
-39-

AN ECONOMICAL METHOD FOR COMPARING

DATA TYPE SPECIFICATIONS

J.L. Remy
C.RoI.N., France

P.A.S. Veloso
PUC-RJ, Brasil

Introduction

We present a simple method for checking the equivalence
of two sets of rewriting rules alledgedly specifying the same
abstract data type . The basic idea is comparison of normal
formsin order to reduce the amount of work to be done.

Frequently when dealing with an abstract data type one
has diverse specifications with distinct features. For instance,
one may be easier to understand whereas another one may lead to
more efficient implementations [Choppy, Lescanne, Remy'80]. This
diversity of specifications often stems from different choices
of constructors[Guttag, Horowitz, Musser'78]. In any case, one
faces the problem of checking their equivalence, i.e. whether
they specify the same abstract data type. In the terminology of
[Goguen, Thatcher, Wagner'78], are the corresponding initial
algebras isomorphic?

Example

In order to illustrate the method we shall employ the
simple example of linear lists of atoms from D. We consider the
following usual operations on lists: nil, cons, make (which
makes the list<d> = cons(d,nil) out of atom d) and append (list
concatenation).

It turns out that there are two distinct ways of
constructing all lists by means of these operations. The first
one uses only nil, make and append. Corresponding to this idea
we have the specification S of fig. I, with normal form F
consisting of nil, make, d) for d in D, and append(make(d),f),
for d in D and f in F, f ~ nil.

The other specification, in fig. 2, uses only nil and
cons to construct all lists, its normal form F' consisting
of nil and cons(d,f) for d in D and f in F'

Both specifications have the Church-Rosser property and
that of finite termination [Huet, Oppen'80], these properties
being easily checked for S' and with little work for S.

* C.R.I.N.; C.O. 140; 54037 Nancy Cedex; France
** PUC-RJ/Informatica; R.M.S. Vicente, 225;

22453 - Rio de Janeiro - RJ; Brazil

-40-

Type List(Atom)

Sorts : L,D {L

Oper@tions: with d:D~

{constructors }

nil : L

make(d):L

append(x,y):L

{internal }

cons(d,x):L

Rules : for each d:D; x,y:L

{between constructors }

(c1)

(C2)

(C3)

for lists, D for atoms }

x,y:L

{ defining internal

(I) cons (d,y) *

endoftype

append (nil,y) ÷ y

append(make(d),ni !) ÷ make(d)

append (append(make(d),x),y) -~

÷ append (make (d) , appen d (x, y))

operation }

append (make (d) , y)

Fig.l: Specification S

Type List(Atom)

Sorts: L,D {L for lists, D for

Operations: with d:D; x,y:L

{constructors }

nil : L

cons (d,x) :L

{internal }

make(d):L

append(x,y):L

Rules: for each d:D; x,y:L

atoms }

{defining internal operations }

(II) make(d) ÷ cons(d,nil)

(12) app end (ni___!, Y) ÷ Y

(13) append (cons (d,x) ,Y) ÷ cons (d, a~pend (x, y))

endoftype

Fig.2: Specification S'

-41-

Method

The natural question now is : "Are
For instance, if one is known to be correct, their equivalence
will yield the correctness of the other.

The straightforward method for checking equivalence
consists of verifying that each rule of S is a theorem of S',
and vice-versa. We propose replacing one of these by verifying
a correspondence between normal forms.

i° We first check that for each rule u ÷ v of S' we can derive
uEv in S.

S and S' equivalent?"

(II) In S we have
cons (d,nil) (+I) append (make (d), nil) (C+2)make (d)

(12) is rule (CI) of S .

(13) In S we obtain (I)
append(cons(d,x),y) ÷ append(append(make(d),x),y)

(C+3) append (maT(d), append (X, y))

and cons(d,append(x,Y)) (+I) append (make(d),appen d(x,y))

(Recall that, u-=v is a,theorem in a rewriting system iff for

some w u ÷ w and v ÷ w)

•

in S' we can derive g-=f.

Here we proceed as follows.

(a) A gcF' is either nil or cons(d,g') with g'eF'

(b) The following derived rules of S

(DI) cons (d , nil) (I+) append(make(d), nil)(C+2)make(d)

(D2) cons(d,y) (+I) append(make(d), y)

describe how cons transforms nil and y~ni!, into F.

(c) Now we check (DI) and (D2) to be theorems of S'

For (DI), make(d) * cons (d ,nil) is rule (II) of S'
For (D2), we have in S':

append(make(d) , Y) (I+) append(cons(d,nil),y)(I~)

cons(d, append(ni___l,y)) (+12) cons(d,y)

Thus, we have checked

• each one of the 3 rules of S' is a theorem of S
• each one of the 2 derived rules of S is a theorem of S'.

Having checked these 5 theorems we can conclude the
equivalence of S and S'. (Notice that the straightforward
method would involve checking 3+4 theorems).

Now, we check that for each geF' there exists feF such that,

-42-

Conclusion

Imagine that our data type List(Atom) were enriched
with a Boolean sort (with the usual operations) and with
operations to test equality of atoms and of lists~ In order
to define the external operation equality of lists, we would
have to add some new rules: ii rules to S and 4 rules to
S' [Remy, Veloso '80]. Now the straightforward method for
verifying equivalence would have to check 22 theorems, whereas
the method proposed here would need only 9.

This approach also seems to be useful for dealing with
related problems, such as specification improvement.

References

C. Choppy, P. Lescanne, J.L. Remy. Improving abstract data
type specifications by appropriate choice of constructors
Proc. Intern. Workshop on Program Construction; Bonas,
France, 1980.

J.A. Goguen, J.W. Thatcher, E.G. Wagner. An initial algebra
approach to the specification, correctness and implementation
of abstract data types. R.T. Yeh (ed.) Current trends in
programming methodology IV, Prentice-Hall, 1978.

J.V. Guttag, E. Horowitz, D. Musser. The design of data type
specifications. R.T. Yeh(ed.) Current trends in programming
methodology IV, Prentice-Hall, 1980.

G. Huet, D. Oppen - Equations and rewrite rules: a survey. SRI
International Rept. CSL-iII, 1980.

J.L. Remy, P.A.S. ~eloso. Comparing data type specifications
via their normal forms. Forthcoming, 1980.

