
A Formal System for Reasoning 
about Programs Accessing 
a Relational Database 

MARCO A. CASANOVA 

Pontificia Universidade Cat61ica do Rio de Janeiro 

and 

PHILIP A. BERNSTEIN 

Harvard University 

A formal system for proving properties of programs accessing a database is introduced. Proving that 
a program preserves consistency of the database is one of the possible applications of the system. The 
formal system is a variant of dynamic logic and incorporates a data definition language (DDL) for 
describing relational databases and a data manipulation language (DML) whose programs access data 
in a database. The DDL is a many-sorted first-order language that accounts for data aggregations. 
The DML features a many-sorted assignment in place of the usual data manipulation statements, in 
addition to the normal programming language constructs. 

Key Words and Phrases: relational databases, data definition languages, data manipulation languages, 
aggregation operators, transactions, synchronization, consistency preservation, serializability, program 
correctness, formal systems, dynamic logic, many-sorted first-order logic 
CR Categories: 4.33, 5.21, 5.24 

1. INTRODUCTION 

A d a t a b a s e  c o n t a i n s  d a t a  t h a t  m o d e l  some aspec ts  of the  world.  T h e  desc r ip t ion  
of a d a t a b a s e  cons is t s  of a se t  of  da t a  s t r u c t u r e  desc r ip t ions  a n d  a se t  of  
cons i s t ency  cr i te r ia  for d a t a  values .  T o  say  t h a t  the  d a t a  va lues  in  a d a t a b a s e  
sat isfy  the  cons i s t ency  cr i te r ia  is to say  t h a t  the  da t a  a d e q u a t e l y  mode l  the  world.  
As a consequence ,  users  expect  to  observe  cons i s t en t  d a t a  a n d  are r equ i r ed  to 
s u b m i t  u p d a t e s  t h a t  will p rese rve  cons is tency .  S u c h  u p d a t e s  are  cal led t r ansac -  
t ions  [17]. I n  th i s  pape r  we prov ide  a logic for a da t a  m a n i p u l a t i o n  l anguage  
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(DML) permitting us to prove, among other properties, that a transaction indeed 
preserves consistency. Although the concept of transaction is widely used [4, 17, 
24, 27, 31, 34], very little work has been done on DML logics [6, 19], and none 
accounts for the full use of aggregation operators [21]. 

In Section 2 we explain, in intuitive terms, the database and programming 
language concepts used throughout the paper. The section ends with the plan 
used in the rest of the paper to transform a given logic of programs into a DML 
logic. 

Briefly, the plan goes as follows. Section 3 rigorously defines a language to 
describe relational databases [11] that  allows the full use of aggregation operators. 
Section 4 defines a variation of the regular programs of [28] that fills the role of 
DML. Section 5 introduces a logic for the DML that is closely related to the 
regular first-order dynamic logic of [20]. Section 6 briefly discusses how the DML 
logic can be used to study concurrent transaction systems. Finally, the appendix 
contains examples of database descriptions, transactions, and derivations in the 
DML logic. 

2. BACKGROUND 

2.1 Database Concepts 

In this section we give a brief and intuitive description of some database concepts 
in order to set the stage for the plan described in the following sections. 

We loosely characterize a database as an abstraction of a real world enterprise, 
that is, of a set of objects forming a coherent whole. By a state of an enterprise 
we mean the instances of all objects at a given time. Objects and states are the 
real-world counterparts of two complementary technical concepts that  dominate 
the discussion about databases: database schemata and database states. A data- 
base schema describes the enterprise via a set of data structures abstracting the 
objects of the enterprise and a set of consistency criteria capturing the logical 
interconnections between these objects (the format of the data structures may 
also capture some of the interconnections). A database state assigns values to 
the data structures and corresponds to a state of the enterprise. If a database 
state satisfies all consistency criteria and thus adequately represents a state of 
the enterprise, then the state is said to be consistent. We collect all possible states 
in a database universe. We may then define a database directly as a database 
schema and a database universe. 

The language used to define databases is called a data definition language 
(DDL}. A DDL specifies a notation for writing data structures and consistency 
criteria, defines what types of concrete objects can be values of data structures 
(and the other symbols used in consistency criteria), and gives a method for 
determining when a database state satisfies a consistency criterion. In short, a 
DDL introduces the tools to define the concepts given in the previous paragraph. 

Data retrievals and changes to the database state are expressed in a special 
kind of programming language, called a data manipulation language (DML). 
Four types of DML statements are commonly identified: a retrieve statement 
extracts data from the current database state; an update, insertion, or deletion 
statement creates a new database state by modifying, inserting, or deleting data 
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f rom the current  database state, respectively. If  the D M L  expresses all desirable 
data  retrievals and state changes, then  it is said to be complete [1, 8]. (Chandra 
and Harel  [8] give a precise definition of what  we mean  by  "desirable.") 

We are especially interested in DDLs  and DMLs  tha t  admit  aggregation 
operators, such as SUM, MAX, or MIN, which map a subset of a database state 
into a single data  item. For  example, if SAL is the set of all salaries in a PAYROLL 
database, SUM(SAL)  re turns  the summat ion  of all salaries. Aggregation opera- 
tors add a new dimension to the consistency criteria and D M L  s ta tements  tha t  
can be expressed. For  example, the criterion SUM(SAL) __ 100K means  tha t  the 
total  payroll  cannot  exceed 100K. Our interest  in aggregation operators  is fur ther  
substant ia ted because they  are supported by some current ly  existing database 
systems [7, 21]. 

A D M L  program expresses observable changes in the state of the enterprise 
only if it maps  the set of consistent database states into itself, or preserves 
consistency of the database. Such D M L  programs are called transactions. Several  
tools tha t  facilitate writing t ransact ions exist. For  example, the D M L  might  be 
enhanced by  high-level operat ions tha t  always preserve consistency; the D M L  
program might  be modified at  compile t ime so tha t  it preserves consistency 
[33]; routines,  called triggers or demons, may be invoked at  execution t ime to 
ensure consistency preservat ion [16]. Note  tha t  the ability to check whether  a 
D M L  program is a t ransact ion or not, which we investigate in this paper, underlies 
any of these three  approaches.  

Example 2.1. To  help fix the concepts in t roduced thus far, we describe in this 
example an overly simplified database, AIRLINE,  of an airline reservat ion system 
and two transactions, R E S E R V E  and CANCEL, which access it. We choose 
tables (or relations) as our  data  s t ructures  and use the  language of set theory  to 
write consistency criteria. The  D M L  s ta tements  are self-explanatory. 

T h e  database schema of A I R L I N E  has only one table, F L I G H T .  Each  row 
(n, s) in F L I G H T  represents  a flight, where n is the flight number  and s is the 
number  of available seats. The  schema imposes two consistency criteria: no two 
rows have the same flight number,  and the number  of available seats is always 
nonnegative.  

da tabase  schema AIRLINE 
table FLIGHT with  columns NUMBER, #SEATS 
consistency cr i ter ia  (V(n, s), (n', s') E FLIGHT)(n = n' ~ s = s') 

(V(n, s) ~ FLIGHT)(s >_ 0) 

T h e  database universe of A I R L I N E  consists of all finite binary relations over the 
natural  numbers.  

T h e  R E S E R V E  transact ion reserves a seat in flight N, if a seat is available, 
and the CANCEL transact ion cancels a seat reservat ion in flight M. 

RESERVE (N): 
update  (N, s - 1) where  (N, s) E FLIGHT/k s -> 1 

CANCEL (M): 
upda te  (M, s + 1) where  (M, s) E FLIGHT 

Both  t ransact ions certainly preserve consistency of the database. [] 
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2.2 Programming Logic Concepts 

In this section we outline some basic concepts of programming logics and indicate 
their relevance to databases. 

Traditionally, a formal system is divided into three components: a syntax for 
describing objects and properties of objects; a semantics defining what the 
concrete instances of the objects are and giving a meaning to sentences within 
the syntax; and a proof theory for reasoning about the objects and their properties. 
A programming logic is a formal system whose objects are programs. 

To investigate transactions, we essentially need a formal system whose objects 
are programs accessing a database. Another useful formal system would be one 
whose language is a DDL, since its proof theory could be used to detect redun- 
dancies or contradictions in the consistency criteria of a database schema. 

The conceptual complexity of a programming logic is directly linked to the 
richness of the underlying programming language, a fact that had a profound 
influence on the design of programming languages and the development of 
programming methodologies. The maxim was to retain only those constructs that 
had clear and manageable proof rules and to seek programming styles that 
facilitated correctness proofs. In general, the design of a proof theory almost 
always forces a healthy purification of the language and its semantics, a stage 
DDLs and DMLs have not yet reached. 

Programming logics differ in their power to express properties of programs. 
Most of these logics concern themselves with input-output properties of pro- 
grams, since these are central to the current programming methodologies. But 
one may also be interested, for example, in program equivalence or in the ongoing 
behavior of a program. The latter is critical to the investigation of programs that  
are not supposed to halt, such as operating systems. 

Consistency preservation is an input-output property, since it asserts that  
programs must map the set of consistent database states into itself. In Section 6 
we discuss another property of programs accessing databases which is a form of 
program equivalence. 

Much effort has been devoted to mechanizing the proof theory of programming 
logics, aiming at relieving completely or in part the programmer's burden of 
verifying the program. The traditional questions of soundness and completeness 
have also been extensively studied. Soundness requires that every deduced fact 
is true, which is the minimum one would ask from a proof theory. Completeness 
requires that  every true fact is deducible. The completeness of programming 
logics presents special problems [12] that  were factored out in part by assuming 
complete subtheories for the data types, among other things. This permitted 
concentrating on the adequacy of proof rules for the program constructs. But 
even with such an assumption, it was shown that  certain complex programming 
languages cannot possibly have complete logics [9]. 

