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1. Int_roduction 

When working with an abstract data type it is often 
convenient to have the ability to execute its operations 
before a fin~l implementation is available [Guttag, Horowitz, 
~usser '78], [ Goguen et al '79]. 

Hgre we propose, a procedural formalism, which is based 
on cangnical forms and amounts to an implementation of the 
~ata type by a ~a+a type of terms. It is close enough to the 
algebraic specification, from which it can be easily derived. 

Tts simple translation into some string manipulation 
langllage (here SNOBOL) provides executable versions of the 
operati ons. 

2. Canonical form 

Throughout the paper we shall use as a running example 
the w~ll-known (parametric) data type finite sets of 
elements. It has the following operations 

E~TY - crea[es an empty set 
INSERT (X,S) - inserts element X into set S 
REMOVE (X,S) -- removes element X from set S 
HAg([,S) - tests whether element X belongs to set s 
CARD(S) - qives the number of elements in set S 

We assume that we can test equality ~f elements via 
EQ[x,y) and the availability of !o~ical and natural with the 

usual operations. 

Any set-object of the data type is constructed by 
iterated applications of the operation INSE~T and REMOVE to 
EMPTY. However, d~stinct manners of construction can yield 
the same object. For instance , the four terms 

(a) TN SERT (E 2,R E!IOV E (El, TNSERT (E3, IN SERT (E1,EM PTY) ) ) ) 
(b) i~SERT(E3,INSERT(E2,1NSERT(E3, E~PTY))) 
(c) I~ SERT (E 3, ~..~SERT (E2, EMPTY) ) 
(:l) i,~ SERT (E2, INSERT (E3, EMP ~Y) ) 
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represent the set { E2~ ~3 }o 

We want to have a canonical form so that each set has a 
unique representative from the class of equivalent terms 
which ~enote it. Then two terms will be equivalent iff their 
canonizal representatives are (syntactically) identical. 

In our simple example it is clear that zero or more 
TNSERT' s applied to EMPTY suffice to generate all the 
set-objects. Thus we can rule out term (a) above. For 
ordering the various applications of INSERT we place a strict 
total order (say lexico~raphic) on the elements and require 
larger elements to be INSERTed first (as in (d) assuming E2 < 

Ngtice that this does not require the order relation to 
be available in the data type, nor does it imply that we now 
have ordered sets. It may be also worth mentioning that the 
strict ordering criterion prohibits "redundant- applications 
as in (b). According to the criterion chosen, the canonical 
term for [ E~, E3 ] is (d), as in (c) the elements are 
I~SE~Ted out of order. 

Thus, we take as 
the form 

canonic~l representatives the terms of 

TNSER~ (El, IN SERT (E2,..., !NSEI~T (En, EM PTY)...) ) 
where E1 < E2 < ... < En, with n > 0 

3. AlGebraic _sp_eg_ifica__/ipn - 

An algebraic presentation for our example, assuming the 
availability of !o i a! and _n~_ura! with their usual 
operations is given in fig. I. The format is a variation of 
[Guttag, Horowitz, Musser '78], :Gaudel '77], [Tompa '80]. 
The equations were obtained by the methodology proposed by 
[Pequeno, Veloso ,79]: they ought to be able to transform 
each term of the form 

operation(canonical terms) 

into the canonical form for the result. However, it is 
important to bear in mind that the algebraic specification, 
as it stands, has to consist of equations satisfied by any 
term. canonica] or not. That is why we have to consider the 
possibility of "redundant" INSERT's in the equations, e.g. 
for CAn D. 
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ZzDe Set[~lement ] 
Sorts sets Element / l q~!ca!,natural 
ODerat ~ons: 

( ) -> Set : EMPTY 
(Element r Set) -> Set : INSERT, REMOVE 
(Element, Se t) -> !2sical : HA S 
(Set) -> natural : CARD 
(Element, Element) -> !o~i_cal : EQ 

~xiom~ 
declare x, y:Element, s:S~t 

INSERT (x ,INSERT (y,s) ) = if EQ(x,y) then INSERT(y,s) 
else INSERT (y, INSERT (x,s)) 

REMOVE (EMPTY) = EMPTY 
RZMOVE(x,INSE~T(y,s)) = if EQ(xrv) then REMOVE (x, s) 

else INSERT (y,REMOVE (x,s)) 
HAS(x,EMPTY) = F 
HAS(x,INSERT(y,s)) = if EQ(x,y) then T 

e_!a~ .As (x, s) 
CA RD (E~IP TY) = 0 
C~RD(INSERT(x,s)) = i_f H~S(X,s) then CARD(s) 

else I + zARD(s) 

