n + l) .

Terms and wffs are defined as in one-sorted first-order languages, except that
sort compatibility must be respected when using quantifiers, predicate symbols,
and function symbols.

A m a n y - s o r t e d s t ruc ture A for ~fis a function from the set of parameters of Lf
assigning

(1) to the quantifier symbol Vi, a nonempty set Ui, called the d o m a i n of A of sort
i;

(2) to each predicate symbolp of sort (il , in), a relation

pA C Ui, X . . . X Ui,;

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 393

(3) to each constant symbol c of sort i, an e lement cA of Ui;
(4) to each function symbol f of sort (il in, i,+1), a function

f.~ : v i , x . . . x V , o - - , v i o + , .

Since there is no equali ty symbol across sorts, we may always assume tha t the
domains of A are distinct.

A state I for f f is a function from the set of parameters and variables of 5e such
tha t I restr icted to the parameters of -~f is a s t ructure A of f f and I assigns to
each variable x of f f of sort i an e lement of the domain of sort i. We also say tha t
I extends A, and we continue to use lz for the value of a parameter or variable 1
of ~ in s t a t e / .

T h e notion of wff P (a closed wff P) of £fbeing valid (true) in a s t ructure A is
exactly as for one-sorted first-order languages. Le t M be a set of variables of ~.
If v maps each variable of sort i in M into an e lement of the domain Ui of A,
A ~ P(v) indicates tha t P becomes valid in A when each free variable x of P is
assigned the value v(x). If I is a state, we simply write I ~ P where I gives the
values of the variables of ~.

The logical axioms and rules for many-sor ted first-order languages are those of
f irst-order languages (see, e.g., [30]), again taking into account sorts.

A many-sorted theory 3- is a formal system such tha t the language of
3- is a many-sor ted language .£f and the proof theory of 3- is an axiom system
containing all logical axioms and rules plus a new set D of formulas of ~, the
nonlogical axioms of J . Thus 3- is fully specified by a pair (~, D). W h e n a wff P
of .~ is derivable f rom a set F of wffs of Lf using the axioms and rules of ~, we
write F ~- : P.

Le t P be a formula, E = (x~ x,) be a vector of variables, and t =
(tl, . . . , tn) be a vector of terms. As a final note, P [E] indicates tha t xi occurs free
in P, i in [1, n], and P[[/2] denotes the formula obtained by replacing each free
occurrence of xi in P by t~, i in [1, n].

3.2 Special Many-Sorted Languages

In this section we introduce a family of many-sor ted languages, adapted in par t
f rom [15, Ch. 4.4]. Each member of the family serves well as a relational DDL,
can be backed up by a proof theory, has a rich set of terms denoting relations,
and can express data aggregations. Thus the family meets all of our four condi-
tions. To fully capture the relational model, we introduce a class of special
s t ructures for these languages.

We say tha t .~f is a special many-sorted language iff .~ is a many-sor ted
language with sorts: the individual sort, abbreviated ind, with lowercase letters
as variables and, for each n > 0, the n-place predicate sort, abbreviated n-pred,
with uppercase let ters as variables (superscript with n if necessary). We intend
the individual domain to be the natural numbers N and the n-pred domain to be
the set of all finite n-ary relations over N.

must also include the following special parameters , listed with their in tended
interpretat ions.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

394 M.A. Casanova and P. A. Bernstein

Predicate Symbols

(1) The equali ty (denoted by =) and the ordering (denoted by _) of sort
(ind, ind) is intended to denote the corresponding relations over N.

(2) For each n > 0 there exists the membership e" of sort (n-pred, ind
ind). The intended interpreta t ion of e"(X ~, xl x,) is tha t the tuple
denoted by (xz , x,) is in the n-ary relation denoted by xn; hence,
whenever possible, we abbreviate e"(X ~, xl, . . . , x ,) as X"(x~ , Xn).

Funct ion Symbols

(3) The successor S of sort (ind, ind) and the addi t ion (denoted by +) of sort
(ind, ind, ind) are intended to denote the corresponding operations on N.

(4) For each n > 0 and m > 0 there exists the union U n, intersection n ",
difference - " of sort (n-pred, n-pred, n-pred), and Cartesian produc t "× m
of sort (n-pred, m-pred, (n+m)-pred). The union U" is intended to denote
the union operation over n-ary relations, and similarly for the other
operations.

(5) Le t P be a t ight wff of £0 (defined in Section 3.3) and let the free variables
of P be classified into two disjoint lists E = (x~, . . . , xm) and)7 = (yl, . . . ,
y,), m > 0 and n > 0, such tha t xs has sort ij E {ind} U {k-pred/k ~ N} and
yz has sort ind, 1 < j" _ m and 1 ___ l _ n. Then .~ contains the function
symbol fP[z.y-] of sort (i~, . . . , ira, n-pred). By analogy with set theory, we
write fp[~,y-] as {y/P[E,)7]} and/~r~ as O. fP[~,y7 is intended to denote a
function mapping a tuple of elements E = (a~ , am), aj from the domain
of sort i1, into the n-ary relation defined by P[E/E,)7]. Note tha t each t ight
wff P may define several functions, depending on how E and y are formed.

(6) For each n > 0 and 1 < i < n there exists the m a x i m u m MAX n, m i n i m u m
MIN% sum SUMT, and cardinal i ty COUNT? of sort (n-pred, ind). SUM?
is intended to denote an aggregation operator mapping an n-ary relation
into the sum of all entries in the i th column of the relation, and similarly
for the other operators.

Constants

(7) 0 of sort ind is intended to denote the natural number zero. We abbreviate
S(O), S(S(O)) as 1, 2

We stress tha t we introduced above a family of many-sorted languages. Each
member of the family is obtained by taking the language of (N, 0, S, _ , +)
(Presburger arithmetic) and adding the k-pred sort, k > 0, set-theoretic and
aggregation operations, and other function and predicate symbols depending on
the application in question. However, no significance should be assigned to our
choice of Presburger ari thmetic here other than tha t it provides the minimum set
of functions we need to discuss SUM and COUNT. We require tha t our languages
contain multiplication only in Section 5.2 to obtain a completeness result. Finally,
we note tha t if other types of individuals, besides the natural numbers, are
necessary, then the individual sort can be split into several sorts, thus creating
other families of languages.

A special structure of ~ is any structure of A ° with the s tandard domains and
assigns to the special parameters of Ae their intended interpretations.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 395

A special many-sorted language ~serves as a relational DDL since a constant
or a variable of the n-pred sort may denote a table and a wff may describe a
consistency criterion. ~ has a rich set of terms denoting relations because we
included in ~ the usual set operations and a restricted set formation rule,
formalized as the set of function symbol fP[~,Y] described in (5). The set of terms
is further enriched by some of the usual aggregation operators; the nature of £z
forced the adoption of a different function symbol, e.g., SUMT, for each arity n
and column number i. Hence £0 can be used as an expression language for
assignments to relations and accounts for aggregation operators. A proof theory
for ~ is discussed in Section 3.3.

As an example of the expressive power of ~, we translate the English sentence
"the highest payroUp of any department" into ~. We assume that £Zhas a 3-pred
variable EMP and 1-pred constants NAME, DEPT, SAL representing a table
EMP[NAME, DEPT, SAL] and that the various symbols of ~ receive their
intended interpretations. Then the English sentence becomes

p = MAX~ (((d, t)/3n3sEMP(n, d, s) A t = SUM~ ({(n, s)/EMP(n, d, s))))).

Observe that aggregation operators appear nested inside one another. Thus £P
is as expressive as the full QUEL DDL [21] or the SEQUEL-2 DDL [7]. However,
unlike these two languages, ~ is a first-order language.

