
-53-

PROCED[JRAL SPECIFICATIONS AND IMPLENENT~TIONS
PO~ ABSTH~CT DATA TYPES

A. L. Furtado and P. A. S. Veloso
Pontificia Universidade Cato]ica do R. J.

22853 Rio de Janeiro RJ
Bras il

1. Int_roduction

When working with an abstract data type it is often
convenient to have the ability to execute its operations
before a fin~l implementation is available [Guttag, Horowitz,
~usser '78], [Goguen et al '79].

Hgre we propose, a procedural formalism, which is based
on cangnical forms and amounts to an implementation of the
~ata type by a ~a+a type of terms. It is close enough to the
algebraic specification, from which it can be easily derived.

Tts simple translation into some string manipulation
langllage (here SNOBOL) provides executable versions of the
operati ons.

2. Canonical form

Throughout the paper we shall use as a running example
the w~ll-known (parametric) data type finite sets of
elements. It has the following operations

E~TY - crea[es an empty set
INSERT (X,S) - inserts element X into set S
REMOVE (X,S) -- removes element X from set S
HAg([,S) - tests whether element X belongs to set s
CARD(S) - qives the number of elements in set S

We assume that we can test equality ~f elements via
EQ[x,y) and the availability of !o~ical and natural with the

usual operations.

Any set-object of the data type is constructed by
iterated applications of the operation INSE~T and REMOVE to
EMPTY. However, d~stinct manners of construction can yield
the same object. For instance , the four terms

(a) TN SERT (E 2,R E!IOV E (El, TNSERT (E3, IN SERT (E1,EM PTY))))
(b) i~SERT(E3,INSERT(E2,1NSERT(E3, E~PTY)))
(c) I~ SERT (E 3, ~..~SERT (E2, EMPTY))
(:l) i,~ SERT (E2, INSERT (E3, EMP ~Y))

-54-

represent the set { E2~ ~3 }o

We want to have a canonical form so that each set has a
unique representative from the class of equivalent terms
which ~enote it. Then two terms will be equivalent iff their
canonizal representatives are (syntactically) identical.

In our simple example it is clear that zero or more
TNSERT' s applied to EMPTY suffice to generate all the
set-objects. Thus we can rule out term (a) above. For
ordering the various applications of INSERT we place a strict
total order (say lexico~raphic) on the elements and require
larger elements to be INSERTed first (as in (d) assuming E2 <

Ngtice that this does not require the order relation to
be available in the data type, nor does it imply that we now
have ordered sets. It may be also worth mentioning that the
strict ordering criterion prohibits "redundant- applications
as in (b). According to the criterion chosen, the canonical
term for [E~, E3] is (d), as in (c) the elements are
I~SE~Ted out of order.

Thus, we take as
the form

canonic~l representatives the terms of

TNSER~ (El, IN SERT (E2,..., !NSEI~T (En, EM PTY)...))
where E1 < E2 < ... < En, with n > 0

3. AlGebraic _sp_eg_ifica__/ipn -

An algebraic presentation for our example, assuming the
availability of !o i a! and _n~_ura! with their usual
operations is given in fig. I. The format is a variation of
[Guttag, Horowitz, Musser '78], :Gaudel '77], [Tompa '80].
The equations were obtained by the methodology proposed by
[Pequeno, Veloso ,79]: they ought to be able to transform
each term of the form

operation(canonical terms)

into the canonical form for the result. However, it is
important to bear in mind that the algebraic specification,
as it stands, has to consist of equations satisfied by any
term. canonica] or not. That is why we have to consider the
possibility of "redundant" INSERT's in the equations, e.g.
for CAn D.