Fig. I: Algebraic presentation 

4.Proce~lural sRecifica%ion 

A procedural specification for our example appears in 
fig. 2. In order to improve readability we write the 
(canonical) terms with square brackets instead of parentheses 
and "I" instead of comma. The (high-level) language features 
are self-explanatory, but perhaps for "?", which stands for 
any argument, as in PLANNER [Hewitt '72]. Thus, 

card (r NSERT[ E211NSERT[E31EMPTY]]) => I + car,(INSERT[E31 EMPTY]) 

=> ... => 1 + 1 + 0, 

anrl 

insert (E3,INS~RT[E2|EMPTY]) => 
=> INSERT[ E2|INSERT[E31EMPTY]] 

INSERT[ E21 insert (E3, EMPTY) ] => 

A striking difference between the algebraic presentation 
and i%~ procedural counterpart lies in the occurrence of "=>" 
instead of "=" ; the rewriting rules are now applied in a 
single direction. This feature, together with appropriate 
conditionals, ensure that unenainq comDutation s will not 
appear. For instance, two calls to insert will have their 
sequenze inverted (if and) only if they are not in the 

correct order. 
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tX£ 2 Set[ Element] 

_o0 empty { ) :Set 
=> EH PTY 

end q~ 

o D insert(x: Element,s:Set) :Set 
yak y:Element,s t : Set 
match s 

EMPTY => YNSERT[x|EHPTY] 
YN.qERT[y|s ~ ] => if x = y then s 

else if x > y then INSERT[y]insert(xws ~) ] 
else INSERT[x]s] 

otherwise => fail 
e_nd~a tch 

oo remove (x: Element, s: Set) : Set 
Za[ y:Element,s': Set 
match s 

EMPTY => EMPTY 
INSERT[y|S' ] => _~f X = y then s' 

s ~ else if x > y then INSERT[ylremove(x, ) ] 
_e ls_  s 

otherwise => fail. 
endmatch 

o~ has(x:Element,s:Set) :logical 
za_r y:Element,s' : Set 

EMPTY => F 
INSERT] y]s' ] => i_f x = y t__h~n T 

else if x > y then has(x,s') 
else F 

otherwise => fai] 
endm~ tch 

en<]o~ 

o~ card (s :Se t )  : n a t u r a l  
vat s':Set 
.match s 

EHPTY => 0 
INSERT] ?Is' ] => 1 + card(s'; 
otherwise => fail. 

endma tch 

en~It ZR~ 

Fiq. 2: Procedural specification 
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~oreoverp it is easy to show by in~]uction that all 
canonical terms and only these will be generated by 
successive c~lls starting with a call to empty. Accordingly, 
the procedures are somewhat simpler than the corresponding 
e@u~tions, since we have made use of the fact that only 
canonical terms will be recei%ed as input parameters (and 
given ~s results). Under this assumption, the "otherwise" => 
fail" alternative of the case-like match statement will never 
be taken. 

Yn the terminology of [Goguen, Thatcher, Wagner '78] the 
proced~I res specify the operations of our canonical term 
algebra o Alternatively, we can regard the procedures as 
specifying an implementation of our example by the data type 
consisting of the terms of the language together with 
term-m~nipulating operations [Guttag, Horowitz, Mummer '78]. 

5. ~ S~{O.BO.~ i m g l e m e n t a t i o n  

There exist already some computerize~ aids to be used in 
connection with algebraic specifications [Guttag, Horowitz, 
Mummer '78], [C, oguen et al '79], [Gannon et al '80]. Here we 
propose the less ambitious, but still quite rewarding, goal 
of implementation of the procedural specification in some 
programming language by mGans of hand translation. 

We chose SNOBOL for its wide availability and good 
p~tt ern-match ing features (for an interesting recent 
alternative, see [Griswold, Hanson '80]). In particular, the 
BAL feature was found handy to define a pattern ARG matchin• 
any argument of the form <operator> ' (' largument list> ')' 
or conqisting of a single constant or variable. 

The translation from the procedural specificatzon into 
SNOBO5 functions required only minor adaptations, often 
stemming from the desire to take advantage of certain 
powerful features of the language (as in HAS and the usage of 
"#" for CAR DINALITY, for instance). Expressions to be 
executed are distinguished from terms used for representation 
by using quotes for the latter. 

5. Additional pqp.er%tion_s 

We have included other usual set-theoretic operations 
(~]nion, set equality, etc.) [Tompa '80], leaving their 
specifications to the reader. ~iso included are CHOOSE and 
REETRTZTION, which deserve some explanation. 