3.3 Special Many-Sorted Theories

In this section we clarify the intended interpretation of the special parameters of
special many-sorted languages and provide a basis for reasoning about them.
More precisely, let .~ be a special many-sorted language with no other parameters
except the special ones, and let A be a special structure for ~. Note that A is
unique by definition of special structure and assumption on ~. We introduce a
many-sorted theory ~--whose language is £z and whose nonlogical axioms capture
the intended interpretation of the special parameters of ~, in the sense that A is
a model of Y?. Hence any theorem of 9- is valid in A. The converse question, "Is
any formula valid in A a theorem of Y-?", is much more difficult and is not
discussed here.

If the language chosen has other parameters besides the special ones, 9- must
be augmented with further nonlogical axioms for reasoning about them. We call
any such theory a special many-sorted theory.

The nonlogical axioms of Y-are as follows.

Arithmetical Axioms. An adequate set PA of axioms for Presburger arithmetic
constitute the arithmetical axioms.

Finite Relation Axiom

(1) VX"3k(COUNT"(X") = k).

Set Operations Axioms. For each n > O, m > O, and tight wff P[£,)7] of ~,

(2) X U" Y = Z - VE(Z(£) - X(£) V Y(£)) ,

(3) X N" Y = Z - V£(Z(£) - X(£) A Y(£)),

(4) X - " = Z --- V£(Z(£) -- X(£) A '~Y(£)),
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

396 M.A. Casanova and P. A. Bernstein

(5) X ~ x m Y = Z -- VEry(Z(2, y) = X(2) A Y(y)),

(6) fp[~y] (E) = X ~ --- vy(x"(y) - P[2 , y]).

A g g r e g a t i o n O p e r a t i o n s A x i o m s . For each n > 0 a n d 1 ~ i _ n,

(7) V x V y (M A X ~ (X) = y -- (-~32X(E) A y = 0)
V (3 2 (X (2) A xi = y) A VE(X(2) ~ xi <_ y))) ,

(8) V x V y (M I N T (x) = y =- (-~32X(2) A y -- 0)
V (3E(X(2) A x~ = y) A V 2 (X (2) ~ y <_ xi))) ,

(9) VX(-~32X(E) ~ COUNT"(X) -- 0),

(10) V X V 2 (- ~ X (2) ~ C O U N T " (X U {E}) = COUNT"(X) + 1),

(11) VX(-~32X(2) ~ SUMT(X) = 0),

(12) V X V 2 (~ X (2) ~ SUMT(X U {2}) = SUMT(X) + x~),

where, we recall, X"(2) abbreviates e" (X" , 2), etc.
The special s t ructure A of LZis a model of Y-since all nonlogical axioms of

Y-are clearly valid in A. T h e only possible doubt concerns Axiom (6), since it
involves the not ion of a t ight formula, which we now discuss. Suppose tha t we
allow any wff P of ~ to be used in Axiom (6). Consider, for example, the two
instances of Axiom (6) below (where F and G are 1-pred constants, X and Y are
1-pred variables, and R and S are 2-pred constants):

(a) F = X - V t (X (t) - 3 u 3 v (R (u , v) A S (v , t))),

(b) G = Y =- V t (Y (t) =- 3 u 3 v (R (u , v) A t = t)).

Then, since RA and SA are finite relations, by construct ion of A, so will be FA.
However, the value of G in (b) cannot be a finite relat ion and hence not an
e lement of the l -pred domain of A. Hence (b) cannot possibly be t rue in A.
Therefore , asking tha t A has only finite n-ary relat ions in the n-pred domain,
n > 0, and tha t all instances of Axiom (6) for arbi t rary wffs P be t rue in A cannot
bo th be satisfied.

W e were then forced to restr ict P in Axiom (6) to formulas such as
3 u 3 v (R (u , v) A S(v , t)) t ha t assert the existence of fur ther finite relat ions in the
n-pred domain of A, n > 0. We call such formulas t ight .

To unders tand the definition of t ight formula, it helps to visualize the construc-
t ion of FA as follows. Construct first C = RA x SA. For each tuple it, u, v, x) in
C, x is in FA i f u = v, by Ca). Note tha t only tuples in C need be examined to
construct FA. T h e definition of t ight formula explores exactly this property,
following a suggestion in [11].

D e f i n i t i o n 3.1. Le t .~?be a special many-sor ted language.

(i) Le t Q be a conjunct ion in .t? of the form

n

A Qi(til, . . . , tik,).
i ~ l

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database • 397

An individual variable x is tied in Q iff

(a) for some tij, x is tij and Qi is a variable or a constant of the ki-place predicate
sort, or

(b) there is a clause in Q of the form x = t, t a term, and all variables occurring
in t are t ied in Q.

(ii) Le t P be a wff of ~ and let P ' be the disjunctive normal form of P. An
individual variable is t ied in P iff x is t ied in Q for any disjunct Q of P ' where x
occurs (free or not).

(iii) A t ight formula P of ~ is a wff of ~ such tha t all individual variables
occurring in P are tied in P. []

We now briefly discuss how the models of Y-may differ f rom the special
s t ructure A. First, an adequate set PA of axioms for Presburger ar i thmetic forces
the individual domain to have a s tandard par t isomorphic to the natural numbers
and a set of so-called Z-chains (see, e.g., [15, Ch. 3]). Second, e" need not be
in terpre ted as membership at all and the n-pred domain need not be the set of
all n-ary relat ions over individuals. However, if a model M of ~- has the same
domains as A and assigns to e", n > 0, the same interpreta t ion as A, then the
nonlogical axioms of g force M to agree with A on the rest of the parameters
of ~.

The second source of dissatisfaction can be eliminated, in a certain precise
sense, by adapting a result f rom [15, p. 283]. Before stating the result, we observe
tha t we can always assume tha t the domains of any s t ructure of .£0 are disjoint,
since ~ contains no equali ty between sorts. I t also simplifies the discussion to
eliminate all special parameters of ~, except the ar i thmetical ones, C O U N T " and
S U M L Except for these parameters , all others can be considered as defined
symbols of ~-(with Axioms (2)-(8) acting as defining axioms).

THEOREM 3.1 Let M be a model of Y-such that the different domains of M
are distinct. Then there is a homomorphism h of M onto a model N of J s u c h
that

(i) h is one-to-one, in fact the identity, on the individual domain (from which
it follows that M ~ P(v) i f f N ~ P(hov), for any assignment v of values to the
variables of Lz);

(ii) the n-place predicate domain of N consists of certain n-ary relations over
the individual domain, and (R, al , an) E eT~ iff (a~, . . . , a,) E R.

PROOF. Since the domains of M are disjoint, we can define h on one domain
at a time. On the individual domain D, h is the identity. On n-place predicate
domain,

h(Q) = {(al an) E D"/(Q, a~ an) E e~}.

Thus we have

(al an) E h(Q) iff (Q, al an) E e~. (1)

As eTv we s imply take the membersh ip relation

(R, al an) ~ e~ iff (al , an) E R. (2)
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

398 • M . A . Casanova and P. A. Bernstein

On the other symbols, N agrees with M. This completes the construction of h and
N. Since M is a model of J , by construction, so is N. We now prove that h is a
homomorphism from M onto N, that is, for each p-ary predicate symbol P of -~
and each q-ary function symbol f of ~, p - 0 and q _ 0, we have

(a l , . . . , ap) E PM iff (h(al) h(ap)) ~ PN (3)

h(fM(al aq)) = fN(h(al) , h(aq)). (4)

If P and f involve only the individual sort, then there is nothing to prove since h
is the identity on the individual domain. Hence we immediately obtain that --
and _ satisfy (3), and S, +, and 0 satisfy (4). By (1) and (2), e" satisfies (3) for
each n > 0. So we are left with SUM" and COUNT", n > 0. We only prove that
COUNT" satisfies (4) (the proof for SUM? is entirely similar). Since M and N
have the same individual domain, h is the identity on the individual domain and
COUNT~ and COUNT~ are functions from the n-pred domain into the individual
domain, we only have to prove that

COUNT~(R) - COUNT~(h(R)). (5)

We prove (5) by induction on the cardinality of h(R).