Both proof theory mechanization and metatheoretic investigations are very 
significant to transaction verification. Since the number of consistency criteria of 
a database is likely to be large, transaction verification can be tedious and error 
prone. Therefore, a program verifier, coupled with heuristics trimming down the 
number of criteria that  must be checked, is almost a necessity. Restrictions on 
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the format of consistency criteria may have to be imposed to speed up the 
process. Soundness and completeness become important because the former 
means that  we will not wrongly declare that a program is a transaction and the 
latter signifies that  we will not fail to prove that a transaction preserves consis- 
tency. 

2.3 Constructing a Data Manipulation Logic 

In this section we describe a concrete strategy for constructing a programming 
logic for proving the correctness of transactions. We assume that  we are given a 
family of programming logics with the following characteristics: 

(1) the logics are based on the notion of a program as a set of operations acting 
on a {memory) state; 

(2) each logic has an assertion language to talk about states, which is extended 
by new formation rules to express properties of programs, including input- 
output properties; 

(3) the logics share a core programming language whose constructs include 
assignments and are supported by sound proof rules. 

We argue that, under certain circumstances, the assertion language can act as 
a DDL and, with trivial changes, the programming language can become a DML. 

More explicitly, the assertion language .~ must meet the requirements for 
DDLs given in Section 2.1. That  is, ~e must provide a notation for writing database 
data structures and consistency criteria, define what concrete objects can be 
values of these structures, and give a method for determining when a database 
state satisfies a consistency criterion. In the jargon of programming languages, 
.~ must then have a data type appropriate for describing database data structures. 

Our way of viewing the assertion language as the DDL tends to weight choices 
differently from past research. Traditionally, DDLs aimed at reflecting the real 
world, a goal that  created room for a plethora of proposals and favored elaborate 
data structures. However, because the DDL now plays the role of an assertion 
language, it must be accompanied by a proof theory. Hence a language based on 
simple data structures with a clear proof theory should be preferred. 

We now address the question of transforming a programming language into a 
DML. The key observation is simply that  a program manipulating a database 
contains among its data structures those listed in the database schema, so that  
database states become part of the memory states. Then the database state can 
be changed by an assignment whose left-hand side belongs to the data structures 
of the database and whose right-hand side describes new data values. Thus 
updates, insertions, and deletions become just special forms of such assignments. 
Retrieves follow likewise, except that  the left-hand side does not belong to a data 
structure of the database. Therefore, by assuring that  we have assignments of the 
type chosen for the database data structures, say T, we obtain a DML. The left- 
and right-hand sides of such assignments can be taken as variables and expres- 
sions (or terms) of type T in the assertion language (and hence of what we 
consider to be the DDL). Thus if we are interested in using aggregation operators 
in consistency criteria and DML statements, they must be allowed to occur in 
the expressions of type T in the DDL. 
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980. 
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Our method of constructing a DML trivializes the traditional approach of 
embedding a data sublanguage into a programming language. All four statements, 
retrieve, insert, delete, update, collapse into forms of special assignments. Al- 
though we do not elaborate on this point, the method also discards the complete- 
ness question posed in [1] if the core programming language contains some type 
of whi le  loop (see [8]). Moreover, if the proof rule for assigmnents does not 
depend on the data types involved, no new proof rule is actually needed, which 
facilitates recycling program verifiers and metatheory results. 

3. A FAMILY OF RELATIONAL DATA DEFINITION LANGUAGES 

In this and the next two sections, we describe a programming logic for proving 
the correctness of transactions, following the strategy outlined in Section 2.3. We 
begin by defining a family of formal languages whose members meet three 
conditions: 

(1) as DDLs, they provide the syntax and semantics of the data structures and 
consistency criteria describing a database; 

(2) as assertion languages of a programming logic, they must be supported by a 
proof theory; 

(3) as expression languages for the assignments accessing databases, they must 
have a class of terms adequate to use as right-hand sides of such assignments. 

We express our interest in data aggregations by adding a fourth condition: 

(4) the term-formation rules must include aggregation operators. 

All these conditions reflect the discussion in Section 2.3. 
We base our development on the relational model for databases [11], which 

assumes that  data are organized as finite unordered tables or relations. The 
relational model appeals both to the layman, since tables are, after all, a common 
method of maintaining data, and to the specialist, since a relation is a simple and 
familiar mathematical concept. A table t is described by a relation scheme giving 
a name to t and its columns; relation schemes are then the basic data structures 
of the relational model. A relational database B is in turn described by a relational 
database schema S, consisting of a finite set of relation schemes and a set of 
consistency criteria. A relational database state of S is a set of tables conforming 
to the relation schemes of S. A database universe is a set of database states, as 
usual. An aggregation operator in the relational model is a mapping from relations 
to individuals. 

First-order languages have been favored to play the role of relational DDLs [2, 
6, 19, 25, 26, 35] since predicate symbols can be used to denote tables and well- 
formed formulas (wffs) can be used to denote consistency criteria. This choice 
meets our first three conditions, but not the fourth one. To support our last claim, 
we observe that  there is no symbol in a (one-sorted) first-order language that  can 
be interpreted as a mapping from relations to individuals. In view of this objection, 
we opted for a family of many-sorted first-order languages with a sort for the 
individuals and a sort for the n-ary relations, n > 0. A function symbol from the 
sort of n-ary relations to the individual sort can then denote a mapping from n- 
ary relations to individuals. 
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The only alternative language known to us that is still first order and yet is 
powerful enough to express data aggregations is the language of set theory. 
However, we believe that  the language of set theory is in a sense too rich, since 
we want to talk about individuals and relations over individuals, and not arbitrary 
sets. 

This section is organized as follows. Section 3.1 describes the basic notions of 
many-sorted languages. Section 3.2 introduces the family of many-sorted lan- 
guages adopted. Section 3.3 discusses special theories for reasoning about rela- 
tional databases. Finally, Section 3.4 redefines the basic concepts of the relational 
model. 

Since all formal languages we discuss are first order, we omit this qualification 
from now on. 

3.1 Many-Sorted Languages 

In this section we summarize the essential concepts of many-sorted languages. 
The reader is referred to [15, Ch. 4.3] for a fuller discussion. Assume that  we have 
a nonempty set M of sorts. The symbols of a many-sorted language .50 (with sorts 
from M) are as follows. 

L o g i c a l  S y m b o l s  

(1) Parentheses and the usual logical connectives: (,), -7, A. 
i (2) Variables: for each sort i, the symbols xi, x2, . . . .  

(3) Equality symbols: for each sort i, there may be the predicate symbol =i 
said to be of sort (i, i). 

P a r a m e t e r s  

(1) Quantifiers: for each sort i there is a universal quantifier symbol Vi. 
(2) Predicate symbols: for each n > 0 and each n-tuple of sorts (il, . . . ,  in) 

there is a (possibly empty) set of n-place predicate symbols of sort 
( i l ,  - - - ,  in). 

(3) Constant symbols: for each sort i there is a (possibly empty) set of constant 
symbols of sort i. 

(4) Func t ion  symbols: for each n > 0 and each (n + 1) tuple of sorts 
(ib • • •, in, in+~) there is a (possibly empty) set of n-place function symbols 
of sort ( i l  . . . .  , in, i n + l ) .  

Terms and wffs are defined as in one-sorted first-order languages, except that  
sort compatibility must be respected when using quantifiers, predicate symbols, 
and function symbols. 

A m a n y - s o r t e d  s t ruc ture  A for ~fis a function from the set of parameters of Lf 
assigning 

(1) to the quantifier symbol Vi, a nonempty set Ui, called the d o m a i n  of A of sort 
i; 

(2) to each predicate symbolp of sort (il . . . .  , in), a relation 

pA C Ui, X . . .  X Ui,; 
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(3) to each constant  symbol c of sort  i, an e lement  cA of Ui; 
(4) to each function symbol f of sort  (il . . . . .  in, i,+1), a function 

f.~ : v i ,  x . . . x V ,  o - - ,  v i o + , .  

Since there  is no equali ty symbol across sorts, we may  always assume tha t  the 
domains of A are distinct. 

A state I for f f  is a function from the set of parameters  and variables of 5e such 
tha t  I restr icted to the parameters  of -~f is a s t ructure  A of f f  and I assigns to 
each variable x of f f  of sort  i an e lement  of the domain of sort i. We also say tha t  
I extends A, and we continue to use lz for the value of a parameter  or variable 1 
of ~ in s t a t e / .  

T h e  notion of wff P (a closed wff P )  of £fbeing valid (true) in a s t ructure  A is 
exactly as for one-sorted first-order languages. Le t  M be a set of variables of ~.  
If  v maps  each variable of sort  i in M into an e lement  of the domain Ui of A, 
A ~ P(v) indicates tha t  P becomes valid in A when each free variable x of P is 
assigned the value v(x). If  I is a state, we simply write I ~ P where I gives the 
values of the variables of ~.  

The  logical axioms and rules for many-sor ted first-order languages are those of 
f irst-order languages (see, e.g., [30]), again taking into account  sorts. 

A many-sorted theory 3- is a formal system such tha t  the language of 
3- is a many-sor ted  language .£f and the proof  theory  of 3- is an axiom system 
containing all logical axioms and rules plus a new set D of formulas of ~,  the 
nonlogical axioms of J .  Thus  3- is fully specified by a pair  (~, D). W h e n  a wff P 
of .~ is derivable f rom a set F of wffs of Lf using the axioms and rules of ~,  we 
write F ~- :  P.  

