53—

PROCEDURAL SPECIFICATIONS AND TMPLEMENTAT IONS
FOR ABSTH#ACT DATA TYPES

A. L. PFurtado and P. A. S. Veloso
Pontificia Universidade Catolica 4o R. J.
22453 Rio de Janeiro RJ

Brasil

1. Introdanction

When working with an ahstract data type it is often
convenient to have the ability to execute its operations
bafore a final implementation is available [Guttag, Horowitz,
Musser '781, [Goguen et al '79].

Ha2re we propose a procedural formalism, which is based
on candnical forms and amounts to an implementation of the
data tvpe by a data type of terms. It is close enough tc the
algebraic spacification, from which it can be easily derived.

Tts simple translation into some stringy manipulation

langnage (here SNOBOL) provides executable versions of the
oparations.

2. Canonical form

Throughout the paper we shall use as a running example
thes wa2ll-known {(parametric} data typ=a finite sets of
elements. It has the following opearations

EMDPTY - creates an emnpty set

INSERT (X,S) - inserts element X into set S

REMOVE (¥,S) ~ removes element X from set S

BAS{Y,S) - tests vhether element ¥ helongs to szt 5§
CARD(S) - gives the number of elements in set S

¥2 assume that we can test equality of elements via
2O {x,v) and the availubility of logical and natural with the
usual operations.

Anvy set-object of the data type is constructed by
jterated applications of the operation INSERT 'and REMOVE to
EMPTY. Howevar, distinct manners of comstruction can yield
the same ohject. For instance , the four terms :

{a) INSERT (E2,REMOVE(E1, INSERT(E3, INSERT (E1,ENPTY)}))
{b) INSERT(E3,INSERT(E2,INSERT(E3, EMPTY)))

(c) INSERT(F3,INSERT(E2,ENPTY})

(1) INSERT (E2,INSERT (E3,ENPTY))

5y

represant the set §{ 22, 3 }.

¥2 want to have a canonical form so that each set has a
unique representative from the class of equivalent terms
which denote it. Then two terms will be equivalent iff their
canonical representatives are {syntactically) identical.

In our simple example it is clear that zero or more
TNSERT's applied to EMPTY suffice to generate all the
set-objects. Thus we <can rule out term (a) above. For
ordering the various applications of INSERT we place a strict
total order (say lexicoaraphic) on the elements and require
larger elements to be INSERTed first {as in (d) assuming B2 <
E3).

Notice that this does not reguire the order relation to
ba available in the data type, nor does it imply that we now
have ordered sets. 7Tt may be also worth mentioning that the
strict ordering criterion prohibits Y"redundant" applications
as in (b). According to the criterion chosen, the canonical
term €for { E2, E3 1} is ({d), as in (c) the clements are
INSERT24d out of order.

Thus, we take as canonical representatives the terms of
the form

INSERT (E1,INSERT (E2,..., INSERT (En, ENPTY)...))
where E1 < E2 <€ ... < Bn, with n > 0

3. Algebraic specification

An algsbraic presentation for our exampls, assuming the
availability of logical and natural with their wusual
operations is given in fig. 1. The format is a variation of
[Guttay, Horowitz, Muss=ar '78], 7Gaudel '773, [Tonmpa '80].
The equations were obtained by the methodology proposed by
[Pequeno, Veloso '79]; they ought to be able to transform

each term of the form
operation{canonical ternms)

into the <canonical form for the result. However, it is
important to bear in mind that the algebraic specification,
as it stands, has to consist of equations satisfied by any
term, canonical or not. That is why we have to consider the
possibility of “"redundant” INSERT's in the equations, e.qg.
for CARD. :

~55~

Type Set{Elenent]
Sorts Set, Element / logical,natural
Oparations: o
{) -> Set : EMPTY
{Element, Set) ~> Set : INSERT, REMOVE
{(Elemant, Set) -> logical : HAS
(Set) -> natural : CARD
{(2lement, Element) -> logical : EQ
Axioms
declare x, y:Rlement, s:Set