Basis . Suppose h(R) = 9 . Then by (1) we have

-~3~(e~(R, d)). (6)

Since M and N are models of J,, the aggregation axioms are valid in M and N.
Then, from (6), we obtain

COUNT~(R) ffi 0M (7)

and, since h(R) --- 9, we have

COUNT~(h(R)) = ON. (8)

Now, by construction of M, 0M ffi ON, which implies that

COUNT~(R) ffi COUNT~(h(R)). (9)

Induc t ion step. Follows similarly.

Finally, the parenthetical remark of (i) follows from the fact that we have
equality only for the individual sort, where h is one to one, by analogy with the
homomorphism theorem for one-sorted languages [15, p. 91]. []

Theorem 3.1 tells us that, given any model M of J , we can replace M by another
model N of Y-whose n-pred domain is a set of n-ary relations over individuals and
which assigns to e" the intended interpretation, for each n > 0. Moreover, deciding
whether a wff P of ~ is valid in M can be replaced by the identical problem in
N. Hence without loss of generality we can ignore all models that do not have the
appropriate n-pred domain and do not assign to e" the intended interpretation
n > 0 .
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 399

3.4 Relational Databases

We now give precision to some relat ional model concepts within the f ramework
developed. Le t Y--- (~ , D) be a fixed special many-sor t ed theory.

Def in i t i on 3.2. A triple a -- (p, a, 8) is a r e l a t i o n a l s c h e m a i f f

(i) p = {R1 Rm} is a set of distinct var iables of ~ , the d a t a b a s e re la t ion
n a m e s of a, where Ri is of the ki-pred sort, i in [1, m];

(ii) a -- {A1 , A,} is a set of distinct constants of .~, the a t t r ibu te n a m e s
of a, all of the 1-pred sort;

(iii) 8 isa set of wffs of ~ Containing the following.

Relation schemes. For each Ri in p of the ki-pred sort, a formula

ki

V.~(R,(E) =* A Aj~(xp))
p=l

where j l , . . . , jk,, 1 <_ j l , . . . , jk, <- n, depend on i.

Cons i s t ency cri teria. Other wffs. []

An example of a relat ional schema appears in Sect ion A1 of the appendix.
Let A be a s t ruc ture for ~¢ and let M be a set of variables of ~ . Recall f rom

Sect ion 3.1 t ha t v is a valuat ion of M in A, if v is a function assigning to each
variable x in M, x of sort ind or k-pred, an e lement of the individual or the k-pred
domain of A. I f v is a valuat ion for M , A ~ P (v) indicates tha t P becomes valid
in A when each free var iable x of P in M is va lua ted as v(x).

De f in i t i on 3.3. Le t o = {p, a, 8) be a relat ion schema and let A be a special
s t ruc ture of ~ . A d a t a b a s e s ta te of a for A is a valuat ion of p in A. A cons i s t en t
d a t a b a s e s ta te of e for A is a da tabase s ta te v of e for A such tha t A ~ P(v) , for
each P in 8. T h e d a t a b a s e un i ve r se of a for A is the set of all da tabase s ta tes of
e for A. []

There fore we assign meaning to a da tabase schema o by fixing a s t ructure A
for .L~ and construct ing the da tabase universe of a for A. As a consequence, the
value of an a t t r ibu te name of e is fixed by A, since a t t r ibu te names are constants
of ~ . By contrast , the value of a da tabase relat ion name is not fixed by A, but
r a the r by each da tabase state, since da tabase relat ion names are t rea ted as
var iables of ~ . Th is agrees wi th the fact tha t relat ions are upda ted during the
l ifetime of a database , bu t a t t r ibu tes are not.

Th is t r e a t m e n t has a consequence we wish to emphasize. Le t P be a wff of £~a
with free var iables t ha t also p lay the role of da tabase relat ion names, let A be a
s t ruc ture for .W, and let v be a da tabase state. T h e n asking whe ther P is t rue in
A is not equivalent to asking whe ther P(v) is t rue in A. For example, consider P
defined as {where E M P is a 3-pred variable),

SUM22 ({(n, s) / e 3 (E M P , n, s, D)}) < 100K.

Note t ha t E M P is the only free var iable of P. T h e n P being valid in A means tha t
the payrol l of d e p a r t m e n t D is less t han looK, for any value of E M P . However ,

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

400 • M.A. Casanova and P. A. Bernstein

P(v) being valid in A, for a given database state v, means tha t the payroll of
depar tment D is less than 100K for the value of EMP given by state v.

With these definitions, we can formalize the following.

(1) P in t~ is redundant : 3' ~-~P, where 3' is 8 wi thout P.
(2) ~ is inconsistent: 8 ~-x false.
(3) A wff P of .£z describes a p roper ty of every consistent database state of a:

8 }-~P.
(4) T h e i t h domain of the n-ary relat ion denoted by R, 1 _ i <_ n, is functionally

dependent on the J1, . . . , jk domains, 1 _ 1"1, . . . , jk -< n,
k

V£V37(R(x-) /k R (37) /k ^ x~ m = yim ~ xi = yi)
tn~l

where E = (xl, . . . , x,) and 37 = (yl, . . . , y ,) .

4. A FAMILY OF RELATIONAL DATA MANIPULATION LANGUAGES

Given a special many-sor ted language ~e chosen to act as a DDL, we define a
D M L appropria te for accessing databases described in ~. Th e D M L is constructed
f rom the regular programs of [28], plus a new basic s t a tement taken from [6]. We
have chosen regular programs because they are backed up by a programming
logic, called r e g u l a r f irst-order dynamic logic (abbreviated FDL), as discussed in

Sect ion 5.
T h e D M L programs denote binary relations between states of -~# (cf. Sect ion

3.1) drawn f rom a certain universe U. A universe U of ~ f o r a special s t ructure
A of £z is the set of all s tates of £0 extending A (cf. Sect ion 3.1); A is then the
s t ructure generating U.

More precisely, given .£z and U, we define the class of many-sorted regular
programs M S R P [~ , U] as follows.

Syntax

Statements

(1) If E and E are a variable and a t e rm of ~, respectively, of sort i, then
x := E is in M S R P [~ , U] and is called an assignment of sort i.

(2) If P is a quantifier-free wff of ~, then P ? is in M S R P [~ , U] and is called
a test.

(3) If E = (Xl , x,) are distinct individual variables of ~ and E is a t e rm
of £0 of the n-pred sort, n > 0, then E ~--? E is in M S R P [~ , U] and is
called a r andom tuple selection.

Formation rules

(4) if s and t are in M S R P [~ , U], then (s U t), (s;t), and s* are also in
M S R P [~ , U] and are called the union of s and t, the composition of s
and t, and the iteration of s, respectively.

Semantics. The meaning of programs in M S R P [~ , U] is given by a function
m: M S R P [~ , U] --*2 U2 defined as

(5) m(x := E) = {(/, J) E U2/J= [Ez/x]I},

(6) re(P?) = { (/ , I) E U 2 / I ~ P } ,
ACM Transac t ions on P rogramming Languages and Systems, Vol. 2, No. 3, Ju ly 1980.