Le t  P be a formula, E = (x~ . . . . .  x,)  be a vector  of variables, and t = 
(tl, . . . ,  tn) be a vector  of terms. As a final note, P [ E ]  indicates tha t  xi occurs free 
in P,  i in [1, n], and P[[/2] denotes  the formula obtained by replacing each free 
occurrence of xi in P by t~, i in [1, n]. 

3.2 Special Many-Sorted Languages 

In this section we introduce a family of many-sor ted languages, adapted  in par t  
f rom [15, Ch. 4.4]. Each  member  of the family serves well as a relational DDL, 
can be backed up by a proof  theory,  has a rich set of terms denoting relations, 
and can express data  aggregations. Thus  the family meets  all of our  four condi- 
tions. To  fully capture  the relational model, we introduce a class of special 
s t ructures  for these languages. 

We say tha t  .~f is a special many-sorted language iff .~ is a many-sor ted 
language with sorts: the individual sort, abbreviated ind, with lowercase letters 
as variables and, for each n > 0, the n-place predicate sort, abbreviated n-pred, 
with uppercase let ters  as variables (superscript with n if necessary). We intend 
the individual domain to be the natural  numbers  N and the n-pred domain to be 
the set of all finite n-ary  relations over  N. 

must  also include the following special parameters ,  listed with their  in tended 
interpretat ions.  
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Predicate  Symbols  

(1) The equali ty  (denoted by =) and the ordering (denoted by _)  of sort 
(ind, ind) is intended to denote the corresponding relations over N. 

(2) For each n > 0 there exists the membership e" of sort (n-pred, ind . . . . .  
ind). The  intended interpreta t ion of e"(X  ~, xl . . . . .  x,) is tha t  the tuple 
denoted by (xz . . . .  , x,) is in the n-ary relation denoted by xn;  hence, 
whenever possible, we abbreviate e"(X  ~, xl, . . . ,  x ,)  as X"(x~ . . . .  , Xn). 

Funct ion  Symbols  

(3) The  successor S of sort (ind, ind) and the addi t ion (denoted by +) of sort 
(ind, ind, ind) are intended to denote the corresponding operations on N. 

(4) For each n > 0 and m > 0 there exists the union U n, intersection n ", 
difference - "  of sort (n-pred, n-pred, n-pred), and Cartesian produc t  "× m 
of sort (n-pred, m-pred, (n+m)-pred). The union U" is intended to denote 
the union operation over n-ary relations, and similarly for the other 
operations. 

(5) Le t  P be a t ight wff of £0 (defined in Section 3.3) and let the free variables 
of P be classified into two disjoint lists E = (x~, . . . ,  xm) and )7 = (yl, . . . ,  
y,),  m > 0 and n > 0, such tha t  xs has sort ij E {ind} U {k-pred/k ~ N} and 
yz has sort ind, 1 < j" _ m and 1 ___ l _ n. Then  .~ contains the function 
symbol fP[z.y-] of sort (i~, . . . ,  ira, n-pred). By analogy with set theory, we 
write fp[~,y-] as {y/P[E,  )7]} and/~r~  as O. fP[~,y7 is intended to denote a 
function mapping a tuple of elements E = (a~ . . . .  , am), aj from the domain 
of sort i1, into the n-ary relation defined by P[E/E,  )7]. Note tha t  each t ight 
wff P may  define several functions, depending on how E and y are formed. 

(6) For each n > 0 and 1 < i < n there exists the m a x i m u m  MAX n, m i n i m u m  
MIN% sum SUMT, and cardinal i ty  COUNT? of sort (n-pred, ind). SUM? 
is intended to denote an aggregation operator mapping an n-ary relation 
into the sum of all entries in the i th  column of the relation, and similarly 
for the other operators. 

Constants  

(7) 0 of sort ind is intended to denote the natural  number  zero. We abbreviate 
S(O), S(S(O)) . . . .  as 1, 2 . . . . .  

We stress tha t  we introduced above a family of many-sorted languages. Each 
member  of the family is obtained by taking the language of (N, 0, S, _ ,  +) 
(Presburger arithmetic) and adding the k-pred sort, k > 0, set-theoretic and 
aggregation operations, and other function and predicate symbols depending on 
the application in question. However, no significance should be assigned to our 
choice of Presburger ari thmetic here other than  tha t  it provides the minimum set 
of functions we need to discuss SUM and COUNT. We require tha t  our languages 
contain multiplication only in Section 5.2 to obtain a completeness result. Finally, 
we note tha t  if other types of individuals, besides the natural  numbers, are 
necessary, then  the individual sort can be split into several sorts, thus creating 
other families of languages. 

A special structure of ~ is any  structure of A ° with the s tandard domains and 
assigns to the special parameters  of Ae their  intended interpretations. 
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A special many-sorted language ~serves  as a relational DDL since a constant 
or a variable of the n-pred sort may denote a table and a wff may describe a 
consistency criterion. ~ has a rich set of terms denoting relations because we 
included in ~ the usual set operations and a restricted set formation rule, 
formalized as the set of function symbol fP[~,Y] described in (5). The set of terms 
is further enriched by some of the usual aggregation operators; the nature of £z 
forced the adoption of a different function symbol, e.g., SUMT, for each arity n 
and column number i. Hence £0 can be used as an expression language for 
assignments to  relations and accounts for aggregation operators. A proof theory 
for ~ is discussed in Section 3.3. 

As an example of the expressive power of ~, we translate the English sentence 
"the highest payroUp of any department" into ~. We assume that  £Zhas a 3-pred 
variable EMP and 1-pred constants NAME, DEPT, SAL representing a table 
EMP[NAME, DEPT, SAL] and that  the various symbols of ~ receive their 
intended interpretations. Then the English sentence becomes 

p = MAX~ (((d, t)/3n3sEMP(n, d, s) A t = SUM~ ({(n, s)/EMP(n, d, s))))). 

Observe that  aggregation operators appear nested inside one another. Thus £P 
is as expressive as the full QUEL DDL [21] or the SEQUEL-2 DDL [7]. However, 
unlike these two languages, ~ is a first-order language. 

3.3 Special Many-Sorted Theories 

In this section we clarify the intended interpretation of the special parameters of 
special many-sorted languages and provide a basis for reasoning about them. 
More precisely, let .~ be a special many-sorted language with no other parameters 
except the special ones, and let A be a special structure for ~. Note that  A is 
unique by definition of special structure and assumption on ~. We introduce a 
many-sorted theory ~--whose language is £z and whose nonlogical axioms capture 
the intended interpretation of the special parameters of ~, in the sense that A is 
a model of Y?. Hence any theorem of 9- is valid in A. The converse question, "Is 
any formula valid in A a theorem of Y-?", is much more difficult and is not 
discussed here. 

If the language chosen has other parameters besides the special ones, 9- must 
be augmented with further nonlogical axioms for reasoning about them. We call 
any such theory a special many-sorted theory. 

The nonlogical axioms of Y-are as follows. 

Arithmetical Axioms. An adequate set PA of axioms for Presburger arithmetic 
constitute the arithmetical axioms. 

Finite Relation Axiom 

(1) VX"3k(COUNT"(X") = k). 

Set Operations Axioms. For each n > O, m > O, and tight wff P[£, )7] of ~, 

(2) X U" Y = Z -  VE(Z(£) - X(£) V Y(£)) ,  

(3) X N" Y = Z - V£(Z(£) - X(£)  A Y(£)),  

(4) X - "  = Z --- V£(Z(£) -- X(£) A '~Y(£)), 
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(5) X ~ x m Y = Z -- VEry(Z(2,  y )  = X(2) A Y(y)), 

(6) fp[~y] (E) = X ~ --- vy(x"(y) - P[2 ,  y]).  

A g g r e g a t i o n  O p e r a t i o n s  A x i o m s .  For  each n > 0 a n d  1 ~ i _ n, 

(7) V x V y ( M A X ~ ( X )  = y -- (-~32X(E) A y = 0) 
V ( 3 2 ( X ( 2 )  A xi = y )  A VE(X(2 )  ~ xi <_ y ) ) ) ,  

(8) V x V y ( M I N T ( x )  = y =- (-~32X(2) A y -- 0) 
V (3E(X(2) A x~ = y)  A V 2 ( X ( 2 )  ~ y <_ xi))) ,  

(9) VX(-~32X(E) ~ COUNT"(X)  -- 0), 

(10) V X V 2 ( - ~ X ( 2 )  ~ C O U N T " ( X  U {E}) = COUNT"(X)  + 1), 

(11) VX(-~32X(2) ~ SUMT(X) = 0), 

(12) V X V 2 ( ~ X ( 2 )  ~ SUMT(X U {2}) = SUMT(X) + x~), 

where,  we recall, X"(2)  abbreviates  e" (X" ,  2), etc. 
The  special s t ructure  A of LZis a model  of Y-since all nonlogical axioms of 

Y-are clearly valid in A. T h e  only possible doubt  concerns Axiom (6), since it  
involves the not ion of a t ight formula,  which we now discuss. Suppose tha t  we 
allow any wff P of ~ to be used in Axiom (6). Consider, for example, the two 
instances of Axiom (6) below (where F and G are 1-pred constants,  X and Y are 
1-pred variables, and R and S are 2-pred constants): 

(a) F = X -  V t ( X ( t )  - 3 u 3 v ( R ( u ,  v) A S ( v ,  t))), 

(b) G = Y =- V t ( Y ( t )  =- 3 u 3 v ( R ( u ,  v) A t = t)).  

