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STATE SPACE CONSTRUCTION FOR

GENERAL TIME SYSTEMS

P. A. R{’eloso and R. C. Martins

Depto. de Informética, Pontificia Universidade Catélica ersidade Catdlica

22.453 - Rio de Janeiro - R], Brasil

Abstract

A two-step method is given for the construction of a
realization from the input-output behavior of general
an extension of Nerode's relation is used

varying system. First,

to construct a state space for each instant.
spaces are merged into a single minimal one bv means of

theoretical tools.

1. INTRODUCTION

A well-known tool for the
construction of a minimal realization
from the input-output behavior of a
discrete time-invariant system is the

so-called Nerode's relation (cf. e.g.
Arbib Zeiger~69). Here this state-
space construction 1is extended to
possibly time-varying systems,
regardless of discreteness or
continuity of time.

The framework is an extension of

that of general time systems

(Windeknecht~71, Mesarovic Takahara 75).

Let the time set be a nonvoid set
T ordered by <.We will fix T and also
consider a fixed nonempty subset K of
T (intuitively K consists of the
instants when the output is observed).
Notice that neither T nor K is$ assumed
to have a minimal (or maximal) element.

2. SYSTEMS

quintuple
and Z
and

By a system we mean a
R= (1, 2, U, Y, R), where I
are non-empty sets (resp. input

output alphabets), U ¢ IT and Y ¢ z¥
are non-empty sets (resp. input and
output spaces) and the input-output

relation R c UxY has domR=U.

Given a function w with domain

L ¢ T and instants t'< t in L, we
shall denote by wt, W, and Wiy
respectively the restriction of w to

the intervals {ieL/ist}, {ieL/i>t'}
and {ieL/t'<ist}. We use the terminology
of linear order for T to aid physical
intuition, and extend these notations
naturally to sets of functions.

Given instants t' <t in K we
shall call a system R t'-t-deterministic
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minimal

time=-
these state
set-

Then,

iff the relation:

RE. = {(ut, yE,)/ uRy} turms out to
be a function.

This notion corresponds to the
intuitive idea of the input up to

time t determining the output between
t' and t.

3. PHASE SPACE

From now on fix two instants tost
and assume R to be to—j -deterministic
the
at time 1

whenever to<jst, noticing that
response to input uleud
(to<isj) is given by y(i)=Rg (uly (i) e

€. °©

The Nerode relation at instant i
is defined as.ui i vi iff for all
wEeUE RE(ulwt) = Rz(vlwt), where
ui t oo ui U WE. It is easy to check
that % is an equivalence relation

on U with the following substitution
Iyt and i<j<t then
ule 1 vt

property: %f u
for'any wg € Ug: : )

If we denote by [u] the E—equivg
lence class of uieUi we have a natural
projection mi onto the quotient
x(1) = ul/L, which stores the infor-

mation about u’ relevant to
determining the behavior of R. This

is illustrated in Fig. 1.
For tosi<j<kst, in K we see that

the assignment ([ul], vg)»[ulvjj
gives a well-defined " transition
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function fg: X(i) x Ui +~ X(3) and

([uj], v?) - Rk

output function g?: X(3) x U? > 2

(ujvk)(k) defines an

such that for all ukeUk

uch that for all
g5 (£ (101, ud), up) =

R () (k) .

Thus, X (i) would be an attainable

(m’ © is onto) and observable (any two
distinct x,x' in X(i) can be

distinguished by their responses to
some input) state space for R at time

. i . .
i. However, each [u~] has information

about the instant i, being a set of
functions with common domain. This
has the unpleasant cnnsequence of

making X (i) settheoretically disjoint

from X(j) for i#j. So the union of
the X(i)'s would be unnecessarily
large for a state space. Hence, we

shall call X(i) a phase space for R
at time i and seek to construct a
proper state space Q for k. The idea
consists of representing an element X
of X(i) by a pair (q,i) with geQ.

4. STATE SPACE

suppose that we want to construct
a state space for a subset J (proper
or not) of the interval {ieK/to<ist}.

Then consider for each ieJ the
cardinality c¢(i) of X(i) and take Q
to be their union. So, we have a
cardinal number Q = sup {c(i)/ieJ}
and for each ieJ an .injection
n(i): X(i)»Q (Chang-Keisler-73). Thus
we get a one-to-one correspondence
between X (i) and the image of n(i)
in Q. :
We want functions
FJ and Gk similar to the above with
o'in plade of X(i) and X(j). Thus

the following diagrams must commute
k

for tosi<j<kst

for every ukeU
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Z
id
FIG. 2
which defines Fg (. ui) and
G? (. » u?) on the image of n(i) and
n(j). In order to define Fi (. , ui)
on all of Q we use the fact that every
geQ is of the form n(t) (x) for some
xeX (t) with teJ:

if this holds for
gives Fi (q,uji); if this holds

t=i, +the diagram
for

some teJ with i<t<j then put

3 Jy _ £3 J :
Fy (q,ui) = ft (x,ut). If this holds
only for teJ with t<i then pick

i i J Jy_gd J
vy € Ut and set Fi(q,ui) ft(q,vt u).

Notice that this gives well-defined
Fi's with the semigroup property
k ky_ok =] 3 k N
F,(q, ui)—Fj (F; (a, ui),uj) and Q is
completely attainable (every state ¢
in Q is the result of storing some

input). A similar definition can be
given for the GJ's so as to make Q
completely obsefvable (any two a#q’
in Q are distinguishable by means of

their input-output behavior) with the
k ky_ k.3 3 k
property Gi(q,ui)—Gj(Fi(q,ui),uj).

Again we use the fact that g = n(t)x
for some xeX(t) with teJ:

if this holds for t=j, the diagram
gk(x,uk);

J J
tedJ with
):
ted

and out

gives G?(q,ug) =
if this holds for some
. k k,_ k k
j<t<k then set Gj(q,uj)—gt(x,ut
if this holds only for
2el;

finally,
with t<j
k k, _ k k

Gj(q,uj) = gt(q,vtu ).

then choose v

The verification of the above
properties consists of straightfowmward
but tedious computations.

5. CONCLUSION

The above construction can
regarded as decomposing R as
Fig.3,

be
in
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dynamical processes: a mathematical
introduction., Academic Press, New

ut q X York.
M y (i) Veloso P.A., 1979 - "On additivity
— G — and linearity in gerneral systems
theory". INFO II, Patras, Greece.
—_—1 Zadeh, L.A.; Polak, E., 1969 - System
Theory McGraw~Hill, New York.
FIG. 3

where G is static (output depends on

input only instantaneously) and M

is causal (output at an instant is

determined by previous inputs) and

transitional (output serves as state).
Also, this construction can be simply
adapted for other classes of systems ,
such as causal ones when the
decomposition is as in Fig. 4.

e

i q v (1)

= s G

FIG. 4

In concluding, notice that this
minimal state space construction
consists of two parts: (a) construction
of a phase space for each instant by
means of an adaptation of Nerode's
relation, (b) merging those phase
spaces into a single state, whichcan
be regarded as a,direct limit
construction (Gratzer, 1979).

Now, in case the original system

has some algebraic structure we
would like it to be preserved, e.qg.,
for a linear system we would like

to have linear realizations. How does
this affect the construction? It is
easy to make part (a) preserve the
algebraic structure. As for part(b),
the direct limit viewpoint seems to
be necessary.
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