(7)

(8) m(s U t)

(9) m(s;t)

(10) m(s*)

Reasoning about Programs Accessing a Relational Database

m(E ~-? E) = {(I, J) E U2/(3 E E E D (J - { E / E l /) } ,

= re(s) U re(t) (union of bo th binary relations),

= m(s) o re(t) (composition of both binary relations),

= ('re(s))* (reflexive and transitive closure of re(s)),

401

where, following [20], we use [~/g]I to denote the state J of ~ d i f f e r i n g from I
at most on the value of a tuple of symbols g of ~ (or a single symbol), which is
~ i n J .

Examples of assignments are

(11) x : f x + l ,

(12) E M P := E M P U {(KENNEDY, W H I T E H O U S E , 100K)},

(13) d := MAX 2 ({(d, t) / 3 n 3 s E M P (n , d, s)

A t = SUM 2 ({(s, n) / E M P (n , d, s)})}).

Assignments of the n-place predicate sort are then appropriate for manipulat ing
the database relations or, more generally, for constructing new relations out of
old ones. T h e usual relational operations [7, 10, 21] are defined as follows:

(14) r e t r i e v e R(E) w h e r e P [E] = R := {E/P[E]} ,

(15) i n s e r t R(E) w h e r e P[E] = R := R U {E/P[E]) ,

(16) d e l e t e R (~) w h e r e P [~] = R : - R - { ~ / P [~] } ,

(17) u p d a t e R (f(E)) w h e r e P [E] = R := { 2 / R (E) A -~P[E]}

u (: f /3~(R(~) A P [£] A /~ yi = ~(~))) ,
i=1

where R is an n-pred variable of ~, E = (xl , x,) are distinct individual
variables occurring free in P, a t ight wff of ~, and 7 = (fl f,) are function
symbols of the sort (ind, ind ind).

A tes t P ? indicates whether the computat ion should continue or not, depending
on the t ru th of P. T h e union s U t of s and t indicates tha t s or t should be
executed next. The i terat ion s* of s means tha t s must be repeatedly executed an
unspecified number of times. Taken together, they permit defining the following
Algol-like constructs:

(18) f f P t h e n r e l se s = (P?; r) v (-~P?; s),

(19) i f P t h e n r = (P?; r) U (-~P?),

(20) w h i l e P d o r = (P?; r)*; -Tp?..
ACM Transactions on Programming Languages and Systems, Vo]. 2, No. 3, July 1980.

402 M.A. Casanova and P. A. Bernstein

We treat beg in and end just as left and right parentheses, respectively. It is also
possible to define the nondeterministic IF and DO of [14]:

(21) i f B1 ---> r / / . . . / / B , --* r~ f i -- (B~ ? ; r~ U . . . B , ? ; r~),

(22) d o B 1 - - - > r l / / . . . / / B . - - - ~ r . o d = (BI? ;rl U . . . U B . ? ;r.)*;

-riB i ?.
i=r

A random tuple selection • *--? E assigns to £ an arbitrary tuple of the relation
denoted by E. Using the random tuple selection, we define the fo r -each construct
of [19], which scans a relation tuple by tuple in an arbitrary order:

(23) f o r e a c h R (E) w h e r e P [E] k e y K d o s =
R0 := O; RT :~- {y/R(:~) A P[y/~]};

w h i l e RT ~ O d o
(X <--.9 RT;

Ro := R0 U (E};
s;
RT :----- {~7/R (y) A P [y / £] A -~3E(Ro(5) A A zi =- y,)}),

~eK

where R, R0 and RT are variables of £o of the n-pred sort, E = (xl , x,) are
distinct individual variables occurring free in P, a tight wff of ~, and K C [1, n]
is a nonminimal key [11] of R. The fo r -each construct then scans the relation
denoted by R in an arbitrary order; all tuples already scanned are kept in Ro; the
last line of code in (23) guarantees that any tuple whose key has not been altered
by s will not be scanned twice.

Thus the statements and constructs of MSRP[~, U] permit defining the Algol
fragment of [22], the basic constructs of [14], the relational operations, inser t ,
delete , upda te , and re t r ieve , of [7, 10, 21], and the for each construct of [19]
in an economical way. Such economy does not impair the elegance of transactions
and will pay off when studying the metatheory of our programming logic.

Examples of programs in MSRP[~, U] appear in Section A3 of the appendix.
We close this section with a very brief remark on whether or not our DML

captures the "desirable" queries of [1, 8]. Following [1], the desirable queries are
those that can be expressed by the relational operators originally introduced by
Codd [11] (Cartesian product, set union, set difference, selection or restriction,
and projection), plus a new least fixed point operator. Intuitively, this last
operator permits defining a relation R inductively. We claim that the desirable
queries can indeed be expressed in our DML. Each of the original relational
operations has its direct counterpart in the special many-sorted languages used
to write the right-hand side of assignments of our DML. Hence any query
involving only these operators can be expressed as an assignment in our DML.
Now any query involving the least fixed point operator can be expressed proce-
durally using whi le loops, as suggested in [1]. Therefore any desirable query can
be expressed by a program in our DML.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 403

5. REASONING ABOUT DATA MANIPULATION

In this section we offer a variant of dynamic logic (DL) to reason about many-
sorted regular programs accessing a database. DL is not essential to our work and
could be replaced by any other programming logic that accounts for input-output
properties of programs and caters to bounded nondeterminism, in the sense of
[14, Ch. 9]. However, DL has some attractive characteristics, explored in the next
section.

Section 5.1 presents the language and an axiom system for our variant of DL,
which is almost identical to regular first-order DL [20] (abbreviated here to FDL).
The similarities between the two logics are explored in Section 5.2 to outline
consistency and completeness results for our logic. Section 5.2 is optional and
directed to those familiar with the results for FDL.

5.1 Regular Many-Sorted Dynamic Logic

Let L# be a special many-sorted language, chosen as the DDL, and let
MSRP[~, U] be the set of many-sorted regular programs acting as a DML, where
U is a universe of ~. Recall that ~ contains the addition symbol + and the
individual constants 0 and 1, which receive the usual interpretations in U. We
define the regular many-sorted dynamic logic over ~# and U, MDL[~, U], as a
formal system as follows.

Language. The []-extension .~#~ of ~, defined as follows.

Syntax. The syntax is the same as that of ~, with the additional formation
rule:

(1) if P is a wff of .~or ~ and r is a program in MSRP[~, U], then [r]P is
a wff of .~e~ (read "box of r, P").

Semantics. The notion of validity is extended to [riP as follows:

(2) I ~ [r]P iff VJ((/, J) E m(r) ~ J ~ P) or, in words, [r]P is valid in I iff
either r does not halt starting in I (that is, for no J i n U, (I, J) is in m(r))
or in any state J that can be reached from I via r, P is valid.

Proof theory. The axiom system AS follows (P and Q are wffs of L#~, except
where noted):

(3) all tautologies of propositional calculus;
(4) all wffs of L#valid in U;

(5) [x :--- E]Q - Q[E/x],

(6) [P?]Q - P ~ Q,

(7) [E *--? E]Q - VE(e"(E, ~) ~ Q),

(8) [s u t] Q - [s]Q A [t]Q;

(9) [s; t]Q - [s][t]Q;
(10) modus ponens:

P , P ~ Q .
Q '

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Q a wffofL#;

P a quantifier-free wff of ~ ;

Q a w f f o f ~ ;

404 • M.A. Casanova and P. A. Bernstein

(11) 3i-introduction:

for each sort i of £z;

(12) necessitation:

(13) invariance:

(14) convergence:

P ~ Q
3 i x P ~ 3 i xQ ;

P ~ Q

[s]P ~ [s]Q ;

P ~ [s]P

P ~ [s]*P'

P i n + 1/n] ~ (s)P[n]

P [n] ~ (s*)P[O/n] '

where P is a wff of ~f with a free variable n of the individual sort not
occurring in s.