Then,  since RA and SA are finite relations, by  construct ion of A, so will be FA. 
However,  the value of G in (b) cannot  be a finite relat ion and hence not  an 
e lement  of the l -pred  domain of A. Hence (b) cannot  possibly be t rue in A. 
Therefore ,  asking tha t  A has only finite n-ary  relat ions in the n-pred domain, 
n > 0, and tha t  all instances of Axiom (6) for arbi t rary  wffs P be t rue in A cannot  
bo th  be satisfied. 

W e  were then  forced to restr ict  P in Axiom (6) to formulas such as 
3 u 3 v ( R ( u ,  v) A S(v ,  t)) t ha t  assert  the  existence of fur ther  finite relat ions in the  
n-pred domain of A, n > 0. We call such formulas t ight .  

To unders tand  the definition of t ight formula,  it helps to visualize the  construc- 
t ion of FA as follows. Construct  first C = RA x SA. For  each tuple it, u, v, x) in 
C, x is in FA i f  u = v, by Ca). Note  tha t  only tuples in C need be examined to 
construct  FA. T h e  definition of t ight  formula explores exactly this property,  
following a suggestion in [11]. 

D e f i n i t i o n  3.1. Le t  .~?be a special many-sor ted  language. 

(i) Le t  Q be a conjunct ion in .t? of the form 

n 

A Qi(til, . . . ,  tik,). 
i ~ l  
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An individual variable x is tied in Q iff 

(a) for some tij, x is tij and Qi is a variable or a constant  of the ki-place predicate 
sort, or 

(b) there  is a clause in Q of the form x = t, t a term, and all variables occurring 
in t are t ied in Q. 

(ii) Le t  P be a wff of ~ and let P '  be the disjunctive normal  form of P. An 
individual variable is t ied in P iff x is t ied in Q for any disjunct Q of P '  where x 
occurs (free or not). 

(iii) A t ight formula P of ~ is a wff of ~ such tha t  all individual variables 
occurring in P are tied in P.  [] 

We now briefly discuss how the models of Y-may differ f rom the special 
s t ructure  A. First, an adequate  set PA of axioms for Presburger  ar i thmetic  forces 
the individual domain to have a s tandard par t  isomorphic to the natural  numbers  
and a set of so-called Z-chains (see, e.g., [15, Ch. 3]). Second, e" need not  be 
in terpre ted  as membership  at  all and the n-pred domain need not  be the set of 
all n-ary  relat ions over individuals. However,  if a model  M of ~- has the same 
domains as A and assigns to e", n > 0, the same interpreta t ion as A, then  the 
nonlogical axioms of g force M to agree with A on the rest  of the parameters  
of ~.  

The  second source of dissatisfaction can be eliminated, in a certain precise 
sense, by  adapting a result  f rom [15, p. 283]. Before stating the result, we observe 
tha t  we can always assume tha t  the domains of any s t ructure  of .£0 are disjoint, 
since ~ contains no equali ty between sorts. I t  also simplifies the discussion to 
eliminate all special parameters  of ~,  except  the ar i thmetical  ones, C O U N T "  and 
S U M L  Except  for these parameters ,  all others  can be considered as defined 
symbols of ~-(with Axioms (2)-(8) acting as defining axioms). 

THEOREM 3.1 Let  M be a model  of  Y-such that the different domains of  M 
are distinct. Then there is a homomorphism h of  M onto a model  N of  J s u c h  
that  

(i) h is one-to-one, in fact the identity, on the individual  domain (from which 
it follows that  M ~ P(v) i f f  N ~ P(hov),  for any assignment v of  values to the 
variables of  Lz); 

(ii) the n-place predicate domain of N consists of  certain n-ary relations over 
the individual  domain, and (R, al . . . .  , an) E eT~ iff  (a~, . . . ,  a,) E R. 

PROOF. Since the domains of M are disjoint, we can define h on one domain 
at  a time. On the individual domain D, h is the identity. On n-place predicate  
domain, 

h(Q) = {(al . . . . .  an) E D"/(Q, a~ . . . . .  an) E e~}. 

Thus  we have 

(al  . . . . .  an) E h(Q)  iff (Q, al . . . . .  an) E e~. (1) 

As  eTv we  s imply  take  the  membersh ip  relation 

(R, al . . . . .  an) ~ e~  iff (al . . . .  , an) E R. (2) 
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On the other symbols, N agrees with M. This completes the construction of h and 
N. Since M is a model of J ,  by construction, so is N. We now prove that  h is a 
homomorphism from M onto N, that  is, for each p-ary predicate symbol P of -~ 
and each q-ary function symbol f of ~, p - 0 and q _ 0, we have 

( a l , . . . ,  ap) E PM iff (h(al) . . . . .  h(ap)) ~ PN (3) 

h(fM(al . . . . .  aq)) = fN(h(al) . . . .  , h(aq)). (4) 

If P and f involve only the individual sort, then there is nothing to prove since h 
is the identity on the individual domain. Hence we immediately obtain that  -- 
and _ satisfy (3), and S, +, and 0 satisfy (4). By (1) and (2), e" satisfies (3) for 
each n > 0. So we are left with SUM" and COUNT", n > 0. We only prove that  
COUNT" satisfies (4) (the proof for SUM? is entirely similar). Since M and N 
have the same individual domain, h is the identity on the individual domain and 
COUNT~ and COUNT~ are functions from the n-pred domain into the individual 
domain, we only have to prove that  

COUNT~(R) - COUNT~(h(R)). (5) 

We prove (5) by induction on the cardinality of h(R).  

Basis .  Suppose h(R)  = 9 .  Then by (1) we have 

-~3~(e~(R, d )). (6) 

Since M and N are models of J,, the aggregation axioms are valid in M and N. 
Then, from (6), we obtain 

COUNT~(R) ffi 0M (7) 

and, since h(R)  --- 9,  we have 

COUNT~(h(R)) = ON. (8) 

Now, by construction of M, 0M ffi ON, which implies that  

COUNT~(R) ffi COUNT~(h(R)). (9) 

Induc t ion  step. Follows similarly. 

Finally, the parenthetical remark of (i) follows from the fact that  we have 
equality only for the individual sort, where h is one to one, by analogy with the 
homomorphism theorem for one-sorted languages [15, p. 91]. [] 

Theorem 3.1 tells us that, given any model M of J ,  we can replace M by another 
model N of Y-whose n-pred domain is a set of n-ary relations over individuals and 
which assigns to e" the intended interpretation, for each n > 0. Moreover, deciding 
whether a wff P of ~ is valid in M can be replaced by the identical problem in 
N. Hence without loss of generality we can ignore all models that  do not have the 
appropriate n-pred domain and do not assign to e" the intended interpretation 
n > 0 .  
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3.4 Relational Databases 

We now give precision to some relat ional  model  concepts  within the f ramework  
developed.  Le t  Y--- (~ ,  D) be a fixed special many-sor t ed  theory.  

Def in i t i on  3.2. A triple a -- (p, a, 8) is a r e l a t i o n a l  s c h e m a  i f f  

(i) p = {R1 . . . . .  Rm} is a set  of  distinct var iables  of  ~ ,  the  d a t a b a s e  re la t ion  
n a m e s  of a, where  Ri is of  the  ki-pred sort, i in [1, m]; 

(ii) a -- {A1 . . . .  , A,} is a set  of  distinct constants  of  .~, the  a t t r ibu te  n a m e s  
of a, all of  the  1-pred  sort; 

(iii) 8 isa set of wffs of ~ Containing the following. 

Relation schemes. For each Ri in p of the ki-pred sort, a formula 

ki 

V.~(R,(E) =* A Aj~(xp)) 
p=l  

where j l ,  . . . ,  jk,, 1 <_ j l ,  . . . , jk, <- n, depend on i. 

Cons i s t ency  cri teria.  Other  wffs. [] 

An example  of  a relat ional  schema  appears  in Sect ion A1 of the  appendix.  
Let  A be a s t ruc ture  for ~¢ and let  M be a set  of variables  of ~ .  Recall  f rom 

Sect ion 3.1 t ha t  v is a valuat ion of M in A, if v is a function assigning to each 
variable  x in M, x of  sort  ind or k-pred,  an e lement  of the individual or the  k-pred 
domain  of A. I f  v is a valuat ion for M ,  A ~ P (v )  indicates tha t  P becomes  valid 
in A when  each free var iable  x of  P in M is va lua ted  as v(x).  

De f in i t i on  3.3. Le t  o = {p, a, 8) be a relat ion schema and let  A be a special 
s t ruc ture  of  ~ .  A d a t a b a s e  s ta te  of a for A is a valuat ion of p in A. A cons i s t en t  
d a t a b a s e  s ta te  of e for A is a da tabase  s ta te  v of  e for A such tha t  A ~ P(v ) ,  for 
each P in 8. T h e  d a t a b a s e  un i ve r se  of a for A is the  set  of  all da tabase  s ta tes  of  
e for A. [] 

There fore  we assign meaning  to a da tabase  schema  o by  fixing a s t ructure  A 
for .L~ and construct ing the  da tabase  universe of a for A. As a consequence,  the  
value of an a t t r ibu te  name  of e is fixed by  A, since a t t r ibu te  names  are constants  
of  ~ .  By  contrast ,  the  value of a da tabase  relat ion name  is not  fixed by  A, but  
r a the r  by  each da tabase  state,  since da tabase  relat ion names  are t rea ted  as 
var iables  of  ~ .  Th is  agrees wi th  the  fact  tha t  relat ions are upda ted  during the  
l ifetime of a database ,  bu t  a t t r ibu tes  are not. 