-55-

ZzDe Set[~lement]
Sorts sets Element / l q~!ca!,natural
ODerat ~ons:

() -> Set : EMPTY
(Element r Set) -> Set : INSERT, REMOVE
(Element, Se t) -> !2sical : HA S
(Set) -> natural : CARD
(Element, Element) -> !o~i_cal : EQ

~xiom~
declare x, y:Element, s:S~t

INSERT (x ,INSERT (y,s)) = if EQ(x,y) then INSERT(y,s)
else INSERT (y, INSERT (x,s))

REMOVE (EMPTY) = EMPTY
RZMOVE(x,INSE~T(y,s)) = if EQ(xrv) then REMOVE (x, s)

else INSERT (y,REMOVE (x,s))
HAS(x,EMPTY) = F
HAS(x,INSERT(y,s)) = if EQ(x,y) then T

e_!a~ .As (x, s)
CA RD (E~IP TY) = 0
C~RD(INSERT(x,s)) = i_f H~S(X,s) then CARD(s)

else I + zARD(s)

Fig. I: Algebraic presentation

4.Proce~lural sRecifica%ion

A procedural specification for our example appears in
fig. 2. In order to improve readability we write the
(canonical) terms with square brackets instead of parentheses
and "I" instead of comma. The (high-level) language features
are self-explanatory, but perhaps for "?", which stands for
any argument, as in PLANNER [Hewitt '72]. Thus,

card (r NSERT[E211NSERT[E31EMPTY]]) => I + car,(INSERT[E31 EMPTY])

=> ... => 1 + 1 + 0,

anrl

insert (E3,INS~RT[E2|EMPTY]) =>
=> INSERT[E2|INSERT[E31EMPTY]]

INSERT[E21 insert (E3, EMPTY)] =>

A striking difference between the algebraic presentation
and i%~ procedural counterpart lies in the occurrence of "=>"
instead of "=" ; the rewriting rules are now applied in a
single direction. This feature, together with appropriate
conditionals, ensure that unenainq comDutation s will not
appear. For instance, two calls to insert will have their
sequenze inverted (if and) only if they are not in the

correct order.

-55-

tX£ 2 Set[Element]

_o0 empty {) :Set
=> EH PTY

end q~

o D insert(x: Element,s:Set) :Set
yak y:Element,s t : Set
match s

EMPTY => YNSERT[x|EHPTY]
YN.qERT[y|s ~] => if x = y then s

else if x > y then INSERT[y]insert(xws ~)]
else INSERT[x]s]

otherwise => fail
e_nd~a tch

oo remove (x: Element, s: Set) : Set
Za[y:Element,s': Set
match s

EMPTY => EMPTY
INSERT[y|S'] => _~f X = y then s'

s ~ else if x > y then INSERT[ylremove(x,)]
e ls s

otherwise => fail.
endmatch

o~ has(x:Element,s:Set) :logical
za_r y:Element,s' : Set

EMPTY => F
INSERT] y]s'] => i_f x = y t__h~n T

else if x > y then has(x,s')
else F

otherwise => fai]
endm~ tch

en<]o~

o~ card (s :Se t) : n a t u r a l
vat s':Set
.match s

EHPTY => 0
INSERT] ?Is'] => 1 + card(s';
otherwise => fail.

endma tch

en~It ZR~

Fiq. 2: Procedural specification

-57-

~oreoverp it is easy to show by in~]uction that all
canonical terms and only these will be generated by
successive c~lls starting with a call to empty. Accordingly,
the procedures are somewhat simpler than the corresponding
e@u~tions, since we have made use of the fact that only
canonical terms will be recei%ed as input parameters (and
given ~s results). Under this assumption, the "otherwise" =>
fail" alternative of the case-like match statement will never
be taken.

Yn the terminology of [Goguen, Thatcher, Wagner '78] the
proced~I res specify the operations of our canonical term
algebra o Alternatively, we can regard the procedures as
specifying an implementation of our example by the data type
consisting of the terms of the language together with
term-m~nipulating operations [Guttag, Horowitz, Mummer '78].

5. ~ S~{O.BO.~ i m g l e m e n t a t i o n

There exist already some computerize~ aids to be used in
connection with algebraic specifications [Guttag, Horowitz,
Mummer '78], [C, oguen et al '79], [Gannon et al '80]. Here we
propose the less ambitious, but still quite rewarding, goal
of implementation of the procedural specification in some
programming language by mGans of hand translation.

