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TOWARDS A LOGIC OF LIMITED PERCEPTION

ROBERTO- LINS DE CARVALHO and PAULO AUGUSTO S. VELOSO

ABSTRACT: This paper introduces a semantical system more
adequate to computer science than the classical ones. The key
point is the usage of namable models (akin to w-models) with
minimal interpretations for the relation symbols. This for=
malizes the notion of class of data structures, and axiomatic
specification, besides allowing a initiality property. The
introduction of some new logical symbols is also suggested.

1. INTRODUCTION.

The development of semantical systems, such as the usual one for
classical first-order logic and its extensions (modal, intensional, ete),
has been directed mainly by the needs of classical mathematics, philosc-
phy and linguistics. For some time now the field of computer science is
emerging as another provin¢e in which legic is being increasingly used.
Automatic theorem-proving and program verification are only two examples.
However the world of the computer scientist is quite different from these
of the mathematician, philosopher, linguist, etc., thus creating differ-
ent needs.

In a very schematic way one can say that the art of computer program-
ming has two main aspects:
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148 Carvalho and Veloso

a- The design of the program text itself.
b- The design of the data organization.

Those aspects are not independent of one another. Rather, their nat-
ural dependencies can be exploited to obtain better programs, this inter-
weaving being an important tool in the solution of complex problems.

It is important to bear in mind that in both aspects above we are
faced with problems of sbecification, namely

a‘~ Program specification,
b'~ Data structure specification.

One way to specify a computer program P is to give input assertions
¢ » which give péoperties assumed about the input data, and output as-
sertions ¥ (x,y), which state the required relations between input and
output data.

To guarantee that P works as specified, one show that for all input
data satisfying ¢(x): (i) P halts (termination); (ii) whenever P does
halt, then ¥(x,y) is satisfied (partial correctness).

The latter proof reduces to proving ¢' (x) - ¥ (x,y) (transformed as-
sertions) within the theory of the data.

For instance, a program to compute the gcd of two integers is proven
partially correct by using some properties of the integers (cf.e.g. Manna
[10], p. 71; Lucchesi et al. [9], p. 28). When the program manipulates
structured data their properties must be formally specified for a proof
to be po§sib1e.

Now, data are generally stored in the computer by means of memory or-
ganization know as data structures or Ainformation structures. Basically,
" data structures are (finite) sets of memory cells organized so as to be
accessible from a small subset, the entny points.

For a simple example consider

£ £ £
¢ —a; ~—...a ﬁdaf
Imagine that information is stored at each point a; of this structure,
the entry point of which is ¢ . To gain access to the information at a
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particuiar point one has to traverse the structure, starting at ¢ and
following the £-links. If ¢ is denoted by a constant symbol then the
accessible points are those that have a name £ ... £(g).

Such structures of arbitrary length, possibly together with- the in-
finite “limit® ) .

£ £ £ ; -
¢ a7 ele.Tray — ... & &;) £
form the class of singly-Tinked linear Tists.

Thus, to specify'data is to describe the properties of such struc-
tures in an appropriate Tanguage.

The group of theoretical computer science at PUC-RJ have been took-
ing into the problem of formal specification of data structures. We
shall discuss our needs in terms of a semantic system, i.e. a quadruple
(Sent, M , ¥, val) where Sent is the language {set of sentences}, M
is the class of models, V is the set of abstract logical values, and
val: M x Sent —* V 1is the semantical evaiuation function.

2. DATA STRUCTURES.

A data structure comsists of cells, containing data, together with
some prescribed way to access these cells, in order to store or retrieve
data. In general this accessing mechanism consists of a path from an
entry point {a directly accessible cell) to the deéired cell; such a path
provides a name for this cell,

Pictorially

entry points
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the path starting at entry point a following the Tinks £, g, g hames a
cell as ggf(a). Another path gives another name, ££ (b) .

