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Introduction 

We present a simple method for checking the equivalence 
of two sets of rewriting rules alledgedly specifying the same 
abstract data type . The basic idea is comparison of normal 
formsin order to reduce the amount of work to be done. 

Frequently when dealing with an abstract data type one 
has diverse specifications with distinct features. For instance, 
one may be easier to understand whereas another one may lead to 
more efficient implementations [Choppy, Lescanne, Remy'80]. This 
diversity of specifications often stems from different choices 
of constructors[Guttag, Horowitz, Musser'78]. In any case, one 
faces the problem of checking their equivalence, i.e. whether 
they specify the same abstract data type. In the terminology of 
[Goguen, Thatcher, Wagner'78], are the corresponding initial 
algebras isomorphic? 

Example 

In order to illustrate the method we shall employ the 
simple example of linear lists of atoms from D. We consider the 
following usual operations on lists: nil, cons, make (which 
makes the list<d> = cons(d,nil) out of atom d) and append (list 
concatenation). 

It turns out that there are two distinct ways of 
constructing all lists by means of these operations. The first 
one uses only nil, make and append. Corresponding to this idea 
we have the specification S of fig. I, with normal form F 
consisting of nil, make, d) for d in D, and append(make(d),f), 
for d in D and f in F, f ~ nil. 

The other specification, in fig. 2, uses only nil and 
cons to construct all lists, its normal form F' consisting 
of nil and cons(d,f) for d in D and f in F' 

Both specifications have the Church-Rosser property and 
that of finite termination [Huet, Oppen'80], these properties 
being easily checked for S' and with little work for S. 
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Type List(Atom) 

Sorts : L,D {L 

Oper@tions: with d:D~ 

{constructors } 

nil : L 

make(d):L 

append(x,y):L 

{internal } 

cons(d,x):L 

Rules : for each d:D; x,y:L 

{between constructors } 

(c1) 

(C2) 

(C3) 

for lists, D for atoms } 

x,y:L 

{ defining internal 

(I) cons (d,y) * 

endoftype 

append (nil,y) ÷ y 

append(make(d),ni !) ÷ make(d) 

append (append(make(d),x),y) -~ 

÷ append (make (d) , appen d (x, y)) 

operation } 

append (make (d) , y) 

Fig.l: Specification S 

Type List(Atom) 

Sorts: L,D {L for lists, D for 

Operations: with d:D; x,y:L 

{constructors } 

nil : L 

cons (d,x) :L 

{internal } 

make(d):L 

append(x,y):L 

Rules: for each d:D; x,y:L 

atoms } 

{defining internal operations } 

(II) make(d) ÷ cons(d,nil) 

(12) app end (ni___!, Y) ÷ Y 

(13) append (cons (d,x) ,Y) ÷ cons (d, a~pend (x, y)) 

endoftype 

Fig.2: Specification S' 
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Method 

The natural question now is : "Are 
For instance, if one is known to be correct, their equivalence 
will yield the correctness of the other. 

The straightforward method for checking equivalence 
consists of verifying that each rule of S is a theorem of S', 
and vice-versa. We propose replacing one of these by verifying 
a correspondence between normal forms. 

i° We first check that for each rule u ÷ v of S' we can derive 
uEv in S. 

S and S' equivalent?" 

(II) In S we have 
cons (d,nil) (+I) append (make (d), nil) (C+2)make (d) 

(12) is rule (CI) of S . 

(13) In S we obtain (I) 
append(cons(d,x),y) ÷ append(append(make(d),x),y) 

(C+3) append (maT(d), append (X, y ) ) 

and cons(d,append(x,Y)) (+I) append (make(d),appen d(x,y)) 

(Recall that, u-=v is a,theorem in a rewriting system iff for 

some w u ÷ w and v ÷ w) 

• 

in S' we can derive g-=f. 

Here we proceed as follows. 

(a) A gcF' is either nil or cons(d,g') with g'eF' 

(b) The following derived rules of S 

(DI) cons (d , nil ) (I+) append(make(d), nil)(C+2)make(d) 

(D2) cons(d,y) (+I) append(make(d), y) 

describe how cons transforms nil and y~ni!, into F. 

(c) Now we check (DI) and (D2) to be theorems of S' 

For (DI), make(d) * cons (d ,nil ) is rule (II) of S' 
For (D2), we have in S': 

append(make(d) , Y) (I+) append(cons(d,nil),y)(I~) 

cons(d, append(ni___l,y)) (+12) cons(d,y) 

Thus, we have checked 

• each one of the 3 rules of S' is a theorem of S 
• each one of the 2 derived rules of S is a theorem of S'. 

Having checked these 5 theorems we can conclude the 
equivalence of S and S'. (Notice that the straightforward 
method would involve checking 3+4 theorems). 

Now, we check that for each geF' there exists feF such that, 
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Conclusion 

Imagine that our data type List(Atom) were enriched 
with a Boolean sort (with the usual operations) and with 
operations to test equality of atoms and of lists~ In order 
to define the external operation equality of lists, we would 
have to add some new rules: ii rules to S and 4 rules to 
S' [Remy, Veloso '80]. Now the straightforward method for 
verifying equivalence would have to check 22 theorems, whereas 
the method proposed here would need only 9. 

This approach also seems to be useful for dealing with 
related problems, such as specification improvement. 
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