We chose SNOBOL for its wide availability and good
p~tt ern-match ing features (for an interesting recent
alternative, see [Griswold, Hanson '80]). In particular, the
BAL feature was found handy to define a pattern ARG matchin•
any argument of the form <operator> ' (' largument list> ')'
or conqisting of a single constant or variable.

The translation from the procedural specificatzon into
SNOBO5 functions required only minor adaptations, often
stemming from the desire to take advantage of certain
powerful features of the language (as in HAS and the usage of
"#" for CAR DINALITY, for instance). Expressions to be
executed are distinguished from terms used for representation
by using quotes for the latter.

5. Additional pqp.er%tion_s

We have included other usual set-theoretic operations
(~]nion, set equality, etc.) [Tompa '80], leaving their
specifications to the reader. ~iso included are CHOOSE and
REETRTZTION, which deserve some explanation.

CHOOSE corresponds to the non~eterministic instruction x
~rom s, as in [Hoare ,72, p. 125], which selects, if
possible, some element (%o be assigned to x) of set s and

-58o~

iiii~!! ¸̧ ~i

iiii! ¸̧ i

removes it from s. This kind of operation can be described as
an "impure" procedure [~uttag~ Horo~itz, Musser ~78] or as a
function with a composite range

CHOOSE: Set -> (Element X Set) f] { failure }~

where failure signals that the set is empty. For a nonempty s
the result of CHOOSE(s) is a pair <ersW> where s t =
~E~OVE(erS) and HAS(e,s) = To We wrote CHOOSE as a SNOBOt
function with a side-effecl 9 requiring that the argument be
passed by name.

RESTRICTION (p,s) yields the subset of s consisting
exactly of those elements of s that satisfy the unary
predicate p, viewed as a function from Element into lo~ca!.
Thus its algebraic specification would be

RESTRICTION(Pred,Set) -> Set

and, with p:Pred, s:Set, x:Element,

RESTRICTION (p,E~PTY) = EMPTY
RESTRICTION (p, INSERT ix,s)) = !_f p(x) then INSEiRT(x,

REST~ ICTION (p,s))
~ls_~ RESTRICTION (p, s)

In our SNOBOL implementation, p is passed as a , ,

unevaluated expression to RESTRICTION, where it is repeatedly
evaluated for each element of the set s.

6. Con cludinq remarks

The representation of data instances by means of a
canonical form appears te support a useful methodology for
obtaining not only an algebraic (or axiomatic) presentation
but also a procedural specification. The latter, besides
being close to the formec~ allows an easy translation into a
programming language, thus permitting early testing and
experimental usage.

Implementation by terms provides a way to bridge the gap
betwees two approaches to abstract data types: algebraic
presentations, on the one hand, and programming language
encapsulating constructs, such as clusters [Liskov et al
,77], on the other. In fact, this implementation comes
directly from the procedural specification and enables the
~esign~r to produce a first cluster, considering only
questions of behavior, thus postponing the choice of a
representation adequate with respect to efficiency.

-59-

W9 are currently applying these ideas to the area of
data bases. We have been able to describe formally the
implemgntation of data base applications by a data model
and the establishment of set-structured access paths•

Re ferences

• Gannon, J., McMullin, P., Hamlet, R., Ardis, M. -Testing
traversable stacks. SIGPLAN Notices , 15(I)~ 1980.

• Gaud~l,M. C.- Algebraic specification
types. Res. Rept. 360, IRIA, 1979.

of abstract data

. Goguen, J. A., Thatcher, J. w., Wagner, E. G. - An initial
algebra approach to the specification, correctness and
implementation of a~stract data types. R. T. Yeh (ed).
Current_ trends iD ~ro,~a,m_m~ng met hodo_!_oqy IV,
Prentice-Hall, 1978.

• C.og~en, J., Tardo, J., gilliamson, N., Zamfir, M. - A
practical method for testing algebraic specifications.
The UCL~ Computer Sci. Dept. Quarterly- vol. 7(1),
Jan. 1979.