INSERT(x ,INSERT (y,s)) = if EQ(x,y) then INSERT(Y,s)
else INSERT (v, INSERT (x,s))

REMOVE (EMPTY) = EMPTY
REMOVE(x ,INSERT (v, s))

n

if BQ(x,v) then REMOVE (X, s)
else INSERT (y,REMOVE (x,s))
HAS (x,EMPTY) = F
HAS (X, INSERT(y,s)) = if EQ(x,y) then T
se HAS(x, s)

CARD(EMPTY) =0
CARD {INSERT (x,s))

il

if

el

if HAS(x,s) then CARD(s)
€lse 1

Fig. 1: Algebraic presentation

4, procadural gpecification

A procedural specification for our example appears in
fiq. 2. In order to improve readability we write the
(canonical) terms with square brackets instead of parentheses
and "|" instead of comna. The (high-level) language features
are sel f-explanatory, but perhaps for "?", which stands for
any argument, as in PLANNER [Hewitt '72]3. Thus,

Card(INSERT{EZ]INSERT{E3]EMPTY]]) => 1 + card(INSERT{EB!EMPTY])
=D e => 1 + 1+ 0'

and

insert (R3,INSERT[E2]E#PTY]) => INSERT[E2} insert (E3, EMPTY)] =>
=> TNSERT[E2 | INSERT{ E3]EMPTY]]

A striking difference between the algebraic presentation
and its procedural counterpart lies in the occurrence of v=>"
instead of m"=" ; the rewriting rules are nov applied in a

single direction. This feature, together with appropriate

conditionals, ensure that unending computations will not
insert will have their

appear. For instance, twoe calls to ;
sequence inverted (if and) only if they are not in the

correct order.

56~

typ2 Set{ Blement]

op empty { }:5et
=> EMPTY

endop

op insert{x:Element, s:Set) :Set
var yv:Element,s?: Set
match s
EMPTY => INSERT[x| EMPTY]
INSERT[yis?] => if x = y then s
else if x > y then INSERT[{ylinsert(x,s')]

i — — . R e

~els2 INSERT[x]|s]

op remove{x:Element,s:Set) :Sat
var v:Flement,s': Set

- o o

EMPTY => EMPTY

INSERT[y1s'] => if x = y then s’
else if x > y then INSERT{ylremove(x,s')]
elsz s
otherwvise => fail
endmatch
endop

op has(x:Flement,s:Set) :logical
var y:Element,s': Set
match s
EMPTY => F

INSERT[yis'] => if x = y then T
else if x > y then has(x,s')
glse F
otherwise => fail
endmatch
endop

op card{s:Set) :natural
var s':Set '

EMPTY => 0
INSERT[?]s'] => 1
otherwise => fail
endma tch
endop

endtype

Fig. 2: Procedural specification

~57~

Moreover, it is easy to show by induction that all
canonical terms and only these will be generated by
successive calls starting with a call to empty. Accordingly,
the procedures are somewhat simpler than the corresponding
equat}ans, since we have made use of the fact that only
c?nonlcal terms will be received as input parameters (and
given as rTesults). Under this assumption, the "otherwise =>

fail™ alternative of the case-like match statement will never
be taka2n.

In the terminology of [Goguen, Thatcher, Wagner *'78] the
procedures specify the operations of our canonical term
algebra., Alternatively, we can regard the procedures as
specifving an implementation of our example by the data type
consisting of the terms of the language together with
term-manipulating operations [Guttag, Horowitz, Musser '78].

5.A SNOBOL implementation

e

There exist already some computerized aids to be used in
connection with algebraic specifications ([Guttag, Horowitz,
Musser '78], TGoguen et al '79], [Gannon et al '807]. Here vwe
propos2 the 1less ambitious, but still quite rewarding, goal
of implementation of the procedural specification in sonre
programming language by means of hand translation.