CHOOSE corresponds to the non~eterministic instruction x 
~rom s, as in [ Hoare ,72, p. 125], which selects, if 
possible, some element (%o be assigned to x) of set s and 
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removes it from s. This kind of operation can be described as 
an "impure" procedure [~uttag~ Horo~itz, Musser ~78] or as a 
function with a composite range 

CHOOSE: Set -> (Element X Set) f] { failure }~ 

where failure signals that the set is empty. For a nonempty s 
the result of CHOOSE(s) is a pair <ersW> where s t = 
~E~OVE(erS) and HAS(e,s) = To We wrote CHOOSE as a SNOBOt 
function with a side-effecl 9 requiring that the argument be 
passed by name. 

RESTRICTION (p,s) yields the subset of s consisting 
exactly of those elements of s that satisfy the unary 
predicate p, viewed as a function from Element into lo~ca!. 
Thus its algebraic specification would be 

RESTRICTION(Pred,Set) -> Set 

and, with p:Pred, s:Set, x:Element, 

RESTRICTION (p,E~PTY) = EMPTY 
RESTRICTION (p, INSERT ix,s)) = !_f p(x) then INSEiRT(x, 

REST~ ICTION (p,s)) 
~ls_~ RESTRICTION (p, s) 

In our SNOBOL implementation, p is passed as a , ,  

unevaluated expression to RESTRICTION, where it is repeatedly 
evaluated for each element of the set s. 

6. Con cludinq remarks 

The representation of data instances by means of a 
canonical form appears te support a useful methodology for 
obtaining not only an algebraic (or axiomatic) presentation 
but also a procedural specification. The latter, besides 
being close to the formec~ allows an easy translation into a 
programming language, thus permitting early testing and 
experimental usage. 

Implementation by terms provides a way to bridge the gap 
betwees two approaches to abstract data types: algebraic 
presentations, on the one hand, and programming language 
encapsulating constructs, such as clusters [Liskov et al 
,77], on the other. In fact, this implementation comes 
directly from the procedural specification and enables the 
~esign~r to produce a first cluster, considering only 
questions of behavior, thus postponing the choice of a 
representation adequate with respect to efficiency. 
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W9 are currently applying these ideas to the area of 
data bases. We have been able to describe formally the 
implemgntation of data base applications by a data model 
and the establishment of set-structured access paths• 
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APPENDIX - listinq of 

~FULLSCA N = I 
~ANCHOR = 1 
OUTPUT(~OUTPUT,e6~ ~ (IX~72A1) ~) 

SNOBOL functions 

| BREAK('w)') 

DEFIN~('INS~RT(X~S) y,Sl,) 
INSERT INSERT = IDENT(S~WE~PTy,) ,iNSERT(t 
+ ' , EHPTY) ' 

S 'INSERT(' ARC . Y ',' ARG ° SI 
INSERT = IDENT(X~Y) S 
INSERT = LGT (X,Y) 'INSERT(' Y 

+ INSERT(X, SI) ') ' 
INSERT = 'INSERT[' X ',' S ')' 

INSEND 

DEFINE {' REMOVE (X,S) Y ,S] ') 
REMOVE REMOVE = IDENT(S,'EMPTY'" 'EMPTY' 

S 'INSERT(' ~RG . Y ',' ARC- . $I 
REMOVE = IDENT(X,Y) $I 
REMOVE = LGT (X,Y) 'INSERT(' ¥ 

REMOVE(X,SI) ') ' 
REMOVE = S 

: (~ NS END) 
X 

: S (RETURN) 
')' =F(FRETURN) 

: S f RETURN) 
, ! 

e 

: S (RETURN) 
: (RETURN) 

+ 

~END 

DEFINE(' HAS (X,S) ') 
HAS S ARB 'INSERT (' X 
~{END 

D~FIN~('CARDINALITY(S) $I') 
CARDINALITY CARDINALITY = IDENT(S,'EMPTY') 

S 'INSERT(' ARG ',' ARG . $I ')' 
0 

: (REND) 
: S (RETURN) 

')' :F(FRETURN) 
: S (.RETURN) 

! , 
9 

: S (RETURN) 
: (R ETUR N) 

: (HEN D) 

: S (RETURN)F (FRETURN) 

" (CAEND) Q 

" S (RETURN) 
" F(FRETURN) 

CAEND 

@ 

CROOSR 

CHEND 

UNTON 

UNEND 

CARDINALIT¥ = I ÷ 

OPSVN('I',,CARDINALITY,,1) 

CAR DINALITY ($I) :(RETURN) 

DEFINE(' CHOOSE{S) ') 
HAS [ARC.. CHO!CE,$S) 
~S = REMOVE(CHOICE,~S) 
C~OOSE = C~OTCE 

" (C~END) 
: F (FP ~TURN) 

" (RETURN) 