From a model-theoretical viewpoint, consider a first-order language L
with sets €, F and R of constant, function, and relation symbols,
respectively. Let T denote the set of all variable-free terms of L. We
always assume C non-empty, so that T# & .

Now consider a structure A = (a, CA, FA, RA) for L. Each
£ € T denotes an element tA in the domain, which defines a function a:
T — A with image A, .

We shall call A namable (by T ) iff pA = A, i.e. the denotation
d is surjective. So a T-strwcture is one in which every element is de-
noted by a variable-free term, which is a name for it.

A closely related notion is that of T-structure (Henkin [7]), where
every element is denoted by a constant symbol. Clearly, TI'-structures
and T-structures.are the same structures with different languages. This
seemingly minor distinction turns out to be important in the intended ap-
plication, for two basic reasons:

— namability by T captures the mechanism of accessing by following
Tinks.

— The language is important here, it gives the basic operations,
etc., available for programming.

Thus, we shall say that data structures, in a language, are (general-
ly finite) namable structures of the language.

Let us return to our example of singly-linked linear lists presented
in the Introduction. Assume L has a binary relation symbol ge the in-
tended meaning of which is to be the reflexive-transitive closure of the
graph of £, i.e. accessibility by f£-links.

Consider the sentence:

VYxlaelx,y) = (x=cAy=c) V (fx) = y) Vv
3z(ac(x,z) V £(2) =y)] («)

In this case, the intended interpretation for ge is the only one sat-
sfying («).
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But, now consider the important case of two unary functions, F
The natural analog of («) is

{g.h} and agair one entry point c.
YxVylac{x,y) = (x=chy=c)V {(gx)
Iz (ac(x,z) N (g(Z).=y V hiz) =yl

But then one can see that the two structures bel
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Here the intended interpretation is the first

acyg C aey.
We can say that here we are interested in the

A winimum model (if it exists) of a set of senten

structure, where

minimum model for (B).
ces T on a domain D is

the mode! of I' in D whose relations are included one by one in the cor-
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responding relations of any model of I in D.
The points we want to make clear in this section are:

A) Data Structures are namable structures.

B) The concept of accessibility (needed in the description of such
structures) is realized only in minimum models even when they
are namable.

3. INITIALLITY.

The set T of variable-free terms can be given a natural algebraic
structure, making it into the algebra T, freely generated by the con-
stants (Gratzer [4}, p. 162). Namely, take

el = ¢ and, for an n-ary f€F, take fT(tl,u.., t,)

£E)...8,.
Notice that any interpretation of the relation symbols will make T into
a T-structure. ’

Given a structure A for I the denotation d:7T — A is the unique
homomorphism of T into the algebra A, which will be onto iff A is
namable. Now, there is a natural way to interpret the relation symbols
on T so that d becomes a strong homomorphism, namely

-1 A _ A A LA
‘d = {(tl,..., tp)/(tl seeey B1) € 27}
Call' this structure T(A) the Hesbrand structure induced by A. Then
for any sentence o, containing no negative occurrence of = interpreted
as identity, we have A= o iff T{A)E= o.

Thus, any T -structure is, up to a special quotient, a Herbrand
structure. And Herbrand structures present the attractiveness of being
specified by their positive diagrams (Chang_Keisler [2], p. 70).

Consider a class K of T-structures. Assume that K can be T-axiom-
atized by T, i.e. K is the class of T-structures satisfying Z.

In some cases, we may be fortunate enough to have for each A€ K a
simple set of "particularization axioms" ~ I'4 so that T v Ta is a
complete description of A, up to isomorphism. In any case, each A € K



Logic of Limited Perception 153

induces a structure T(A) on the domain T. It would be nice te have on
this domain a structure having the properties shared by all A in K.

Let us use a simple example to clarify what is intended. Let 2 con-
sist of =x(a, b), VxVylr(x,.y) = cly, x}), VYxVylr(x, y) -~
r(x, £(x)).