Ye <chose SNOBOL for its wide availability and good
pattern-matching features (for an interesting recent
alternative, see [Griswold, Hanson '80]). In particular, the
8Al, feature was found handy to define a pattern ARG matching
any arqument of the form <operator> ‘' (' ~“arguument list> ')°*
or consisting of a single constant or variable.

The translation from the procedural specification into
SNOBOL functions required only minor adaptations, often
stemming from the desire to take advantage of certain
powerful features of the language (as in HAS and the usage of
ngn for CARDINALITY, for instance). Expressions to be
executzd are distinguished from terms used for representation

by using quotes for the latter.

5. Additional operations

we have included other usual set-theoretic operations
(union, set equality, etc.) [Tompa '80], leaving their
specifications to the reader. Also 1nc%uded are CHOOSE and
RESTRTCTTION, which deserve some explanation.

CHOOSE corresponds to the nondeterministic instruction x
from s, as in [Hoare '72, p.]25}, which selects, 1if
possible, some element (to be assigned to x) of set s and

58

removes it from s. This kind of operation can be described as
an "impure" procedure {Guttag, Horowitz, Musser 'J78] or as a
function with a composite range

CHOOSE: Set -> (Element X Set) 0 { failure },

where failure signals that the set is empty. For a nonempty s
the result of CHOOSE(s) 1is a pair <e,s'> vwhere s?! =
REMOVE(e,s) and HAS(e,s) = 7. We wrote CHOOSE as a SNOBOL
function with a side-effect , requiring that the argument be
passed by nane.

RESTRICTION (p,s) vields the subset of s consisting
exactly of those elements of s that satisfy the unary
predicate p, viewed as a function from Element into logical.
Thus its algebraic specification would be

RESTRICTION {Pred,Set) -> Set
and, with p:Pred, s:Set, x:Element,
RESTRICTION {p, EMPTY) = EMPTY
RESTRICT ION (p, INSERT (x,s)) = if p(x) then INSERT(x,

RESTRICTION (p,s))
else RESTRICTION({p, s)

In our SNOBOL implewrentation, p 1is passed as aun
unevaluated expression to RESTRICTION, where it is repeatedly
evaluated for each element of the set s.

6. Concluding remarks

The representation of data instances by means of a
canonical form appears tc support a useful methodology for
obtaining not only an algebraic (or axiomatic) presentation
but also a procedural specification. The latter, besides
being close to the former. allows an easy translation into a
programming language, thus permitting early testing and
experimental usage.

Implementation by terms provides a way to bridge the gap
between two approaches to abstract data types: algebraic
presentations, on the opne hand, and programming language
encapsulating constructs, such as clusters [Liskov et al
*77], on the other. 1In fact, this implementation comes
directly from the procedural specification and enables the
design2r to produce a first cluster, considering only
questisns of behavior, thus postponing the <choice of a
representation adequate with respect to efficiency.

-59—

W2 are currently applying these ideas to the area of
@ata bases: We have been able to describe formally the
implen2ntation of data base applications by a data wmodel
and the establishment of set-structured access paths.

L4

Raferences

. Ganmnon, J., McMullin, P., Hamlet, R., Ardis, M. - Testing
traversable stacks. SIGPLAN Notices , 15(1), 1980.

. Gaud21,M. C. - Algebraic specification of abstract data
types. BRes. Rept. 360, IRIA, 1979.

. Goguen, J. A., Thatcher, J. W., Wagner, E. G. - An initial
algebra approach to the specification, correctness and
implementation of atstract data types. R. T. Yeh (ed).
current trends in programming methodology IV,
Prentice-Hall, 1978.

. Gogusn, J., Tardo, J., Williamson, N., Zamfir, M. - A
practical method for testing algebraic specifications.
The UCL2 Computer Sci. Dept. @Quarterly - vol. 7(1),

Jan. 1979,

. Griswold, R. BE., Hanson, D. R. - An alternative to the use
of patterns in string processing. ACM TOPLAS, 2(2),
1980.

