HORIZONTAL DECOMPOSITION TO IMPROVE A NON-BCKF SCHEME

A, L, Furtado
Pontificia Universidade Catolica do R, J.
Brasil

1. Introducing the problem

In general, converting a relation into Boyce-Codd normal
form (BCNF) [Date;Fagin] 1is advantagecus because, all
dependencies being dependencies on keys, their enforcement
can be done through the regular key-handling features,
supported by most DBMSs,

However, a problem (to be explained shortly) arises in
the situation where a non-key set of attributes determines
part of the key. Let R be a relation and X, Y, Z sets of
attributes of R, with XY being a key in PR, and the
depeudencies:

XY -> 2
Z~->Y
Figure 1 illustrates this situation, letting the

subscripted small 1letters denote distinct instances of the
respective sets of attributes,

yl y2 v3
VRN VAN |
z1 z2 z3 z4 z5

/ N 7\ | I
x1 x2 x3 x4 x5

Fig, 1

The figure suggests a three-level structure that is
"almost" a hierarchy. At the bottom level, each X-value can
be linked to at most one Z-value in each Y-rooted "tree". For
instance, the ©presence of the tuple (x1,yl,zl) excludes the
presence of, say, (xl,yl1,z2), because of the XY => 2Z
dependency. For reasons to be discussed in the sequel, it is
useful to express this fact as follows:

-26-



Proposition 1l: Let R be the relatiomal scheme above.

Then, 1f R is first partitioned by Y and then projected on
XZ:

a. the blocks, even after the projection, constitute a
partition (i.e., mo two blocks have any (xi,zj) tuple ir
common) ;

b. in each block the dependency X —-> Z holds.

Since R is not in BCNF, ore would norrally decompose it
into PR1(X,Z), which is an all-key relatior, and R2(Z,Y),
where Z -=> Y. Notice that the XY -> Z dependency is somehow
lost, the attributes involved being scattered between R1 and
k2. This .,goes counter to the declared air of BCKF
decompositions, which should allow wus to turn deperdencies
into key dependencies, while, of course, preserving all of
them,

In the next section we propose a solutiorn for
alleviating this intrinsic difficulty, using proposition 1.
The discussion will be entirely centered on the example
[Date] of a relation R with attributes S (Student), C
(Course) and T (Teacher), with the dependencies SC =-> T, T =->
C. Figure 2 shows a valid state of this relation.

R

S C » T

Peter Math Fuler

David Computing Turing

Mary Computing Von Neumann
Jane Computing Turing
Ariel History Durant
David Math Fermat

Fig, 2

2. The proposed decomposition

Whilst most of the discussion of decomposition
strategies has been based on projection ("vertical"
decomposition), some thought has also been given to

decompositions by restriction (or some form of "horizontal"
splitting) [Fagin; Smith and Smith]., In a similar vein,
partitioning has been introduced as a relational algebra
operation [Furtado and Kerschberpl. Extensions to the
relational data model have been proposed [Chang; Codd],
accomodating the 1idea that, as a consequence of horizontal
decomposition, the same tokens could be taken alternatively
as attribute-values or as names of the relatioms (or blocks)
resulting from the decomposition; also, new operations are
included to support this feature.

-27-



Our strategy uses horizontal decomposition and therefore
assumes the availability of the attendant data definition and
data manipulation features, in the style of one or another of
the proposals above.

In terms of the acaderic data base example, we take RI1
as a set of blocks (or relations) resultinp from first
partitioning R by C, and then projecting the blocks or the
attributes ST, According to part b of proposition 1, the
dependency S -> T holds in each block of Rl, We let relation
K2 be the projection of R on TC (as 1in the conventional
decomposition), with T -> C.

Figure-3 illustrates the proposed decomposition.

R1
> N
Math
S T
Peter Euler
David Fermat
Computing R2
S T T C
David Turing Euler Math
Jane Turing Fermat Math
Mary Von Neumanrn Turing Computing
Von Neumann Computing
History Durant History
S T
Ariel Durant
" -

The reader may like to compare this to figure 1, which
is a graphical version of the same data base state (the three
levels in figure 1 corresponding, respectively, to courses,
teachers and students).

The 1important novelty in this strategy 1is the key
dependency § =>T, holding in each block of R1l, 1induced by
the partitioning by C. Thus the original dependency SC ->T
in R now reads: S -> T within each C-block.

-28-



For reconstituting R from Rl and R2 we can take the
union (U) of the blocks of Rl and ther the natural join (%)
of the result with R2, An interesting alternative is made
possible by the following distributive property:

Proposition 2: Let S1, S2, ... , Sn be union-compatible
relations and V be any relation. Then

(S1 U S2 U oo U Sn) * V= (S1 * V) U (S2 * V) U ... U
(Sn * V)

Proposition 2 1indicates that we can first perform the
joins of each block of Rl with R2, which can be done in
parallel. At the end the wunion is simply the <collection of
the results: of the joins, because part a of proposition 1
ensures that we do not have to <check for duplicate tuples
(the results of the joins are pairwise disjoint).