Then the T-structures described by £ look like the following:

T

i
/’—_‘\b
R~ F

Yo b [

fa
r T r r

ffa ffb

An example of a Herbrand structure T(A) finduced by a particular A is

x
—
. a \\r_'//\,) b
x r o r

fa b
T r T r
ffa b

x
fffa
r

One way to deccribe T{A) is by saying that it is : ‘lerbrand struc-
ture which satisfies Z U {f%*(a)= £3(a), £2(b)= £3(b). Similarly,
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U (£2 a) = £%(a), £ () = £ (b)) describes

-
8 ‘\:’/Q

fa f

. .

£ Tap. (
Y}
-

(b
NG @

b
£y
£ 1

Notice that the first (infinite) structure is a sort of templete for

all the others.

More formally, make the algebra T into a T-structure T{Z), where
for egch r€R, rT(E) = ﬂ{rT(M/ A € K} (equivalently. t e rT(E) s
iff rt is a T-consequence of ¥ ).

Then, for every A € E there exists a unique weak homemerphism 4 of
T({Z} onto A,’ hence preserving ail positive formulas (A weak homomor-
phism k of A into B is a homomorphism of the corresponding ealgebras
such that for each n-ary re€ R, (h(ap),...,h(a,)) € B  whenever
@1,..., 8,) € TA).

Unfcrt:matel/y T(Z} may fail to satisfy Z. Acsume I has two dis-
tinct constant terms ¢ and t and a unary predicate symbol p. For Z
given by the axiom p(c)V p(t), we get pl &) = g The same
would happen were 3v p(v) the axiom. In either case T(Z] is not in
¥. The basic reason for the above situaticn is that % dees not specify
well enough its atomic consequences. For instance, if £ censists of
Horn sentences then T(Z) € K . Clearly T(Z) € 8 iff N{T(Al/A€ K}
€ K. In this case TF(X) is the initial structure of the class K.
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The nature of equality is a point deserving some further comments.
In the intended application the equality symbol should not always be in-
terpreted as identity for two reasons,

-~ The data stored in the cells may be complex objects, so it is not
reasonable to assume comparison as a single, primitive relation.

— Two cells may be non-identical because of implementation details
(say, different storage addresses) which happen to be irrelevant
from the logical viewpoint.

In this case we want to interpret equality as indistinguishability
within the language. We then take on A

a'éa' iff for all re€ Ry, all 4=1,..., m, and all ag,.e.

a, €A (al,...,al,...,an) e rA jff (ag,iee,a’se., a,) € rA

A

and put =" to be the largest congruence contained in ~"g‘..~

For finite R we define t ~% t' iff the formula corresponding to the
rhs of the above definition is a T-consequence of T and put =% simi-
larly.

By an abstract data structure (ADS, for short) we mean a T-structure
~where this identification has been performed, i.. one of the form IVEES

Since this identification is consistent with wéak homomorphisms, we
can summarize its effects in the commutative diagram below, where .all
the horizontal arrows are natural projections and 1 is a weak isomorphism
of inciusion. :

T(%) T(z)/ =%
i
T(A) sTia) =TA
45
a a
A
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Thus in the category of ADS's with weak homomorphisms, T{K)/ =% s
an initial structure for the class of ADS's satisfying %,

4., ADDITIONAL CONSIDERATIONS. .

When we describe mathematical structures using the apparatus of first
order logic one generally considers their elements as "unstructured
points". '

In the description of ADS's, viewing their elements as mere "points "
would not be satisfactory: it is necessary to describe some of their
internal properties, as well, in addition to relations between elements.
It is quite natural to employ two-level descriptions for such purposes.
Likely candidates for this role would be second-order theories. But the
usage of higher order logic presents several difficulties and inconve-
niences stemming their complexity. '

The internal structure of the elements is generally fairly simple. In
" a frequent simple case they can be represented as strings, i.e., finite
sequences of symbols drawn from some fimite alphabet, the basic operation
on them being concatenation.