Th is  t r e a t m e n t  has  a consequence we wish to emphasize.  Le t  P be a wff  of  £~a 
with free var iables  t ha t  also p lay  the  role of  da tabase  relat ion names,  let  A be a 
s t ruc ture  for .W, and let  v be a da tabase  state. T h e n  asking whe ther  P is t rue  in 
A is not  equivalent  to asking whe ther  P(v )  is t rue  in A. For  example,  consider P 
defined as {where E M P  is a 3-pred variable),  

SUM22 ({(n, s ) / e 3 ( E M P ,  n, s, D)}) < 100K. 

Note  t ha t  E M P  is the  only free var iable  of  P. T h e n  P being valid in A means  tha t  
the payrol l  of  d e p a r t m e n t  D is less t han  looK,  for any  value of E M P .  However ,  
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P(v) being valid in A, for a given database state v, means  tha t  the payroll  of 
depar tment  D is less than  100K for the value of EMP given by state v. 

With these definitions, we can formalize the following. 

(1) P in t~ is redundant :  3' ~-~P, where 3' is 8 wi thout  P. 
(2) ~ is inconsistent: 8 ~-x false. 
(3) A wff P of .£z describes a p roper ty  of every  consistent database state of a: 

8 }-~P.  
(4) T h e  i t h  domain of the n-ary relat ion denoted  by  R, 1 _ i <_ n, is functionally 

dependent  on the J1, . . . ,  jk domains, 1 _ 1"1, . . . ,  jk -< n, 
k 

V£V37(R(x- ) /k  R (37 ) /k  ^ x~ m = yim ~ xi = yi) 
tn~l  

where E = (xl, . . . ,  x,)  and 37 = (yl, . . . ,  y , ) .  

4. A FAMILY OF RELATIONAL DATA MANIPULATION LANGUAGES 

Given a special many-sor ted  language ~e chosen to act as a DDL,  we define a 
D M L  appropria te  for accessing databases described in ~.  Th e  D M L  is constructed 
f rom the  regular  programs of [28], plus a new basic s t a tement  taken from [6]. We 
have chosen regular programs because they  are backed up by  a programming 
logic, called r e g u l a r  f irst-order dynamic logic (abbreviated FDL),  as discussed in 

Sect ion 5. 
T h e  D M L  programs denote  binary relations between states of -~# (cf. Sect ion 

3.1) drawn f rom a certain universe U. A universe U of ~ f o r  a special s t ructure  
A of £z is the set of all s tates of £0 extending A (cf. Sect ion 3.1); A is then  the 
s t ructure  generating U. 

More  precisely, given .£z and U, we define the class of many-sorted regular 
programs M S R P [ ~ ,  U] as follows. 

Syntax 

Statements 

(1) If  E and E are a variable and a t e rm of ~,  respectively, of sort  i, then  
x := E is in M S R P [ ~ ,  U] and is called an assignment of sort i. 

(2) If  P is a quantifier-free wff of ~,  then  P ?  is in M S R P [ ~ ,  U] and is called 
a test. 

(3) If  E = (Xl . . . .  , x,)  are distinct individual variables of ~ and E is a t e rm 
of £0 of the n-pred sort, n > 0, then  E ~--? E is in M S R P [ ~ ,  U] and is 
called a r andom tuple selection. 

Formation rules 

(4) if s and t are in M S R P [ ~ ,  U], then  (s U t), (s;t), and s* are also in 
M S R P [ ~ ,  U] and are called the union of s and t, the  composition of s 
and t, and the iteration of s, respectively. 

Semantics. The  meaning of programs in M S R P [ ~ ,  U] is given by  a function 
m: M S R P [ ~ ,  U] --*2 U2 defined as 

(5) m(x := E )  = {(/, J) E U2/J= [Ez/x]I}, 

(6) re(P?)  = { ( / , I )  E U 2 / I ~ P } ,  
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(7) 

(8) m(s U t) 

(9) m(s;t) 

(10) m(s*) 
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m(E ~-? E )  = {(I, J )  E U2/(3 E E E D ( J - { E / E l / ) } ,  

= re(s) U re(t) (union of bo th  binary relations), 

= m(s) o re(t) (composition of both  binary relations), 

= ('re(s))* (reflexive and transitive closure of re(s)), 

401 

where, following [20], we use [~/g]I  to denote  the state J of ~ d i f f e r i n g  from I 
at  most  on the value of a tuple of symbols g of ~ (or a single symbol), which is 
~ i n J .  

Examples  of assignments are 

(11) x : f x + l ,  

(12) E M P  := E M P  U {(KENNEDY,  W H I T E H O U S E ,  100K)}, 

(13) d := MAX 2 ({(d, t ) / 3 n 3 s  E M P ( n ,  d, s) 

A t = SUM 2 ({(s, n ) / E M P ( n ,  d, s)})}). 

Assignments of the n-place predicate  sort  are then  appropriate  for manipulat ing 
the database relations or, more generally, for constructing new relations out  of 
old ones. T h e  usual relational operations [7, 10, 21] are defined as follows: 

(14) r e t r i e v e  R(E) w h e r e  P [E]  = R := {E/P[E]} ,  

(15) i n s e r t  R(E)  w h e r e  P[E]  = R := R U {E/P[E]) ,  

(16) d e l e t e  R ( ~ )  w h e r e  P [ ~ ]  = R : -  R - { ~ / P [ ~ ] } ,  

(17) u p d a t e  R (f(E)) w h e r e  P [ E ]  = R := { 2 / R  (E) A -~P[E]} 

u ( : f /3~(R(~)  A P [ £ ]  A /~ yi = ~(~))) ,  
i=1 

where R is an n-pred variable of ~,  E = (xl . . . .  , x,)  are distinct individual 
variables occurring free in P, a t ight wff of ~,  and 7 = (fl . . . . .  f,) are function 
symbols of the sort  (ind, ind . . . . .  ind). 

A tes t  P ?  indicates whether  the computat ion should continue or not, depending 
on the t ru th  of P. T h e  union s U t of s and t indicates tha t  s or t should be 
executed next. The  i terat ion s* of s means  tha t  s must  be repeatedly  executed an 
unspecified number  of times. Taken  together,  they  permit  defining the following 
Algol-like constructs: 

(18) f f P  t h e n  r e l se  s = (P?; r) v (-~P?; s), 

(19) i f P  t h e n  r = (P?; r) U (-~P?), 

(20) w h i l e  P d o  r = (P?; r)*; -Tp?.. 
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We treat beg in  and end  just as left and right parentheses, respectively. It is also 
possible to define the nondeterministic IF and DO of [14]: 

(21) i f  B1 ---> r / /  . . .  / / B ,  --* r~ f i  -- (B~ ? ; r~ U . . .  B ,  ? ; r~), 

(22) d o B 1 - - - > r l / /  . . .  / / B . - - - ~ r .  o d =  (BI? ;rl  U . . .  U B . ?  ;r.)*; 

-riB i ?. 
i=r 

A random tuple selection • *--? E assigns to £ an arbitrary tuple of the relation 
denoted by E.  Using the random tuple selection, we define the fo r -each  construct 
of [19], which scans a relation tuple by tuple in an arbitrary order: 

(23) f o r  e a c h  R (E) w h e r e  P [ E ]  k e y  K d o  s = 
R0 := O; RT :~- {y/R(:~) A P[y/~]};  

w h i l e  RT ~ O d o  
(X <--.9 RT;  

Ro := R0 U (E}; 
s; 
RT :----- {~7/R (y) A P [ y / £ ]  A -~3E(Ro(5) A A zi =- y,)}), 

~eK 

where R, R0 and RT are variables of £o of the n-pred sort, E = (xl . . . .  , x,) are 
distinct individual variables occurring free in P, a tight wff of ~, and K C [1, n] 
is a nonminimal key [11] of R. The fo r -each  construct then scans the relation 
denoted by R in an arbitrary order; all tuples already scanned are kept in Ro; the 
last line of code in (23) guarantees that any tuple whose key has not been altered 
by s will not be scanned twice. 

Thus the statements and constructs of MSRP[~,  U] permit defining the Algol 
fragment of [22], the basic constructs of [14], the relational operations, inser t ,  
delete ,  upda te ,  and re t r ieve ,  of [7, 10, 21], and the for  each  construct of [19] 
in an economical way. Such economy does not impair the elegance of transactions 
and will pay off when studying the metatheory of our programming logic. 

Examples of programs in MSRP[~,  U] appear in Section A3 of the appendix. 
We close this section with a very brief remark on whether or not our DML 

captures the "desirable" queries of [1, 8]. Following [1], the desirable queries are 
those that  can be expressed by the relational operators originally introduced by 
Codd [11] (Cartesian product, set union, set difference, selection or restriction, 
and projection), plus a new least fixed point operator. Intuitively, this last 
operator permits defining a relation R inductively. We claim that the desirable 
queries can indeed be expressed in our DML. Each of the original relational 
operations has its direct counterpart in the special many-sorted languages used 
to write the right-hand side of assignments of our DML. Hence any query 
involving only these operators can be expressed as an assignment in our DML. 
Now any query involving the least fixed point operator can be expressed proce- 
durally using whi le  loops, as suggested in [1]. Therefore any desirable query can 
be expressed by a program in our DML. 
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5. REASONING ABOUT DATA MANIPULATION 

In this section we offer a variant of dynamic logic (DL) to reason about many- 
sorted regular programs accessing a database. DL is not essential to our work and 
could be replaced by any other programming logic that  accounts for input-output 
properties of programs and caters to bounded nondeterminism, in the sense of 
[14, Ch. 9]. However, DL has some attractive characteristics, explored in the next 
section. 