In general, horizontal decompositions tend to be useful
in practice when the following requirements are met:

a. The set of blocks 1is relatively stable. Referring to
the example, it is not uncommon in the academic world that
the same courses be offered over a number of semesters.

b. The cardinality of the set of blocks 1is relatively
small., If the function underlying the dependency T =-> C is
surjective, i.e. if there is at least one teacher per course,
then the set of courses cannot be larper than the set of
teachers; also, in practice, there are usually more students
than courses. '

c., The <cardinalities of the blocks themselves are
approximately of the same order of magnitude, thus providing
a balanced way to segment the information. Again, sizes of
classes under each teacher tend to fall between close lower
and upper limits,

Other examples of the same situation appear to be
amenable to the present strategy, one of which is a relation
involving Cities, Streets and Zip_codes, where:

City Street -> Zip_Code

Zip_Code => City

Through this second example, one sees that the
horizontal decomposition (in this case, partitioning the
relation by city) may, in a sense, mimic the usual "manual"

procedures. For a large city, it 1is customary to print
booklets giving the Zip codes of streets within the city.

-29-



3. Views and operations

Another measure of the adequateness of schemes is their
use in the most frequent or more important (according to sore
criterion) operations that can be anticipated. Such
operations do not have to be <confined to any specific
relation or block, but will involve an arbitrary functien of
the data base, which 1is called a view in the data base
terminology [Datel.

For our academic data base example we shall concentrate
on the update operations given below, where the small letters
s, ¢, t appearing in the argument lists denote the attributes
from which the arguments are taken:

enroll(s,c,t) - enrolls s in ¢ under t

drop(s,c) - s drops ¢

transfer(s,c,t) - a combined drop/enroll: transfers s,
already enrolled in ¢, to a different teacher t of ¢’

appoint(t,c) - assigns t to ¢
cancel(t) - cancels the present aprointrent of t

We shall examine enroll in more detail, wmwaking a quick
reference to the other operations. The operation can be
executed along the followirg stapes:

a. Check 1in R2 if t really teaches ¢. This 1is easy,
since t is a key in R2,

b. Find in Rl the block named by c.

c. Check if some tuple (s,-), where "-" stands for an
arbitrary value, already exists in the block. This 1is also
easy, because s is a key in the block,

d. Insert (s,t) in the block,

The drop operation affects the appropriate block in R1,
and the T-value does not have to be indicated. It seems
reasonable to require that an appointment canrot be cancelled
until one has decided what to do (drop or tramsfer) with each
student taking the course under the teacher involved; thus a
precondition for the cancel operation is that there be mno
tuple (-,t) in the respective block of Rl = which is a
costlier search, perhaps requiring a secondary index on
teachers teaching each course,

-30-



In some cases, a slightly different decomposition may be
convenient, introducing a "level of indirection", which, as
such devices usually do, makes some information (the
enrollment of students in classes, in the example)
"relocatable”". 1In Rl we could have as attributes S and O
(Offering or section, i.e. a specific instance of a course),
instead of § and T. In turn, R2 would have O, T and C, notirg
that both 0 and T are keys. Now an operation like

replace(o,t) - replace the teacher in charge of o by ¢t
will only affect R2.

After any decomposition of the original relation R we
may want to‘update the resulting relations in ways that will
no longer permit the expected reconstitution of R. For
instance, executing

appoint (Codd ,Human Relations)

and trying to reconstitute R immediately after that will
result in the same contents that we had prior to the update.
This 1is a consequence of the conventional definition of
natural join; the information of the new appointment will be
lost wunless at least one student 1is enrolled in Human
Relations (in a newly created block of Rl). The outer join
proposed in [Codd] would preserve the appointment information
even without any previous enrollments,

An operation that would seem to be desirable 1is
reappoint(t,c), which would be a hendy corbination of
cancel/appoint, moving t from whatever course he presently
teaches to another course c. At first glance, this operation
seems (syntactically) admissible, since even the
reconstitution of R by natural join can still be done without
losing any tuple from Rl or R2, However, its meaning would be
that students will follow their teacher, rather than keep
their enrollment in the course 1initially chosen. But this
would be very unusual, since the relationship between
students and courses is normally stronger than that between
students and teachers. We regard this as a case of semantical
connection trap. So, instead of defining a new operation
reappoint, it makes sense to use cancel followed by a oint,
because, as said, the preconditions for cancel require the
previous execution of drop or transfer for each student
affected.

-31-



4. Conclusion

Although other solutions, catering to other relevant
objectives , may be devised, we claim that the proposed
strategy has the advantages of relying on key dependencies to
a large extent and of incorporating only a minimur of
redundancy (what is redundant is the double appearance of
Courses as an attribute in R2 and as a set of block names in
R1).

Also, there are cases where horizontal decomposition may
be useful even at the physical storage level, as a criterion
for a balanced segmentation of large files, and as a
distributiop strategy in a distributed data base.

We left purposefully vague the specific way to implement
"blocks", merely pointing to different references in the
literature. Matters of data model, operations in the DBMS
chosen and physical level resources will determine solutions
ranging from a conventional inverted file (on courses, in the
example) to dynamically created relations mnamed after the
attribute values,

Acknowledgements

The author 1is grateful to R, Fagin and M. A. Casanova
for useful suggestions,

References

C. L. Chang - A hyper-relational model of data bases - IBM S,
Jose T.R., RJ-1634 (1975).

E. F. Codd - Extending the database relational model -
ACM/TODS, vol., 4, n. & (1979) 357-434,

C. J. Date = An introduction to database systems -
Addison-Wesley (1977).

R. Fagin - Normal forms and relational database operators -
Proc., ACM/SIGMOD (1979) 153-160,

A, L. Furtado and L. K. Kerschberg - An algebra of quotient
relations - Proc. ACM/SIGMOD (1977).

J., M, Smith and D. C. P. Smith - Data abstractions:

aggregation and generalization - ACM/TODS vol. 2, n., 2
(1977) 105-133,

-32-