. Guttag, J. V,, Horowitz, E., Musser, D.R. - Abstract data
tvpes and software validation - CACM, v. 21{12), Dec.
1978.

. Hewitt, C. - pescription and theoretical analysis (using

schemata) of PLANNER. PhD thesis, MIT, 1972.

. Hoar2, C. A. R. - Notes on data structuring. O. Dahl, E.
Dijkstra, C. A. R. Hoare (eds). Structured Programming,
Academic Press, 1972.

. Liskov, B, Snyder, H., Atkinson, R., Schaffert, C. -
Abstraction mechanisms in CLU. CACM 20(8), 1977.

. Pequ2no, T. H. C., Veloso, P. A. S. = Do not write more
axioms than you have to. Proc. Intermational Computing

Symposium, 1978.

. Tompa, T. W. - A practical example of the specification of
abstract data types. Acta Informatica, 13, 1980.

650~

* APPENDIY - listing of SNOBOL functions

EFULLSCAN = 1

SANCHOR = 1

OUTPUT(* OUTPUT® ,6, 7 (1X, 7241} %)

ARG = BREAK{', (") "{? BAL ®)? | BREAK{®,}")
*

%*
DEFINE(' INSERT(X,S5) ¥,S1") : (INSEND)
INSERT INSERT = IDENT(S,'EMPTY') ISINSERT(' X
+ 1, EMPTY) ? : S(RETURN)
S "INSERT(®' ARG . Y ?,' ARG . S1 ')! :F(FRETURN)
INSERT = IDENT(X,Y) S < S(RETURN)
INSERT = LGT (X,Y) CINSERT(® Y *,°?
+ INSERT (X,S1) 1) ¢ : S(RETURN)
INSERT = 'INSERTI{' X *',' S *)' : (RETORN)
INSEND
%
*
DEFINE (* REMOVE (X,S) Y,517) : (REND)
REMOVE REMOVE = IDENT(S,'EMPTY" 'EMPTY' : S(RETURN)
S 'INSERT(' BRG . Y '," ARG . S1 ')' :P(FRETURN)
REMOVE = IDENT(X,Y) S1 : S(RETURN)
RFMOVE = LGT {X,Y) ‘'INSERT(' Y ',?
+ REMOVE (X,S51) 1)1 : S(RETURN)
REMOVE = S : (RETURN)
REND
*
k-4
DEFINE{'HAS(X,S) ") : (HEND)
HAS S ARB 'INSERT (' X * S(RETURN) P (FRETURN)
HEND
e
%*
DEFINF (* CARDINALITY (S) S1') : (CAEND)
CARDINALITY CARDINALITY = IDENT(S,'EMPTY') 0 :S(RETURN)
S 'INSERT(*' ARG ',' ARG . S1 ')' :F(FRETURN)
CARDINALITY = 1 + CARDINALITY(S1) : (RETURN)
CAEND
OPSYN('#! YCARDINALITY', 1)
%
%
DEFINE(' CHOOSE (S) ') : (CHEND)
CHAOOSFE HAS (ARG . CHOICE,$S) :F(PRETURN)
%S = REMOVE (CHOICE,S$S)
CHOOSE = CHOICE : (RETURN)
CHEND
-
-3
DEFINE (' TNION(S2,SB) X,S51') : (UNEND)
INTON UNTON = TDENT(SA,'EMPTY') SB : S(RETURN)
SA 'INSERT(' ARG . X ',' ARG . S1 ') ' :F(FRETURN)
UNION = HAS(Y,SB) UNION(S1,SB) :S(RETURY)
UNTON = YNSERT(X,UNION (S1,SB)) : (RETURN)