One can try to give an axiomatic description of such objects by means
of the first-order theory of semigroups, i.e., an axiom stating that the
binary operation ™ is associative:

Yx Yy Vz((x " (y" =) = (x"y) " z).

of course, this is not enough: we wanted free semigroups. Another point
to appears to espace our first-order attempt is the finite length of the
strings: we will have unintended models similar to the nonstandard models
of the theory of naturals with addition.

The above problems could be circumvented metalinguistically, an ap-
proach we shall take in part. However, there is another problem: the
difficulty in using even a simple axiom as the one above.

For instance, suppose a and b are constants denoting elements of the
alphabet, the two terms  "(a, M (" (b, a), b)) and ("(a, b),
“(a, b)) obviously denote the same string abab. However, in order
to prove their equality within the formal” system one would have ..to go
_through a deduction involving replacement and the above axiom.
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Keeping in mind the intended interpretation a straightforward proce-
dure is available for checking equaiity, namely: erase all parentheses,
commas, and 7 occurring in both terms and compare the results.

Formal languages used in logic generaily comprise Togical symbols and
nonlogical symbols, the latter being susceptible of being interpreted.
On the other hand, the logica! symbols had their meanings fixed once and
for all (despite philosophical disputes) since the early development of
Togic. Such was the case firstly for the sentential connectives and
Tater and alesser extent for the quantifiers and modalities.

For the example considered we introduce a new logical-like aymbol A ,
vhich as in the case of the sentential connectives is tobe evaluated out-
side the domain of interpretation. However, the evaluatiow of A involves
not truth-values but comparisons of strings. The formal (but metalin-
guistical) definition of A is as follows: sAt iff ¢{s) = ¢(t)
where ¢: T — V* (T is the set of terms of the language and V* is
the free monoid generated by the set v of constants of the language ex-
cept A) 1is given recursively by ¢{(c) = ¢ for a constant ¢ and
(™ (u, v)) = ¢(u) d(v)).

The above recursive definition of ¢ could be replaced by an automa-
Lon, which would define ¢ much in the same way as truth-tables for sen-
tential calculus.

Now if we put together our semantiral consideration of namable struc-
tures, minimality and this (practical) morphological consideration we
are limiting the kind of semantic system we are going to work with and
(for our purpose as computer scientist) we expand our descriptive power.
For instance, by allowing the description of a dynamic concept as that of
rewriting system, and so (we hope) bringing about some uniformity in dif-
ferent description tools. So if we consider the rewriting relation -
then we define its extension by

gr. 1 ¥x¥y(=(x, ) = 3udvIv Iwl>(v,v')A
x5, My, wi) A
¥ A NMu, NMv', wil
and its reflexive transitive closure ot by

gr. 2 ¥YzV¥az(=*%x, y) «> x=y\V 3z(=*x 2 A >z, y)))).
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5., CONCLUSIONS,

Our initial intention was to describe a semantical system (sent, M,
Vv, val) appropriate for the specification of data structure. Let us
see where we stand:

First of all we have argued that data structures are namable struc-
tures, hence Herbrand universes suffice as domains for M.

The set Sent would consist of the first order sentences having
models (natural structures as models). So it would include Horn sen-
tences and recursive formulas such as («) and (8) of Section 2.

The exaét nature of Sent 1is not yet compTete]y specified, as it de-
pends on V and val, for which we have several apparently reasonable al-
ternatives. .

We can take v-as the usual {T,F} and then wval (¢,M) =T iff M
. is the natural structure for ¢. In this case we have wuniqueness of
models, so an optimal descriptive power, but with the risk of loosing de-
ductive power.

On the other hand, we could leave the realm of classical logic, by
introducing extra logical symbols, as discussed in Section 4. This would
force to enlarge v, for instance by including strings. This would give
us back part of deductive power, with automata in lieu of deduction by
equational reasoning. Other directions are also possible.

Some further research is still necessary in order ot determine which
alternatives are more adequate. We think that several limited perception
logics are.
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