Section 5.1 presents the language and an axiom system for our variant of DL, 
which is almost identical to regular first-order DL [20] (abbreviated here to FDL). 
The similarities between the two logics are explored in Section 5.2 to outline 
consistency and completeness results for our logic. Section 5.2 is optional and 
directed to those familiar with the results for FDL. 

5.1 Regular Many-Sorted Dynamic Logic 

Let L# be a special many-sorted language, chosen as the DDL, and let 
MSRP[~, U] be the set of many-sorted regular programs acting as a DML, where 
U is a universe of ~. Recall that  ~ contains the addition symbol + and the 
individual constants 0 and 1, which receive the usual interpretations in U. We 
define the regular many-sorted dynamic logic over ~# and U, MDL[~, U], as a 
formal system as follows. 

Language. The [ ]-extension .~#~ of ~, defined as follows. 

Syntax. The syntax is the same as that  of ~, with the additional formation 
rule: 

(1) if P is a wff of .~or  ~ and r is a program in MSRP[~, U], then [r]P is 
a wff of .~e~ (read "box of r, P"). 

Semantics. The notion of validity is extended to [riP as follows: 

(2) I ~ [r]P iff VJ((/, J)  E m(r) ~ J ~ P) or, in words, [r]P is valid in I iff 
either r does not halt starting in I (that is, for no J i n  U, (I, J )  is in m(r)) 
or in any state J that  can be reached from I via r, P is valid. 

Proof  theory. The axiom system AS follows (P and Q are wffs of L#~, except 
where noted): 

(3) all tautologies of propositional calculus; 
(4) all wffs of L#valid in U; 

(5) [x :--- E]Q - Q[E/x], 

(6) [P?]Q - P ~ Q, 

(7) [E *--? E]Q - VE(e"(E, ~) ~ Q), 

(8) [s  u t ] Q  - [s]Q A [t]Q; 

(9) [s; t]Q - [s][t]Q; 
(10) modus ponens: 

P , P ~ Q .  
Q ' 
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(11) 3i-introduction: 

for each sort i of £z; 

(12) necessitation: 

(13) invariance: 

(14) convergence: 

P ~ Q  
3 i x P  ~ 3 i xQ ; 

P ~ Q  

[s]P ~ [s]Q ; 

P ~ [s]P 

P ~ [s]*P' 

P i n  + 1/n] ~ (s)P[n] 

P [ n ]  ~ ( s* )P[O/n]  ' 

where P is a wff of ~f with a free variable n of the individual sort not 
occurring in s. 

We also add ( r )P (in words, "diamond of r, P") as an abbreviation for -~[r]~P; 
I ~ ( r )P  means that  there is a state J that  can be reached from I via r and in 
which P is valid. 

The language of MDL[~, U] can express, for example, the following properties 
of programs accessing a database described by the schema o = (p, a, ~) with 
p = {R1 . . . . .  Rm}. 

(15) r is a transaction of o (r preserves consistency for o): 

~u/~ ~ [r]/~, where /~ = A P; 
PE8 

(16) r performs the same changes in the database relations as does s: 

~u V p ' ( ( r ) p  = p' - (s )p  = p'), 

/ ! / __  __  where  p' = {Rz . . . .  , Rm}, Ri w i t h  the  same a r i t y  as Ri (1 < i < m),  and  

p = p' abbrev ia tes  A~z  Ri = R;. 

Therefore, MDL[~, U] permits us to investigate not only consistency preserva- 
tion, but also equivalence with respect to o. 

In Section A4 of the appendix we exemplify how to prove properties of programs 
using the axiom system AS. 

5.2 S o u n d n e s s  and C o m p l e t e n e s s  Resul ts  

In this section we briefly investigate the soundness and completeness of the axiom 
system AS of MDL[~, U]. Both results follow from the metatheory of regular 
first-order dynamic logic (FDL) developed in [20] and are described in more 
detail in [5]. In adapting results for FDL to MDL, one should keep in mind that  
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their languages differ in the assertion language, which is a many-sorted language 
in MDL instead of a one-sorted one, and in the programming language, which 
allows random tuple selections. Moreover, the axiom system for MDL is exactly 
that given in [20] for FDL, with one extra axiom for random tuple selections. 

Let ~¢ be a special many-sorted language, U be a universe for ~, .L#~ be the 
[ ]-extension of ~, and H be an axiom system for .~q'~. B is U-sound iff, for any 
wff P of £¢~, }-BP implies ~uP. Thus B is U-sound iff every axiom of B is U-valid 
and every inference rule of B preserves U-validity. B is U-complete iff, for every 
wff P of L#~, PuP  implies }--BP. 

The U-soundness of the axiom system AS follows because the axiom system 
proposed in [20] for FDL remains U-sound when we take a many-sorted language 
as assertion language. This implies that all rules of AS preserve U-validity and 
Axioms (5), (6), (8), and (9) are U-valid. The U-validity of Axiom (7) is proved in 
Theorem 5.1. 

T H E O R E M  5.1 ~u([£ ~---? E]Q =- VE(e"(E, 2) ~ Q)), Q a wff  of ~. 

PROOF. Let I be in U, s = £ *--? E and Q be a wff of ~. Then we have 

I m [s]Q iff (VJ • U) ((/, J )  • re(s) ~ J ~ Q) {definition of I ~ [s]Q), 
iff ( V J •  U ) ( J  = [~/£]I/~ ~ • E z ~  (definition of m), 

J ~  Q) 
iff {v ~ • D) (E • Ei ~ I ~ Q[~/£]), (definition of U), 

where D is the domain of the sort 
of E 

iff I ~ VE(e"(E, x--) ~ Q) (definition of I ~ P). [] 

The U-completeness of AS again follows directly from results for FDL, except 
that the adoption of a special many-sorted language does matter now. We restate 
here Harel's theorem of completeness [20, Th. 3.1] (specialized to our case), which 
helps one to understand the differences between FDL and MDL. We say that .~e 
is U-expressive for ~.q~ iff, for any wff P of .L#~, there is a wff Q of .~¢ such that 
~ v ( P  - Q). An axiom system B for ~¢~ ispropositionally complete iff all instances 
of tautologies of propositional calculus are theorems of B and modus ponens is an 
inference rule. 

THEOREM 5.2 [20, Th. 3.1] For any universe U of  ~, a U-sound axiom system 
B for £:~ is U-complete i f  

(i) B is propositionally complete; 
(ii) .~ is U-expressive for £#~; 

(iii) for any program r, variable x of  sort i and wffs P and Q of ~d$, 
(a) if }--B(P ~ Q), then }--B([r] P ~ [r]Q), 
(b) i f  }-B(P ~ Q), then b-B(3ixP ~ 3ixQ); 

(iv) for any program r and any wffs P and Q of ~f 
(a) i f  P u P  then k-BP, 
(b) i f  ~u (P  ~ [r]Q) then ~B(P ~ [r]Q), 
(c) i f  ~u (P  ~ (r)Q) then ~B(P ~ (r)Q). 

Theorem 5.2 should be understood in the light of Cook's pioneering paper 
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[12]. Cook first observed that, in general, we cannot obtain a U-complete axiom 
system B for . ~ .  Indeed, mimicking the argument in [12, p. 85], the formulas 
[r]P provable in B are recursively enumerable, since B is an axiom system. 
However, the formula [r]false is true in U iff r fails to halt for all initial states in 
U. Therefore the true formulas cannot be recursively enumerable in the case in 
which the halting problem for our programming language is recursively unsolv- 
able. But  this is the case here, since we assume that L# contains =, +, 0, and 1, 
which receive their usual interpretation in U ([12, Th. 2, p. 85]). Cook's suggestion 
was to prove the completeness of B assuming a complete system B(L#) for ~ a n d  
assuming the U-expressiveness of ~, or what he called relative completeness. 
These assumptions correspond to conditions (ii) and (iv-a) of Theorem 5.2. The 
axioms and rules involving [ ] and () should then be viewed as mechanisms for 
translating a wff of P of ~ into an equivalent set of wffs of ~, which can then be 
proved in B ( ~ )  (see [20, Sec. 3.4.1]). 

We now briefly discuss how to meet the conditions of Theorem 5.2. Conditions 
(i), (iii), and (iv-a) of Theorem 5.2 express exactly the same requirements as (3) 
and (10), (11) and {12}, and (4) of the axiom system AS, respectively. Conditions 
(iv-b) and (iv-c) are achieved by induction on the structure of the program r 
exactly as for FDL ([20, Th. 3.9 and 3.11]), using Axiom (7) of AS to cope with 
random tuple selection. Condition (ii) of Theorem 5.2 needs a more detailed 
discussion, though. 

As for FDL, we prove that if LP contains arithmetic and U is an arithmetical 
universe, then L# is U-expressive for Le~. We say that ~ contains arithmetic 
iff £0 has the function symbols + and . of sort (ind, ind, ind), the individual 
constants 0 and 1, and the predicate symbol -- of sort (ind, ind). A universe U of 
~,  generated by a special structure A of ~,  is an arithmetical universe iff A 
assigns the usual interpretations to +, . ,  0, 1, = (by definition of special structure, 
the individual domain of A is the set of natural numbers N) and effective 
interpretations to the other function and predicate symbols of ~. 

Let Rr(r~, n-) be the relation each program r computes, where tfi and E represent 
the initial and final values of the variables E that r modifies. Note that R~ is not 
necessarily the graph of a function because r is nondeterministic. 

LEMMA 5.1 Assume that programs use only individual variables. Then, if  ~ 
contains arithmetic and U is an arithmetical universe, .~ is U-expressive for 
. ~ .  