We also add (r)P (in words, "diamond of r, P") as an abbreviation for -~[r]~P;
I ~ (r)P means that there is a state J that can be reached from I via r and in
which P is valid.

The language of MDL[~, U] can express, for example, the following properties
of programs accessing a database described by the schema o = (p, a, ~) with
p = {R1 Rm}.

(15) r is a transaction of o (r preserves consistency for o):

~u/~ ~ [r]/~, where /~ = A P;
PE8

(16) r performs the same changes in the database relations as does s:

~u V p ' ((r) p = p' - (s)p = p'),

/ ! / __ __ where p' = {Rz , Rm}, Ri w i t h the same a r i t y as Ri (1 < i < m), and

p = p' abbrev ia tes A~z Ri = R;.

Therefore, MDL[~, U] permits us to investigate not only consistency preserva-
tion, but also equivalence with respect to o.

In Section A4 of the appendix we exemplify how to prove properties of programs
using the axiom system AS.

5.2 S o u n d n e s s and C o m p l e t e n e s s Resul ts

In this section we briefly investigate the soundness and completeness of the axiom
system AS of MDL[~, U]. Both results follow from the metatheory of regular
first-order dynamic logic (FDL) developed in [20] and are described in more
detail in [5]. In adapting results for FDL to MDL, one should keep in mind that
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database • 405

their languages differ in the assertion language, which is a many-sorted language
in MDL instead of a one-sorted one, and in the programming language, which
allows random tuple selections. Moreover, the axiom system for MDL is exactly
that given in [20] for FDL, with one extra axiom for random tuple selections.

Let ~¢ be a special many-sorted language, U be a universe for ~, .L#~ be the
[]-extension of ~, and H be an axiom system for .~q'~. B is U-sound iff, for any
wff P of £¢~, }-BP implies ~uP. Thus B is U-sound iff every axiom of B is U-valid
and every inference rule of B preserves U-validity. B is U-complete iff, for every
wff P of L#~, PuP implies }--BP.

The U-soundness of the axiom system AS follows because the axiom system
proposed in [20] for FDL remains U-sound when we take a many-sorted language
as assertion language. This implies that all rules of AS preserve U-validity and
Axioms (5), (6), (8), and (9) are U-valid. The U-validity of Axiom (7) is proved in
Theorem 5.1.

T H E O R E M 5.1 ~u([£ ~---? E]Q =- VE(e"(E, 2) ~ Q)), Q a wff of ~.

PROOF. Let I be in U, s = £ *--? E and Q be a wff of ~. Then we have

I m [s]Q iff (VJ • U) ((/, J) • re(s) ~ J ~ Q) {definition of I ~ [s]Q),
iff (V J • U) (J = [~/£]I/~ ~ • E z ~ (definition of m),

J ~ Q)
iff {v ~ • D) (E • Ei ~ I ~ Q[~/£]), (definition of U),

where D is the domain of the sort
of E

iff I ~ VE(e"(E, x--) ~ Q) (definition of I ~ P). []

The U-completeness of AS again follows directly from results for FDL, except
that the adoption of a special many-sorted language does matter now. We restate
here Harel's theorem of completeness [20, Th. 3.1] (specialized to our case), which
helps one to understand the differences between FDL and MDL. We say that .~e
is U-expressive for ~.q~ iff, for any wff P of .L#~, there is a wff Q of .~¢ such that
~ v (P - Q). An axiom system B for ~¢~ ispropositionally complete iff all instances
of tautologies of propositional calculus are theorems of B and modus ponens is an
inference rule.

THEOREM 5.2 [20, Th. 3.1] For any universe U of ~, a U-sound axiom system
B for £:~ is U-complete i f

(i) B is propositionally complete;
(ii) .~ is U-expressive for £#~;

(iii) for any program r, variable x of sort i and wffs P and Q of ~d$,
(a) if }--B(P ~ Q), then }--B([r] P ~ [r]Q),
(b) i f }-B(P ~ Q), then b-B(3ixP ~ 3ixQ);

(iv) for any program r and any wffs P and Q of ~f
(a) i f P u P then k-BP,
(b) i f ~u (P ~ [r]Q) then ~B(P ~ [r]Q),
(c) i f ~u (P ~ (r)Q) then ~B(P ~ (r)Q).

Theorem 5.2 should be understood in the light of Cook's pioneering paper
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

406 M.A. Casanova and P. A. Bernstein

[12]. Cook first observed that, in general, we cannot obtain a U-complete axiom
system B for . ~ . Indeed, mimicking the argument in [12, p. 85], the formulas
[r]P provable in B are recursively enumerable, since B is an axiom system.
However, the formula [r]false is true in U iff r fails to halt for all initial states in
U. Therefore the true formulas cannot be recursively enumerable in the case in
which the halting problem for our programming language is recursively unsolv-
able. But this is the case here, since we assume that L# contains =, +, 0, and 1,
which receive their usual interpretation in U ([12, Th. 2, p. 85]). Cook's suggestion
was to prove the completeness of B assuming a complete system B(L#) for ~ a n d
assuming the U-expressiveness of ~, or what he called relative completeness.
These assumptions correspond to conditions (ii) and (iv-a) of Theorem 5.2. The
axioms and rules involving [] and () should then be viewed as mechanisms for
translating a wff of P of ~ into an equivalent set of wffs of ~, which can then be
proved in B (~) (see [20, Sec. 3.4.1]).

We now briefly discuss how to meet the conditions of Theorem 5.2. Conditions
(i), (iii), and (iv-a) of Theorem 5.2 express exactly the same requirements as (3)
and (10), (11) and {12}, and (4) of the axiom system AS, respectively. Conditions
(iv-b) and (iv-c) are achieved by induction on the structure of the program r
exactly as for FDL ([20, Th. 3.9 and 3.11]), using Axiom (7) of AS to cope with
random tuple selection. Condition (ii) of Theorem 5.2 needs a more detailed
discussion, though.

As for FDL, we prove that if LP contains arithmetic and U is an arithmetical
universe, then L# is U-expressive for Le~. We say that ~ contains arithmetic
iff £0 has the function symbols + and . of sort (ind, ind, ind), the individual
constants 0 and 1, and the predicate symbol -- of sort (ind, ind). A universe U of
~, generated by a special structure A of ~, is an arithmetical universe iff A
assigns the usual interpretations to +, . , 0, 1, = (by definition of special structure,
the individual domain of A is the set of natural numbers N) and effective
interpretations to the other function and predicate symbols of ~.

Let Rr(r~, n-) be the relation each program r computes, where tfi and E represent
the initial and final values of the variables E that r modifies. Note that R~ is not
necessarily the graph of a function because r is nondeterministic.

LEMMA 5.1 Assume that programs use only individual variables. Then, if ~
contains arithmetic and U is an arithmetical universe, .~ is U-expressive for
. ~ .

SKETCH OF PROOF. We give in essence the argument in [20] for FDL. Let r be
a program that uses only individual variables. By assumption on U, Rr is a
recursively enumerable relation over N. Since ~ contains arithmetic, U is an
arithmetical universe and Rr is recursively enumerable; Rr is definable in ~.
That is, there is a wff F~[E, y] of ~ with free variables E and y such that
~vFr[ffl/~, E, y] iff Rr(r~, E). Now, given a wff Q of ~, (r)Q is U-valid iff
3y(F~[E, y] A Q[f/E]) is U-valid, by definition of ~ u (r) Q and construction of F~.
Given any wff P of ~ , we then proceed by induction to eliminate all occurrences
of boxes [] and diamonds () in P, using the equivalent in U of (r)Q to obtain a
wff P~ of ~ equivalent to P in U. []
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 407

THEOREM 5.3 I f ~q~ contains arithmetic and U is an arithmetical universe,
then £# is U-expressive for ~ .