• Griswold, R. E., Ranson, D. R. - An alternative to the use
of patterns in string processing. _AC_M T OqP__L~S, 2(2),
l q 8 0 .

. Gl]tt~g, J. V., Horowitz, E., Ml,sser, D.R.- Abstract data
types and software validation - CACM, v. 21(12), Dec.
1978.

• Hewitt, C. - Description and theoretical analysis
schemata) of PLANNEB. PhD thesis, MIT, 1972.

(using

• Hoar~, C. A. R. - Notes on data structuring. O. Dahl, E.
Dijkstra, C. 4. R. ~oare (eds). Structured Prpq~r_gm_m,i_n~,
Academic Press, 1972.

• Liskov, B, Snyder, H., Atkinson, R., Schaffert,
Abstraction mechanisms in CLU. C_AC_M 20(8), 1977.

C°

. Pequeno, T. H. C•, Yeloso,
axioms than you have
Symposium, 1978•

P.A. S. - Do not write more
to. Proc. International Computing

• Tompa, T. W. - A practical example of the specification of
abstract data types. A_cta Inform a_t_~ca, 13, 1980.

-60-

APPENDIX - listinq of

~FULLSCA N = I
~ANCHOR = 1
OUTPUT(~OUTPUT,e6~ ~ (IX~72A1) ~)

SNOBOL functions

| BREAK('w)')

DEFIN~('INS~RT(X~S) y,Sl,)
INSERT INSERT = IDENT(S~WE~PTy,) ,iNSERT(t
+ ' , EHPTY) '

S 'INSERT(' ARC . Y ',' ARG ° SI
INSERT = IDENT(X~Y) S
INSERT = LGT (X,Y) 'INSERT(' Y

+ INSERT(X, SI) ') '
INSERT = 'INSERT[' X ',' S ')'

INSEND

DEFINE {' REMOVE (X,S) Y ,S] ')
REMOVE REMOVE = IDENT(S,'EMPTY'" 'EMPTY'

S 'INSERT(' ~RG . Y ',' ARC- . $I
REMOVE = IDENT(X,Y) $I
REMOVE = LGT (X,Y) 'INSERT(' ¥

REMOVE(X,SI) ') '
REMOVE = S

: (~ NS END)
X

: S (RETURN)
')' =F(FRETURN)

: S f RETURN)
, !

e

: S (RETURN)
: (RETURN)

+

~END

DEFINE(' HAS (X,S) ')
HAS S ARB 'INSERT (' X
~{END

D~FIN~('CARDINALITY(S) $I')
CARDINALITY CARDINALITY = IDENT(S,'EMPTY')

S 'INSERT(' ARG ',' ARG . $I ')'
0

: (REND)
: S (RETURN)

')' :F(FRETURN)
: S (.RETURN)

! ,
9

: S (RETURN)
: (R ETUR N)

: (HEN D)

: S (RETURN)F (FRETURN)

" (CAEND) Q

" S (RETURN)
" F(FRETURN)

CAEND

@

CROOSR

CHEND

UNTON

UNEND

CARDINALIT¥ = I ÷

OPSVN('I',,CARDINALITY,,1)

CAR DINALITY ($I) :(RETURN)

DEFINE(' CHOOSE{S) ')
HAS [ARC.. CHO!CE,$S)
~S = REMOVE(CHOICE,~S)
C~OOSE = C~OTCE

" (C~END)
: F (FP ~TURN)

" (RETURN)

DEFINE('UNION(SA,SB) X,SI')
UNION = YDENT(SA,,EMPTY,) SB
S~ 'INSERT(, A~G . X ',, ARG . Sl

UNION = HAS(Y, SB) UNION (SI,SB)
UNION = INSERT(X, UNIO~ (SI,SB))

: (U NEND)
: s (RFETURN)

') ' =F (FRETURN)
: S (RETFIRN)
: (RETURN)