SKETCH OF PROOF. We give in essence the argument in [20] for FDL. Let r be 
a program that uses only individual variables. By assumption on U, Rr is a 
recursively enumerable relation over N. Since ~ contains arithmetic, U is an 
arithmetical universe and Rr is recursively enumerable; Rr is definable in ~. 
That  is, there is a wff F~[E, y] of ~ with free variables E and y such that 
~vFr[ffl/~, E, y] iff Rr(r~, E). Now, given a wff Q of ~, (r)Q is U-valid iff 
3y(F~[E, y] A Q[f/E]) is U-valid, by definition of ~ u ( r ) Q  and construction of F~. 
Given any wff P of ~ ,  we then proceed by induction to eliminate all occurrences 
of boxes [] and diamonds () in P, using the equivalent in U of (r)Q to obtain a 
wff P~  of ~ equivalent to P in U. [] 
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THEOREM 5.3 I f  ~q~ contains arithmetic and U is an arithmetical universe, 
then £# is U-expressive for ~ .  

SKETCH OF PROOF. We indicate that  the argument in Lemma 5.1 carries on 
here. The only doubt lies in that  a program r may now modify variables that are 
valued as relations over N. Thus, at first sight, we may not capture what r 
computes by a relation Rr over N and claim that  Rr is recursively enumerable. 
However, all relations in the n-pred domain, n > 0, are finite and hence can be 
mapped into natural numbers (given a finite relation S over N with I S I = m, we 
can use sequence numbers [30, Ch. 6.4] to encode each tuple ti in S as ni in N; 
the natural number corresponding to S will be the sequence number encoding 
(n~ . . . . .  nm)). Using such a mapping and the fact that P in {E/P[x-']} is a tight wff 
of ~, we can still claim that  r computes a recursively enumerable relation over N, 
and the argument in the proof of Lemma 5.1 can be repeated here. [] 

Finally, we state the completeness theorem for AS. 

THEOREM 5.4 I f  ~ contains arithmetic and U is an arithmetical universe, 
then A S  is U-complete. 

SKETCH OF PROOF. The proof follows from Theorems 5.2 and 5.3. Conditions 
(i), (iii), and (iv-a) of Theorem 5.2 are equivalent to Axioms (3) and (10), (11) and 
(12), and (4) of the axiom system AS, respectively. Conditions (iv-b) and (iv-c) of 
Theorem 5.2 are obtained by induction on the structure of a program as for FDL 
([20, Th. 3.9 and 3.11]). Finally, condition (ii) of Theorem 5.2 corresponds to 
Theorem 5.3. [] 

6. CORRECTNESS OF DATABASE SYSTEMS 

In this section we outline how regular many-sorted dynamic logic can be applied 
to database management systems (DBMSs) supporting concurrent transaction. 
Correctness criteria for DBMSs guarantee, among other things, that  each trans- 
action is correctly executed, queries read consistent data, or consistency is 
preserved. To study the correctness of DBMSs, we distinguish two types of 
systems. 

An open DBMS, such as IMS [23], supports any transaction mix accessing a 
database, acquiring information about transactions as they are submitted. Correct 
concurrent execution is guaranteed by schedulers, subsystems designed to inter- 
cept and reorder all access requests or synchronization calls (such as look 
requests). Schedulers work with imperfect information, since transactions are not 
known in advance, and they must be efficient, because they operate on-line. 
Hence their study tends to center around the design of efficient algorithms, rather 
than around program correctness. A survey of some scheduler designs appears in 
[3] and their correctness criteria appear in [5]. 

A closed DBMS, such as an airline or hotel reservation system, is characterized 
by a known set of transactions accessing a fixed database. Schedulers can also be 
used here to guarantee correct concurrent execution, but special code is likely to 
achieve better performance, particularly when transactions interfere heavily and 
yet a fast response time is required. We can model a closed DBMS as a concurrent 
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program, whose components are the transactions, and s tudy its correctness using 
an appropriate logic. 

We now briefly apply regular many-sorted dynamic logic to closed DBMSs, 
concentrating on criteria guaranteeing tha t  transactions are correctly executed 
and consistency is preserved. Let  £z be a special many-sorted language, let U be 
a universe for ~,  let a = (p, a, 8), with p = {R1, . . . ,  Rm}, be a database schema, 
and let t = {tl . . . .  , t,} be a set of concurrent  transactions for o. Following [18], 
we model t by a nondeterministic do  loop r, as exemplified in Section A5 of the 
appendix. 

Our previous notion of consistency preservation also applies to r, since r is in 
M S R P [ J ,  U]. So we only discuss transaction execution. Informally, an execution 
of r mapping a state I into I '  correctly executes each transaction iff I '  can be 
obtained from I by executing one transaction after the other in some arbitrary 
order. More precisely, s is a s e r i a l i z a t i o n  of r iff s is a program of the form 
ti, ; . . .  ; ti,, where il . . .  i ,  is a permutat ion of 1 . . .  n. Let  SER{r) be the (finite) 
set of all serializations of r. We say tha t  r is s e r i a l i z a b l e  i f f  ~ u V V ' ( ( ( r ) V  = V')  
=- ({ UseSER~,~S)V = V')), where V = (vz . . . . .  v,) is an ordering of all variables of 
~ m o d i f i e d  by r and V'  = (v'~, . . . ,  v ' , )  is another  vector of variables of ~ s u c h  
tha t  v~ does not  occur in r and has the same sort as vi, i in [1, n]. Serializability 
is then  a case of program equivalence and represents a version of the usual notion 
of serializability [4, 17] for interpreted transactions. We may  generalize seriAliz- 
ability by taking V to be any set of variables. Finally, we note tha t  the language 
of DL permit ted defining serializability concisely; this elegance would be lost if 
we adopted a logic accounting only for input -output  properties of programs such 
as Hoare 's  logic [22]. 

By the results given in Section 5.2, the axiom system AS is theoretically 
adequate to prove consistency preservation and serializability for closed DBMSs. 
In Section A5 of the appendix we outline a serializability proof. However, 
constructing consistency preservation or serializability proofs can be quite diffi- 
cult, even for very simple systems, so it pays to supplement  AS with special 
heuristics [5]. In fact, considerable work must  still be done in the area of closed 
DBMSs to harness concurrency and bring down to a manageable size the task of 
proving correctness of these systems. 

7. CONCLUSIONS 

We transferred a considerable amount  of programming logics theory to databases 
by considering the database data  structures as part  of the program, so tha t  
database accesses reduce to assignments. Choosing dynamic logic as the under- 
lying programming logic permit ted us to s tudy not  only consistency preservation, 
but  also transaction equivalence and serializability. However, other logics cap- 
turing the on-going properties of programs are needed to s tudy further  properties, 
such as reliability, tha t  require the database state to be always consistent {perhaps 
after some rollback). 
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APPENDIX 
A1 Example of a Relational Schema 

In this appendix we exemplify how to write database schemas and programs, and 
we prove facts about  them. T h e  D D L  will be a special many-sor ted language L# 
with a 2-pred variable ACC, 1-pred constants  NO and BAL, and function symbols 
+ and - of sort  (ind, ind~ ind). L#is equipped with a special s t ructure  A assigning 
to NO and BAL the values [1, p]  and [0, oo), respectively, and to + and - the 
usual interpretat ions.  U denotes  the universe of ~egenerated by A. Th e  D M L  will 
be the set of many-sor ted  regular programs over L#and U, M S R P [ ~ ,  U]. 

We define a relational database with just  one table containing account  numbers  
and balances. Each  ent ry  (n, b) in the table is uniquely identified by the account  
number  n and we assume tha t  n ranges from 1 to p and tha t  b is nonnegative.  
The  corresponding database schema goes as follows: 

(1) B A N K  = ({ACC}, {NO, BAL}, {P1, P2, P3}), where 
(2) P1 = VnVb(ACC(n,  b) ~ NO(n) A BAL(b)) (the relational scheme of ACC); 
(3) P2 = VnVbVb'(ACC(n,  b) A ACC(n, b') ~ b = b'); 
(4) P3 = Vn(NO(n) - 1 _ n ___ p) A Vb(BAL(b) --- 0 _ b). 

Note. We frequent ly  use syntactical  constants, such as P1, ranging over wffs 
of ~ a n d  programs of M S R P [ ~ ,  U]. 

A2 Example of a Derivation in a Special Many-Sorted Theory 

We exemplify in this section how to use the special many-sor ted  theory  Y-of ~.  
Suppose tha t  we want  to talk about  the affluent people of the bank, defined as 
those with balances greater  than  10K. A convenient  approach consists of extend- 
ing i f - t o  a new theory  Y-' = (L#', D') by introducing by definition a 2-pred 
constant  AFF with defining axiom 

(1) AFF = {(m, c) /ACC(m,  c) A c >_ 10K}; 

tha t  is, AFF  is a view of B A N K  [13]. Let  P4 be a wff of ~ '  expressing tha t  tuples 
in the value of AFF are still uniquely identified by  account  numbers: 

(2) P4 = VnVbVb' (AFF(n,  b) A AFF(n,  b') ~ b = b'). 

We now show tha t  P2 }-x. P4. F rom Axioms (1) and (2), P4 is equivalent  to 

(3) VnVbVb'(e2({(m, c ) /ACC(m,  c) A c >_ 10K}, n, b) 
A e=({m, c ) /ACC(m,  c) A c >_ 10K}, n, b') ~ b = b'). 

Using the set operat ions axioms of ~--', P4 is then  equivalent  to 

(4) V n V b V b ' ( 3 X 3 Y ( ( X ( n ,  b) A Y(n, b') ~ b = b') 
A VmVc(X(m,  c) - ACC(m, c) A c _ 10K) 
A V m V c ( Y ( m ,  c) -- ACC(m, c) A c ~ 10K))). 