DEFINE('UNION(SA,SB) X,SI') 
UNION = YDENT(SA,,EMPTY,) SB 
S~ 'INSERT(, A~G . X ',, ARG . Sl 

UNION = HAS(Y, SB) UNION (SI,SB) 
UNION = INSERT(X, UNIO~ (SI,SB)) 

: (U NEND) 
: s (RFETURN) 

') ' =F (FRETURN) 
: S (RETFIRN) 
: (RETURN) 
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DEF!~IE( ~ DIFFERENCE(SA, SB)X WSl') : (DIEND) 
DIfFErENCE DIFFERENCE = ID~NTfS~, ~E~PTY') ~EMPTY' :S(RETURN) 

SA )INSERT( ~ A~G . X ~) ARG . $1 ') ' °F(FRETURN). 
DIFFERENCE = HAS(X~SB) DIFFERENCE (S1,SB) :S(RETURN) 
DIFFERENCE = TNSERT(X~DIFFE~RE~CE(S1,SB)) :(RETURN) 

DTE~D 

DEFINE{' INTERSECTION (SA,SB) ') : (INTEND) 
TNTERSEZwYON TNTERSECTTON = DIFFERENCE (~A,DIFFERENCE(SA,SB)) 

I NTE ND 
e 

DEFINE(' CONTATNS (SA,SB) ') 

CONTATNS TDENT (D IFFERENCE ( SB, SA), ' EM PTY' ) 

DEFINE(' EQSET(SA,SB) ') 
(CO NTATNS (SA, SB) CONTAINS (SB ,SA) ) 

,COE~I D 

. " (RETURN) 

EQSET 
N .,QE, D 

RZSTRiCT TON 

-. (COEND) 
: S(RETURN) F(FRETURN) 

-. (EQ END) 
: S(RETURN) F (FRETURN) 

DEFINE (' RESTRICTION (P, S) X, S I,) : (R ESTEND) 
~ESTRICTION = IDENT(S,'EHPTY') 'EMPTY' :S(RETURN) 

'INSERT(' ARG . X . ELMT ',' ARG . $I ')' :F(FRETURN) 
,, p : F(RESTI) 

REST1 

RESTEND 

S~ MPLE 
e 

ITER 

~INI% 

~ND 

RESTRICTION = INSER~(X,RESTRICTION (P,SI)) : (RETURN) 
RESTRICTION = RESTRICTION(P,SI) : (RETURN) 

EVALUATIONS 

S~ = INSERT('E2', TNSER~('EI',INSERT('E3',INSERT('EI','EMPTZ')))) 

OUTPUT = 'SC = ' SC 
SXI = RESTRICTION(~DIFFER(ELMT,'EI'),SC) 
OUTPUT = ,,RESTRICTTON(~DIFFER(ELMT,'EI') ,SC) = " 

OUTPUT = ' SX1 = ' SXI 
OUTPUT = 'SXl HAS ' #SXI ' ELEMENTS "' 

~T = S~1 
O~!TPU ~ = CHOOSE ('ST') : S(ITER) F (FINIS) 

= INSER~('E,',INSERT('EI','EMPTY')) SD 
O[JTPU ~ = 'SD = ' SD 

SX2 = U~ION(SC,SD) 
OHTPU~ = 'UN!ON (SC,SD) = ' 
O~TPU • = ' SX2 = ' SX2 
SX3 = DIFFERENCE(SC, SD) 
OUTPUT = ,DIFFERENCE (SC,SD) = 

OUTPUT = ' SX3 = ' SX3 
S'(4 = INTERSECTION(SC,SD) 
O[ITPUT = ,I~TERSEC~ICN(SC, SD) = ' 

OUTPUT = ' S~ = ' SX• 

OHTPHT = CONTAINS(SC,SXI) 'SC CONTAINS SX!' 
OU~PPUT = EQSET{SXI,SX3) 'S~I EQUALS SX3' 
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SC = I~SERT(~I ,!NSERT(E2~TNSERT(E~E~PTY)) ) 
~E~rCmION (~DIFFER(ELMT~,EI,)~SC) : 

SZI = I~$SFERT (E2~INSERT{E3FEMP~Y)) 
SYl HAS 2 ELE{IENTS : 
~2 

FD = INSERT(El 

S~2 = TNSER 
r[FFERENCE (SC, 

SX~ = INSER 
IN T~RSECTTON (N 

SY~ = I N S E R  

SC CONTAI.S S~ 

SKI EQUALS SX9 

, I N S E R  T(E~ rEMPTY) ) 

m(EIpiNSERT(E2,!NSERT(E3wTNSERT{EgqEHPTy)) )) 
SD) = 
T(E2,1NSEFT(E3,EMPTY)) 
C,~D) = 
T (El, EMPTY) 
I 