-61-

DEF!~IE(~ DIFFERENCE(SA, SB)X WSl') : (DIEND)
DIfFErENCE DIFFERENCE = ID~NTfS~, ~E~PTY') ~EMPTY' :S(RETURN)

SA)INSERT(~ A~G . X ~) ARG . $1 ') ' °F(FRETURN).
DIFFERENCE = HAS(X~SB) DIFFERENCE (S1,SB) :S(RETURN)
DIFFERENCE = TNSERT(X~DIFFE~RE~CE(S1,SB)) :(RETURN)

DTE~D

DEFINE{' INTERSECTION (SA,SB) ') : (INTEND)
TNTERSEZwYON TNTERSECTTON = DIFFERENCE (~A,DIFFERENCE(SA,SB))

I NTE ND
e

DEFINE(' CONTATNS (SA,SB) ')

CONTATNS TDENT (D IFFERENCE (SB, SA), ' EM PTY')

DEFINE(' EQSET(SA,SB) ')
(CO NTATNS (SA, SB) CONTAINS (SB ,SA))

,COE~I D

. " (RETURN)

EQSET
N .,QE, D

RZSTRiCT TON

-. (COEND)
: S(RETURN) F(FRETURN)

-. (EQ END)
: S(RETURN) F (FRETURN)

DEFINE (' RESTRICTION (P, S) X, S I,) : (R ESTEND)
~ESTRICTION = IDENT(S,'EHPTY') 'EMPTY' :S(RETURN)

'INSERT(' ARG . X . ELMT ',' ARG . $I ')' :F(FRETURN)
,, p : F(RESTI)

REST1

RESTEND

S~ MPLE
e

ITER

~INI%

~ND

RESTRICTION = INSER~(X,RESTRICTION (P,SI)) : (RETURN)
RESTRICTION = RESTRICTION(P,SI) : (RETURN)

EVALUATIONS

S~ = INSERT('E2', TNSER~('EI',INSERT('E3',INSERT('EI','EMPTZ'))))

OUTPUT = 'SC = ' SC
SXI = RESTRICTION(~DIFFER(ELMT,'EI'),SC)
OUTPUT = ,,RESTRICTTON(~DIFFER(ELMT,'EI') ,SC) = "

OUTPUT = ' SX1 = ' SXI
OUTPUT = 'SXl HAS ' #SXI ' ELEMENTS "'

~T = S~1
O~!TPU ~ = CHOOSE ('ST') : S(ITER) F (FINIS)

= INSER~('E,',INSERT('EI','EMPTY')) SD
O[JTPU ~ = 'SD = ' SD

SX2 = U~ION(SC,SD)
OHTPU~ = 'UN!ON (SC,SD) = '
O~TPU • = ' SX2 = ' SX2
SX3 = DIFFERENCE(SC, SD)
OUTPUT = ,DIFFERENCE (SC,SD) =

OUTPUT = ' SX3 = ' SX3
S'(4 = INTERSECTION(SC,SD)
O[ITPUT = ,I~TERSEC~ICN(SC, SD) = '

OUTPUT = ' S~ = ' SX•

OHTPHT = CONTAINS(SC,SXI) 'SC CONTAINS SX!'
OU~PPUT = EQSET{SXI,SX3) 'S~I EQUALS SX3'

-62-

SC = I~SERT(~I ,!NSERT(E2~TNSERT(E~E~PTY)))
~E~rCmION (~DIFFER(ELMT~,EI,)~SC) :

SZI = I~$SFERT (E2~INSERT{E3FEMP~Y))
SYl HAS 2 ELE{IENTS :
~2

FD = INSERT(El

S~2 = TNSER
r[FFERENCE (SC,

SX~ = INSER
IN T~RSECTTON (N

SY~ = I N S E R

SC CONTAI.S S~

SKI EQUALS SX9

, I N S E R T(E~ rEMPTY))

m(EIpiNSERT(E2,!NSERT(E3wTNSERT{EgqEHPTy))))
SD) =
T(E2,1NSEFT(E3,EMPTY))
C,~D) =
T (El, EMPTY)
I