SKETCH OF PROOF. We indicate that the argument in Lemma 5.1 carries on
here. The only doubt lies in that a program r may now modify variables that are
valued as relations over N. Thus, at first sight, we may not capture what r
computes by a relation Rr over N and claim that Rr is recursively enumerable.
However, all relations in the n-pred domain, n > 0, are finite and hence can be
mapped into natural numbers (given a finite relation S over N with I S I = m, we
can use sequence numbers [30, Ch. 6.4] to encode each tuple ti in S as ni in N;
the natural number corresponding to S will be the sequence number encoding
(n~ nm)). Using such a mapping and the fact that P in {E/P[x-']} is a tight wff
of ~, we can still claim that r computes a recursively enumerable relation over N,
and the argument in the proof of Lemma 5.1 can be repeated here. []

Finally, we state the completeness theorem for AS.

THEOREM 5.4 I f ~ contains arithmetic and U is an arithmetical universe,
then A S is U-complete.

SKETCH OF PROOF. The proof follows from Theorems 5.2 and 5.3. Conditions
(i), (iii), and (iv-a) of Theorem 5.2 are equivalent to Axioms (3) and (10), (11) and
(12), and (4) of the axiom system AS, respectively. Conditions (iv-b) and (iv-c) of
Theorem 5.2 are obtained by induction on the structure of a program as for FDL
([20, Th. 3.9 and 3.11]). Finally, condition (ii) of Theorem 5.2 corresponds to
Theorem 5.3. []

6. CORRECTNESS OF DATABASE SYSTEMS

In this section we outline how regular many-sorted dynamic logic can be applied
to database management systems (DBMSs) supporting concurrent transaction.
Correctness criteria for DBMSs guarantee, among other things, that each trans-
action is correctly executed, queries read consistent data, or consistency is
preserved. To study the correctness of DBMSs, we distinguish two types of
systems.

An open DBMS, such as IMS [23], supports any transaction mix accessing a
database, acquiring information about transactions as they are submitted. Correct
concurrent execution is guaranteed by schedulers, subsystems designed to inter-
cept and reorder all access requests or synchronization calls (such as look
requests). Schedulers work with imperfect information, since transactions are not
known in advance, and they must be efficient, because they operate on-line.
Hence their study tends to center around the design of efficient algorithms, rather
than around program correctness. A survey of some scheduler designs appears in
[3] and their correctness criteria appear in [5].

A closed DBMS, such as an airline or hotel reservation system, is characterized
by a known set of transactions accessing a fixed database. Schedulers can also be
used here to guarantee correct concurrent execution, but special code is likely to
achieve better performance, particularly when transactions interfere heavily and
yet a fast response time is required. We can model a closed DBMS as a concurrent

ACM Transactions on Programming Languages and Systems, VoL 2, No. 3, July 1980.

408 M.A. Casanova and P. A. Bernstein

program, whose components are the transactions, and s tudy its correctness using
an appropriate logic.

We now briefly apply regular many-sorted dynamic logic to closed DBMSs,
concentrating on criteria guaranteeing tha t transactions are correctly executed
and consistency is preserved. Let £z be a special many-sorted language, let U be
a universe for ~, let a = (p, a, 8), with p = {R1, . . . , Rm}, be a database schema,
and let t = {tl , t,} be a set of concurrent transactions for o. Following [18],
we model t by a nondeterministic do loop r, as exemplified in Section A5 of the
appendix.

Our previous notion of consistency preservation also applies to r, since r is in
M S R P [J , U]. So we only discuss transaction execution. Informally, an execution
of r mapping a state I into I ' correctly executes each transaction iff I ' can be
obtained from I by executing one transaction after the other in some arbitrary
order. More precisely, s is a s e r i a l i z a t i o n of r iff s is a program of the form
ti, ; . . . ; ti,, where il . . . i , is a permutat ion of 1 . . . n. Let SER{r) be the (finite)
set of all serializations of r. We say tha t r is s e r i a l i z a b l e i f f ~ u V V ' (((r) V = V')
=- ({ UseSER~,~S)V = V')), where V = (vz v,) is an ordering of all variables of
~ m o d i f i e d by r and V' = (v'~, . . . , v ' ,) is another vector of variables of ~ s u c h
tha t v~ does not occur in r and has the same sort as vi, i in [1, n]. Serializability
is then a case of program equivalence and represents a version of the usual notion
of serializability [4, 17] for interpreted transactions. We may generalize seriAliz-
ability by taking V to be any set of variables. Finally, we note tha t the language
of DL permit ted defining serializability concisely; this elegance would be lost if
we adopted a logic accounting only for input -output properties of programs such
as Hoare 's logic [22].

By the results given in Section 5.2, the axiom system AS is theoretically
adequate to prove consistency preservation and serializability for closed DBMSs.
In Section A5 of the appendix we outline a serializability proof. However,
constructing consistency preservation or serializability proofs can be quite diffi-
cult, even for very simple systems, so it pays to supplement AS with special
heuristics [5]. In fact, considerable work must still be done in the area of closed
DBMSs to harness concurrency and bring down to a manageable size the task of
proving correctness of these systems.

7. CONCLUSIONS

We transferred a considerable amount of programming logics theory to databases
by considering the database data structures as part of the program, so tha t
database accesses reduce to assignments. Choosing dynamic logic as the under-
lying programming logic permit ted us to s tudy not only consistency preservation,
but also transaction equivalence and serializability. However, other logics cap-
turing the on-going properties of programs are needed to s tudy further properties,
such as reliability, tha t require the database state to be always consistent {perhaps
after some rollback).

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 409

APPENDIX
A1 Example of a Relational Schema

In this appendix we exemplify how to write database schemas and programs, and
we prove facts about them. T h e D D L will be a special many-sor ted language L#
with a 2-pred variable ACC, 1-pred constants NO and BAL, and function symbols
+ and - of sort (ind, ind~ ind). L#is equipped with a special s t ructure A assigning
to NO and BAL the values [1, p] and [0, oo), respectively, and to + and - the
usual interpretat ions. U denotes the universe of ~egenerated by A. Th e D M L will
be the set of many-sor ted regular programs over L#and U, M S R P [~ , U].

We define a relational database with just one table containing account numbers
and balances. Each ent ry (n, b) in the table is uniquely identified by the account
number n and we assume tha t n ranges from 1 to p and tha t b is nonnegative.
The corresponding database schema goes as follows:

(1) B A N K = ({ACC}, {NO, BAL}, {P1, P2, P3}), where
(2) P1 = VnVb(ACC(n, b) ~ NO(n) A BAL(b)) (the relational scheme of ACC);
(3) P2 = VnVbVb'(ACC(n, b) A ACC(n, b') ~ b = b');
(4) P3 = Vn(NO(n) - 1 _ n ___ p) A Vb(BAL(b) --- 0 _ b).

Note. We frequent ly use syntactical constants, such as P1, ranging over wffs
of ~ a n d programs of M S R P [~ , U].

A2 Example of a Derivation in a Special Many-Sorted Theory

We exemplify in this section how to use the special many-sor ted theory Y-of ~.
Suppose tha t we want to talk about the affluent people of the bank, defined as
those with balances greater than 10K. A convenient approach consists of extend-
ing i f - t o a new theory Y-' = (L#', D') by introducing by definition a 2-pred
constant AFF with defining axiom

(1) AFF = {(m, c) /ACC(m, c) A c >_ 10K};

tha t is, AFF is a view of B A N K [13]. Let P4 be a wff of ~ ' expressing tha t tuples
in the value of AFF are still uniquely identified by account numbers:

(2) P4 = VnVbVb' (AFF(n, b) A AFF(n, b') ~ b = b').