Simplifying (4), we obtain 

(5) VnVbVb'(ACC(n,  b) A b >_ 10K A ACC(n, b') A b' >_ 10K ~ b --- b'), 

which now follows from P2. 
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A3 Examples of Regular Many-Sorted Programs 

We describe two programs,  A U D I T  and T R A N S F E R ,  which access B A N K .  
A U D I T  scans the  value of ACC tuple by  tuple, in descending order  of account  
number ,  and  computes  the  bank ' s  assets. T R A N S F E R  transfers  D dollars f rom 
account  N to account  M, if N has  enough funds. 

AUDIT 
begin  c o m m e n t  n--current  account number being scanned (n -- 0 when ACC has been 

scanned because, by definition, MAX7 (~) ffi 0) 
b--unique balance of account n 
s- -sum of the balances of all accounts up to n 

S : =  0; 
n := MAX~(ACC); 
whi le  n ~ 0 do 
begin  b +-? {c/ACC(n, c)}; 

s : f s + b ;  
n := MAX~({m/3c(ACC(m, c) A m < n)}) 

end 
end 

TRANSFER 

begin  b ~--? {c/ACC(N, c)}; 
i f  b >  D 

then  begin  update  ACC(m, c+D) w h e r e  m - M; 
update  ACC(m, c - D )  w h e r e  m -- N; 

end 
end 

or, e l iminat ing all defined constructs:  

T R A N S F E R  ffi T1; ((b > D?;  T2; T3) U (~b  > D?)) ,  

where  

T1 ffi b ~--? {c/ACC(N, c)} 

T2 = ACC := ACCI 

T3 = ACC := ACC2 

ACC1 = {(m, c ) /ACC(m,  c) A rn ~ M} 

U {(m, c)/3d(ACC(rn,  d) A rn = M A c = d - D }  

ACC2 ffi {(m, c) /ACC(m,  c) A m ~ N} 

U {(rn, c ) /3d (ACC(m,  d) A m = M A c ffi d+D} .  

Note. ACC1 and ACC2 are  syntact ical  cons tants  s tanding for the  r igh t -hand  
side of  T1  and  T2,  respectively.  

A4 Examples of Proofs 

We outl ine a p roof  t ha t  T R A N S F E R  preserves  the  bank ' s  assets  and A U D I T  
computes  the  bank ' s  assets, assuming a consis tent  initial s ta te  in bo th  cases. 

More  precisely, for T R A N S F E R  we prove  t ha t  
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(I) 

where s is an individual variable of £# 
P = (s - SUM~(ACC)). To prove (1), we 
[TRANSFER]P:  

(2) [TRANSFER]P - 
[Wl]([b > D?][T2][T3]P A [~b 
> D?]P) 

(3) [T3]P = P4, 
with P4 = P[ACC2/ACC] 

(4) [T2][T3]P - [T2]P4 

(5) [T2]P4 --- P5, 
with P5 -- P4[ACC1/ACC] 

(6) [T2][T3]P - P5 

(7) [b > D/][T2][T3]P - 
[b > D?]P5 

(8) [b > D?]P5 -- P6, 
with P6 = (b > D? ~ P5) 

(9) [b > D?][T2][T3]P - P6 

(10) [~b > D?]P -- P7, 
with P7 = (-~b > D? ~ P) 

(Ii) [Tl]([b > D?][T2][T3]P A [-~b 
> D?]P) -- [T1](P6 A P7) 

(12) [T1](P6 A P7) --- Q, 
with Q =- Vd(el({c/ACC(n, c)}, 
d) =~ P6[d/b] A P7[d/b]) 

(13) [TRANSFER]P - Q 

s = SUM~ (ACC) A P1 A P2 A P3 ~ [TRANSFER]s = SUM~ (ACC) 

(not occurring in TRANSFER). Let 
first obtain a wff Q of .L# equivalent to 

[axioms for composition and union, 
rule of necessitation, and definition of 
TRANSFER] 

[axiom for assignments and definition 
of T3] 

[Axiom (3), necessitation] 

[axiom for assignments and definition 
of T2] 

[Axioms (4), (5)] 

[Axiom (6), necessitation] 

[axiom for tests] 

[Axioms (7), (8)] 

[axiom for tests] 

[Axioms (9), (10), propositional rea- 
soning, necessitation] 

[axiom for random tuple selections, 
definition of T1] 

[Axioms (2), (12)] 

Then (1) is equivalent to P A P1 A P2 A P3 ~ Q, which does not involve any 
program. It is not difficult to convince oneself that  this formula is valid in U. 
Hence it is an axiom of AS (clause (4) of Section 5.1) and the proof is completed. 

For AUDIT, we want to prove that  

(14) P1 A P2 A P3 ~ [AUDIT]s -- SUM~(ACC). 

The proof of (14) is based on a derived rule for whi le  constructs [20, 22], defined 
a s  

P A B ~ [r]P 
while rule: 

P ~ [while B do r]P A ~B" 

The proof proceeds by taking P as 

(15) P = (s = SUM~({(m, c)/ACC(m, c) A m > n}) A P3). 

(P2 is needed to derive that  b is the unique balance associated with n.) 
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/ /  Cl 

//cl 
//c~ 
/ /  el  

//c~ 
//c2 
o d  

A5 A Serial izabi l i ty Proof 

In  this section we outline a proof  t ha t  A U D I T  and T R A N S F E R ,  when synchro-  
nized, fo rm a serializable set  of  t ransact ions  with respect  to the  assets s computed  
by  A U D I T .  We model  t = ( A U D I T ,  T R A N S F E R }  by  a nondeterminis t ic  d o  
loop r, in the  m a n n e r  of [18]: 

r = c, := 0; c2 := 0; 
d o  c l - -  0 ~  s := 0; cl := 1 
/ / C l  = 1 -~ n := MAX~(ACC): Cl := 2 

= 2 A n  # 0 - - - *  c1 :=  3 

= 3 ---* b , - - - ? { c / A C C ( n ,  c)}; c~ := 4 
= 4 - - - ,  s : = s +  b; c~ : = 5  

= 5 --* n := M A X ] ( ( m / 3 c ( A C C ( m ,  c) A m < n)}); c, := 2 
= 2 A n = O - - - > c , : = 6  

= 0 A ~ ( M  _ n _< N) A -~(N _ n _ M) -*  T R A N S F E R ;  c2 := 1 

T h e  var iables  c, and  c2 act  as p rog ram counters  and each  line of the  d o  loop 
corresponds  to an  a tomic  action. T h u s  we model  a concurren t  execution of t by  
the nondeterminis t ic  inter leaving of the  a tomic  actions of  A U D I T  and T R A N S -  
FER.  In  fact, we consider T R A N S F E R  a single a tomic  act ion t ha t  synchronizes 
wi th  A U D I T  via the  condit ion ~ ( M  _ n < N) A ~ ( N  _ n < M). T h a t  is, 
T R A N S F E R  cannot  move  m o n e y  f rom one account  t ha t  A U D I T  has  a l ready 
scanned to ano the r  one t ha t  A U D I T  will still scan (otherwise A U D I T  would sum 
the t ransfer red  dollars twice). By  requiring t ha t  r be seriMizable wi th  respect  to 
the  assets  s, we guaran tee  t ha t  A U D I T  runs  as if alone and  thus  correct ly  sums  
up the  bank ' s  assets. More  precisely, we require t ha t  

V x ( ( ( r ) x  = s) - ((OpeSEa(r)p> X = S)). (AI) 

We now outline how (A1) could be proved.  First, observe t ha t  the  r ight -hand side 
always implies the  lef t -hand side, t ha t  is, a serial execution of the  t ransact ions  is 
jus t  a special case of  a concur ren t  execution. Assuming tha t  £0 is expressive for 
its [ ]-extension, we can find a wff P of £#equivalent  to the  r igh t -hand  side of  the  
equivalence.  In  our  case, this task  is relat ively simple, since the  assets  compu ted  
by  A U D I T  rema in  the  same  before and af ter  T R A N S F E R  is executed. T h u s  P 
is s imply  x = SUM~(ACC). In  view of these  observat ions,  (A1) is equivalent  to 

V x ( ( < r ) x  = s) ~ P )  (A2) 

which is in tu rn  equivalent  to (using ( r )x  = s - -~[r]x # s) 

V x ( ~ P  = [r]x # s). (A3) 

But  proving (A3) reduces  to the  famil iar  p rob lem of synthesizing an  invar iant  for 
r in order  to app ly  the  invar iance rule of  AS. In  our  case, an appropr ia te  in- 
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v a r i a n t  is 

I = x ~ S U M ~ ( A C C ) / ~  V n V b ( A C C ( n ,  b) ~ n > O) 

/~ (e l  = 1 ~ s = 0) 

/k (cl = 2 V c1 = 3 V ci = 4 

= s = S U M ~ ( ( ( m ,  c ) / A C C ( m ,  c) A m > n}) )  

A (cl = 4 ~ A C C ( n ,  b)) 

A (cl = 5 ~ s = S U M ~ ( ( ( m ,  c ) / A C C ( m ,  c) A m > n}) )  

/k (cl ~ 1 / k  . . .  /k Cl # 5 ~ s = S U M ~ ( ( ( m ,  c ) / A C C ( m ,  c)})) .  

N o t e  t h a t  ! c a p t u r e s  t h e  e x e c u t i o n  o f  A U D I T  a n d  d o e s  n o t  d e p e n d  o n  T R A N S -  
F E R .  
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