TNEND
*

-61-

DEFINE(® DIFFERENCE(SA, SB) X, S171) : (DIEND)
NIFFERENCFE DIFFERENCE = IDFNT(SA, 'EMPTY') TEMPTY' :S(RETURN)
SA TINSERT(' ARG . X ',' ARG . S1 ') ' :F(FRETURN)
DIFFERENCE = HAS(X,SB) DIFFZRENCE (S1,SB) :S({RETURN)
DIFFERENCE = TNSERT(X, DIFFERENCE(S1,SB)} :(RETURN)

o

DIEND
*
%

DEFINE(' INTERSECTION (SA,SB) ') : (INTEND)

TNTERSECTION TNTERSECTTON = DIFPERENCE (SA,DTFFERENCE(SA,SB)) :{(RETURN)
TNT®AND

*
Xx
DEPINFE (' CONTATNS (S2, SB) ?) : (COEND)
Sgggngs TDENT{D IFFERENCE{SB,SA), ' EMPTY"') : S(RETURN) F (FRETURN)
*
*
DEFINE(' EQSET{(SA,SB) ") : (EQEND)
Egsgg (CONTATNS (SA,SB) CONTAINS(SB,SA)) :S(RETURN)F (FRETURN)
ROE!

*
i
DEFTNE (' RESTRTCTION (P,S)X,S17) : (RESTEND)
RYSTRTCTTON RESTRICTION = IDENT(S,'EMPTY') 'RHPTY' :S(RETURN)
§ 1INSERT(* ARG . ¥ . ELMT ',' ARG . S1 ')' :F(FRETURN)
"op : F(REST)

RESTRTICTION = INSERT(X,RESTRICTION (P,S1)) :{RETURN)
REST1 RESTRICTION = RESTRICTION(P,S1) : (RETURN)
RESTEND
%
* SAMPLE EVALUATIONS
*

SC = INSERT{'E2', TNSERT('E1',IHSERT('E3',INSERT(’E?','EMPTY’))))
onTPUT = 'SC = ' SC
5X1 = RESTRICTION(#DIFFER(ELMT,'E1'),SC)

oI TPUT = YR ESTRICTION(*DIFFER(ELMT,'E1'),5C) = "
ouTPUT = ! sY1 = ' SY1
QUTPUT = *SX1 HAS ' #5X1 ' ELEMENTS H
ST = SX1
ITRR OIJFTPUT = CHOOSE('ST') *+S{ITER)F (FINIS)

PINTS
Sp = INSERT('E4',INSERT ("E1','EMPTY'))
OJTPYT = 'SD = ' SD
Sx2 = UNION(SC,SD)
ouTPUT = 'UNTION(SC,S$D) = °
onTPUT = * SX2 = ' SX2
SY3 = DIFPFERENCE (SC, SD)
oyTPUT = 'YDIFFERENCE(SC,Sp) = '

ayTPYT = ' SX3 = ' SX3

sYy = INTERSECTION(SC,SD)

oyTPUT = tINTERSECTICN(SC,SD) = °

nyTPOT = ' SY4 = ' SX4

ONTPET = CONTATNS(SC,SX1) 'SC CONTAINS Sx1!
oy TPOT = EQSET{S¥1,SX3) 'SY1 EQUALS SX3!

FND

62

€C = INSERT(F1,INSERT(E?,TNSERT (E3, EMPTY)))
PESTRTCTION (*DIFFER (ELMT,'E1?),S5C) =
SX1 = TNSERT (E2,INSERT(E3,EMPTY))
S¥1 HAS 2 ELEYENTS
L)
73
€D = INSERT(E1,INSERT(E4 ,EMPTY))
nNTCN(SC,SD) =
SX? = TNSERT(E1, INSERT(E2, INSERT(E3, TNSERT(E4,ENPTY))))
TIFFERENCE (SC, SD) =
SX3 = INSERT(E2,INSERT(E3, EMPTY))
TNTERSECTTON(SC,SD) =
SY4 = INSERT(F1,EMPTY)
SC CONTAINS SY1
SX1 EQUALS SX3