We now show tha t P2 }-x. P4. F rom Axioms (1) and (2), P4 is equivalent to

(3) VnVbVb'(e2({(m, c) /ACC(m, c) A c >_ 10K}, n, b)
A e=({m, c) /ACC(m, c) A c >_ 10K}, n, b') ~ b = b').

Using the set operat ions axioms of ~--', P4 is then equivalent to

(4) V n V b V b ' (3 X 3 Y ((X (n , b) A Y(n, b') ~ b = b')
A VmVc(X(m, c) - ACC(m, c) A c _ 10K)
A V m V c (Y (m , c) -- ACC(m, c) A c ~ 10K))).

Simplifying (4), we obtain

(5) VnVbVb'(ACC(n, b) A b >_ 10K A ACC(n, b') A b' >_ 10K ~ b --- b'),

which now follows from P2.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

410 • M.A. Casanova and P. A. Bernstein

A3 Examples of Regular Many-Sorted Programs

We describe two programs, A U D I T and T R A N S F E R , which access B A N K .
A U D I T scans the value of ACC tuple by tuple, in descending order of account
number , and computes the bank ' s assets. T R A N S F E R transfers D dollars f rom
account N to account M, if N has enough funds.

AUDIT
begin c o m m e n t n--current account number being scanned (n -- 0 when ACC has been

scanned because, by definition, MAX7 (~) ffi 0)
b--unique balance of account n
s- -sum of the balances of all accounts up to n

S : = 0;
n := MAX~(ACC);
whi le n ~ 0 do
begin b +-? {c/ACC(n, c)};

s : f s + b ;
n := MAX~({m/3c(ACC(m, c) A m < n)})

end
end

TRANSFER

begin b ~--? {c/ACC(N, c)};
i f b > D

then begin update ACC(m, c+D) w h e r e m - M;
update ACC(m, c - D) w h e r e m -- N;

end
end

or, e l iminat ing all defined constructs:

T R A N S F E R ffi T1; ((b > D?; T2; T3) U (~b > D?)) ,

where

T1 ffi b ~--? {c/ACC(N, c)}

T2 = ACC := ACCI

T3 = ACC := ACC2

ACC1 = {(m, c) /ACC(m, c) A rn ~ M}

U {(m, c)/3d(ACC(rn, d) A rn = M A c = d - D }

ACC2 ffi {(m, c) /ACC(m, c) A m ~ N}

U {(rn, c) /3d (ACC(m, d) A m = M A c ffi d+D} .

Note. ACC1 and ACC2 are syntact ical cons tants s tanding for the r igh t -hand
side of T1 and T2, respectively.

A4 Examples of Proofs

We outl ine a p roof t ha t T R A N S F E R preserves the bank ' s assets and A U D I T
computes the bank ' s assets, assuming a consis tent initial s ta te in bo th cases.

More precisely, for T R A N S F E R we prove t ha t
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database 411

(I)

where s is an individual variable of £#
P = (s - SUM~(ACC)). To prove (1), we
[TRANSFER]P:

(2) [TRANSFER]P -
[Wl]([b > D?][T2][T3]P A [~b
> D?]P)

(3) [T3]P = P4,
with P4 = P[ACC2/ACC]

(4) [T2][T3]P - [T2]P4

(5) [T2]P4 --- P5,
with P5 -- P4[ACC1/ACC]

(6) [T2][T3]P - P5

(7) [b > D/][T2][T3]P -
[b > D?]P5

(8) [b > D?]P5 -- P6,
with P6 = (b > D? ~ P5)

(9) [b > D?][T2][T3]P - P6

(10) [~b > D?]P -- P7,
with P7 = (-~b > D? ~ P)

(Ii) [Tl]([b > D?][T2][T3]P A [-~b
> D?]P) -- [T1](P6 A P7)

(12) [T1](P6 A P7) --- Q,
with Q =- Vd(el({c/ACC(n, c)},
d) =~ P6[d/b] A P7[d/b])

(13) [TRANSFER]P - Q

s = SUM~ (ACC) A P1 A P2 A P3 ~ [TRANSFER]s = SUM~ (ACC)

(not occurring in TRANSFER). Let
first obtain a wff Q of .L# equivalent to

[axioms for composition and union,
rule of necessitation, and definition of
TRANSFER]

[axiom for assignments and definition
of T3]

[Axiom (3), necessitation]

[axiom for assignments and definition
of T2]

[Axioms (4), (5)]

[Axiom (6), necessitation]

[axiom for tests]

[Axioms (7), (8)]

[axiom for tests]

[Axioms (9), (10), propositional rea-
soning, necessitation]

[axiom for random tuple selections,
definition of T1]

[Axioms (2), (12)]

Then (1) is equivalent to P A P1 A P2 A P3 ~ Q, which does not involve any
program. It is not difficult to convince oneself that this formula is valid in U.
Hence it is an axiom of AS (clause (4) of Section 5.1) and the proof is completed.

For AUDIT, we want to prove that

(14) P1 A P2 A P3 ~ [AUDIT]s -- SUM~(ACC).

The proof of (14) is based on a derived rule for whi le constructs [20, 22], defined
a s

P A B ~ [r]P
while rule:

P ~ [while B do r]P A ~B"

The proof proceeds by taking P as

(15) P = (s = SUM~({(m, c)/ACC(m, c) A m > n}) A P3).

(P2 is needed to derive that b is the unique balance associated with n.)
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

412 • M A Casanova and P A Bernstein

/ / Cl

//cl
//c~
/ / el

//c~
//c2
o d

A5 A Serial izabi l i ty Proof

In this section we outline a proof t ha t A U D I T and T R A N S F E R , when synchro-
nized, fo rm a serializable set of t ransact ions with respect to the assets s computed
by A U D I T . We model t = (A U D I T , T R A N S F E R } by a nondeterminis t ic d o
loop r, in the m a n n e r of [18]:

r = c, := 0; c2 := 0;
d o c l - - 0 ~ s := 0; cl := 1
/ / C l = 1 -~ n := MAX~(ACC): Cl := 2

= 2 A n # 0 - - - * c1 := 3

= 3 ---* b , - - - ? { c / A C C (n , c)}; c~ := 4
= 4 - - - , s : = s + b; c~ : = 5

= 5 --* n := M A X] ((m / 3 c (A C C (m , c) A m < n)}); c, := 2
= 2 A n = O - - - > c , : = 6

= 0 A ~ (M _ n _< N) A -~(N _ n _ M) -* T R A N S F E R ; c2 := 1

T h e var iables c, and c2 act as p rog ram counters and each line of the d o loop
corresponds to an a tomic action. T h u s we model a concurren t execution of t by
the nondeterminis t ic inter leaving of the a tomic actions of A U D I T and T R A N S -
FER. In fact, we consider T R A N S F E R a single a tomic act ion t ha t synchronizes
wi th A U D I T via the condit ion ~ (M _ n < N) A ~ (N _ n < M). T h a t is,
T R A N S F E R cannot move m o n e y f rom one account t ha t A U D I T has a l ready
scanned to ano the r one t ha t A U D I T will still scan (otherwise A U D I T would sum
the t ransfer red dollars twice). By requiring t ha t r be seriMizable wi th respect to
the assets s, we guaran tee t ha t A U D I T runs as if alone and thus correct ly sums
up the bank ' s assets. More precisely, we require t ha t

V x (((r) x = s) - ((OpeSEa(r)p> X = S)). (AI)

We now outline how (A1) could be proved. First, observe t ha t the r ight -hand side
always implies the lef t -hand side, t ha t is, a serial execution of the t ransact ions is
jus t a special case of a concur ren t execution. Assuming tha t £0 is expressive for
its []-extension, we can find a wff P of £#equivalent to the r igh t -hand side of the
equivalence. In our case, this task is relat ively simple, since the assets compu ted
by A U D I T rema in the same before and af ter T R A N S F E R is executed. T h u s P
is s imply x = SUM~(ACC). In view of these observat ions, (A1) is equivalent to

V x ((< r) x = s) ~ P) (A2)

which is in tu rn equivalent to (using (r)x = s - -~[r]x # s)

V x (~ P = [r]x # s). (A3)

But proving (A3) reduces to the famil iar p rob lem of synthesizing an invar iant for
r in order to app ly the invar iance rule of AS. In our case, an appropr ia te in-
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Reasoning about Programs Accessing a Relational Database

v a r i a n t is

I = x ~ S U M ~ (A C C) / ~ V n V b (A C C (n , b) ~ n > O)

/~ (e l = 1 ~ s = 0)

/k (cl = 2 V c1 = 3 V ci = 4

= s = S U M ~ (((m , c) / A C C (m , c) A m > n}))

A (cl = 4 ~ A C C (n , b))

A (cl = 5 ~ s = S U M ~ (((m , c) / A C C (m , c) A m > n}))

/k (cl ~ 1 / k . . . /k Cl # 5 ~ s = S U M ~ (((m , c) / A C C (m , c)})) .

N o t e t h a t ! c a p t u r e s t h e e x e c u t i o n o f A U D I T a n d d o e s n o t d e p e n d o n T R A N S -
F E R .

413

(A4)

REFERENCES

1. AHO, A.V., AND ULLMAN, J.B. Universality of data retrieval languages. In Proc. 6th Annu. ACM
Symp. Principles of Programming Languages, Jan. 1979, pp. 110-120.

2. BANCmHON, F. On the completeness of query languages for relational data bases. In Proc. 7th
Symp. Math. Foundations of Computer Science, Zakopane, Poland (Lecture Notes in Computer
Science, Springer-Verlag, New York, Sept. 1978).

3. BERNSTEIN, P.A., ET AL. A formal model of concurrency control mechanisms for database
systems. IEEE Trans. Softw. Eng. (May 1979).

4. BERNSTEIN, P.A., SHIPMAN, D.W., AND ROTHNIE, J.B., JR. Concurrency control in a system for
distributed databases (SDD-1). ACM Trans. Database Syst. 5, 1 (March 1980), 18-51.

5. CASANOVA, M.A. The concurrency control problem for database systems. Ph.D. dissertation,
Harvard Univ., Cambridge, Mass., Nov. 1979.

6. CASANOVA, M.A., AND BERNSTEIN, P.A. The logic of a relational data manipulation language.
In Proc. 6th ACM Symp. Principles of Programming Languages, Jan. 1979, pp. 101-109.

7. CHAMBERLIN, D.D., ET AL. SEQUEL-2: A unified approach to data definition manipulation and
control. Tech. Rep. RJ 1798, IBM, New York, June 1976.

8. CHANDRA, A.K., AND HAREL, D. Computable queries for relational databases. In Proc. 11th
ACM Syrup. Theory of Computing, May 1979.

9. CLARKE, E.M., JR. Programming language constructs for which it is impossible to obtain good
Hoare axiom systems. J. ACM 26, 1 (Jan. 1979), 129-147.

10. CODD, E.F. A database sublanguage founded on the relational calculus. In Proc. 1971 ACM-
SIGFIDET Workshop on Data Description, Access and Control.

11. CODD, E.F. A relational model of data for large shared data banks. Commun. ACM 13, 6 (June
1970), 377-387.

12. COOK, S.A. Soundness and completeness of an axiom system for program verification. SIAM J.
Comput. 7, 1 (Feb. 1978).

13. DAYAL, U. Schema mapping problems in database systems. Ph.D. dissertation, Harvard Univ.,
Cambridge, Mass., Aug. 1979.

14. DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
15. ENDERTON, H.B. A Mathematical Introduction to Logic. Academic Press, New York, 1972.
16. ESWARAN, K.P. Specifications, implementations and interactions of a trigger subsystem in an

integrated database system. Tech. Rep. RJ1820, IBM, New York, Aug. 1976.
17. ESWARAN, K.P., ET AL. The notions of consistency and predicate locks in a database system.

Commun. ACM 19, 11 (Nov. 1976), 624-633.
18. FLON, L., AND SUZUKI, N. Nondeterminism and the correctness of parallel programs. Presented

at the IFIP Conf. Working Group on Formal Specifications of Programming Languages, Aug.
1977.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

414 • M . A . Casanova and P. A. Bernstein

19. GARDARIN, G., AND MELKANOFF, M. Proving consistency of database transactions. In Proc. 1979
Int. Conf. Very Large Data Bases, Oct. 1979, pp. 291-298.

20. HAREL, D. First-order dynamic logic. In Lecture notes in Computer Science, vol. 68, Springer-
Verlag, New York, 1979.

21. HELD, G. D., STONEBRAKER, M.R., AND WONG, E. INGRES--A relational database system. In
Proc. 1975 A F I P S NCC, AFIPS Press, Arlington, Va., pp. 409-416.

22. HOARE, C.A.R. An axiomatic basis for computer programming. Commun. A C M 12, 10 (Oct.
1969), 576-580.

23. Information management system virtual storage (IMS/VS) general information manual. IBM no.
GH20-1260, IBM, New York.

24. LAMPORT, L. Towards a theory of correctness for multi-user data base system. Teeh. Rep. TR-
CA-7610-0712, Massachusetts Computer Associates, Oct. 1976.

25. MINKER, J. Search strategy and selection function for an inferential relational system A C M
Trans. Database Syst. 3, 1 (Mar. 1978), 1-31.

26. NICOLAS, J.M. First-order logic formalization for functional, multivalued and mutual depen-
dencies. In Proc. 1978 ACM-SIGMOD Int. Conf. Management of Data, May 1978, pp. 40-46.

27. PAPADIMITRIOU, C.H., BERNSTEIN, P.A., AND ROTHNIE, J.B. Some computational problems
related to database concurrency control. In Proc. Conf. Theoretical Computer Science, Aug. 1977,
pp. 275-282.

28. PRATT, V.R. Semantical considerations on Floyd-Hoare logic. In Proc. 17th IEEE Symp.
Foundations of Computer Science, Oct. 1976, pp. 109-120.

29. SCHMIDT, d.W. Some high-level language constructs for data of type relation. A C M Trans.
Database Syst. 2, 3 (Sept. 1977), 247-261.

30. SHOENFIELD, J.R. Mathematical Logic. Addison-Wesley, Reading, Mass., 1967.
31. STEARNS, R.E., ET AL. Concurrency control for database systems. In Proc. 17th IEEE Syrup.

Foundations of Computer Science, Oct. 1976, pp. 19-32.
32. STONEBRAKER, M. Implementation of integrity constraints and views by query modification. In

Proc. ACM-SIGMOD Int. Conf. Management of Data, May 1975.
33. STONEBRAKER, M., WONG, E., AND KREPS, P. The design and implementation of INGRES.

A C M Trans. Database Syst. 1, 3 (Sept. 1976), 189-222.
34. THOMAS, R.H. A majority consensus approach to concurrency control for multiple copy data-

bases. A C M Trans. Database Syst. 4, 2 (June 1979), 180-209.
35. VAN EMDEN, M.H. Computation and deductive information retrieval. Presented at the IFIP

Conf. Working Group on Formal Specifications of Programming Languages, Aug. 1977.

Received March 1979; revised January and April 1980; accepted April 1980

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

