fn

M
0
o7
&

NTERNACGNAL
EN CIENCIA
COMPUTACION

Auspician:

Manco de Chile o
Secico e
A. F P. Santa Maria e
Leniz y Silva, e

Ingenieros Consultores
004.06 Cientec o
C748a Cecinas Winter o
Revista Informativa e

PONTIFICIA UNIVERSIDAD
CATOLICA DE CHILE

ﬁy

UNIVERSIDAD DE CHILE

PRIMERA CONFERENCIA INTERNACIONAL

EN CIENCIA DE LA COMPUTACION

FECHA

LUGAR

.
.

24 - 27 AGOSTO

CASA CENTRAL

PONTIFICIA UNIVERSIDAD
CATOLICA DE CHILE

Un EnFoaue ~ ForMAL PARA LA _EsPecIFicaciON Y DisefNo DE

ApLicAcCIONES DE Bases DE DAToS

Uma AproxIMAGAO FORMAL A ESPECIFICAGAO E DESENVOLVIMENTO
DE ApLICAGOES DE Bancos DE DApos

A FoRMAL APPROACH TO THE SPECIFICATION AND DEs1GN
OF DATABASE APPLICATIONS

J. M. V, de Castilho

A, L, Furtado

P. A, S. Veloso

Pontificia Universidade Catblica
do Rio de Janeiro,

Brasil

Abstrace

With th: 1lg=braic approach to abstract dati types, data
pase applicaticas <can be formally specified, by describing
the interasztiosns among operations m2aningful to the
application area spzcialists in their own language.

The orijiial specification covers the bshavioral aspects
of th2 data bas2 application, and also,in a provisional way,
other aspects such as accessibility, usage interface and
representatioa. At later stages, the last thres aspects are
decoupled inil refined, giving origin to a modular
architectura. Th2 modules provide set-structured = access
paths, intacfices for different classzs of wusers, and
representatioa %y 4 version of the entity-relationship data
model.

All moiilz:s are expressed in a . procedural style of
algebraic pr:s:ntation, which is easy to translits into some
‘symbol-maninsilition languaye {SNOBOL, Icon, LISP, 2tc.). This
leads to =sarl; testing and experimental usage, in addition tc
verifications ctf correctnass.

—— A s

de ar: gJratzful to H.A. Casanova for helpful
suggestions.

273

1. latreduction

The maia aspezct stressed by the algsbraic approach tc
the specificizisn of abstract data types is the bzhaviour of

the data ty7y: >bjects, as determined by the. operations
defined on them. This is of interest to data base
practitionars since it opens the way to the formal

specificaticy of data base applications using the sane
terminology 2: the applications. In fact, as we show in this
paper, fully <formal specifications can be achieved without
resorting t» aata models, thereby avoiding the bias that
their e2arly iisption may introduce.

our tr:itment of the problem of formally specifying
database apoilications is based on canonical tz2ra algebras
[7], followiij the mathodology proposed in [14]. We shall uss¢
the prccedizil style of algebraic specification that was
introduczd i1 [6]. A specification following this style can
-be easily triazlat=d into som2 symbol manipulation language,
thereby maxi] the specification executaole [6,9] for
experiaental 1s3ge and testing.

Such ipsc:ach may be used to treat other aspects of data
Lase applicizions as well, of which we shall 1investigate
accessikbility, usags intsrface and represantation. At later
stages, th2s: aspscts can bDpe decoupled from the original
specification and refined, but the resulting modular
architectur: is rajuired to preserve the pehavior initially
specified. filtilevel architectures are advocated in the data
vase area [1,3] and elsewhere [3].

For a :juprehznsive bibliography on thz subject, the
‘reader is r:’arrei to [2]. Further results are reported ir
[12,13,17].

2. First stag: : specification of the application

As an :xiapl=2 of a (simplified) data base application,
we shall uas: throughout the paper the data base of an
employment 1) :ncy, where persons apply for positions,
companies suyszrib2 by offering positions, and persons are
hired by or Zired from companies. A person appli2s only once,
thus becomiij a candidate to some position; after being
hired, the p2cson 1is no longer a candidatz but rejains this
status if fired. Th2 s3ame <Ccompany can subscribs several
times, the (p3sitive) number of positions being added up.
Only p2rsons cthat ar= currently candidates can b2 hired and
only by compiiies that have at least one vacant position. One
conseyquence >E th2se integrity constraints is that a persor
can work for it most on2 company.

274

Apply, sigscrive, hire and fire, tojyethar with initag
{which cr=2at:s an initially empty agency data Dbas<) are our
update op2ritians. As dquery operations we shall use
iscandidat=2 ind sorksfor, which are prediciates, and
haspositions, +hich returns the number of untfillel positions

in a company.

Any aj:15y Jdata base (agdb) object will be created
through - 111 can therefore be denoted by - =2xpressions
invclving ap:lications of the update operations. It is
possible to ii:ntify sets of expressions that denote the same
agdb object, sut one may choose representativas for each one
of those 3:t3, defining a1 convenient canonical forr
containing only some of the update operations, designated as
constructors [8] The constructors used to generate our
sentatives will be operations initag, apply,
r

canonical r2>rc2sen init
subscribe anl nire, arranged in the sequence :

i j hd
hire (...sunsccibe (...apply (voeinitag()eee)ecs)ees)

whers 31):rscripts i, j and k denote that there -are i
hire's, j sibscribe's and k apply's , i,j.,k Dbeing
non-nejativs. Jccurrences of the same operation are ordered
lexicographizilly with respect to their first argument
(person for airs and apply, company for subscribe), in
increasing s:juence, from left to right; the order of
execution i3 from thz inside out: the first is initag and the
last is the 1)3t extsrnal operation. For any person P, there
can be at st on2 apply having p as argument; for any
~company ¢, tai:c2 can be at most one subscribe having ¢ as ORE
of the argia2ats; if a person p and a companhy C appear 2s
arguments of 1 hire, then p must appear in an apply and ¢ in
a subscribz:; cthe number of appearances >f a company C as
arguasant of aire operations must not exceed the (positive)
punper m of paysitions offered in the subscribe corresponding
to c.

A symboiic reprasentation of a canonical rapr=sentative
is a caponizil term. If agdb objects are represented by
cancnical ta2cas we can specify the effect of applying one
operation as £yllows (note how update and query operations

afrfect each »>chzr):

3 - Uplic2 oparations aip the set of canonical terms
into itself. #>rc example, a subscribe operation for a company
that has alrealy subscribed simply adds its

number-cf-prsitions arqument to the number in the (single)
subscribe £z taat company appsarirng in the canonical term; a
fire operatica cancels the correspondiny hire in the

canonical teza. The application of an update operation may
" depend on oalitions that can be checked through query
operations. 2 adoptel the decision that, whanever the

275

conditions fiil an update operation has no effect, i.e., it
will wyield 13 result the same canonical term supplied as
argua=snt,

o ~ Juely dJperations yield a logical value, in the case
of predicat2s, or soma value obtained from componants of the
agab object. lhey are executad by inspecting the canonical
term supplizl 1s argument.

Fcllowiny the style in [6], figure 1 shows the
proceiural s»>::ification of the agency data base as a data
type module., A striking difference between standarl algebraic
.presentations ind their procedural counterparts lias 1in the
occurrenca »f 9=>" instcad of "="; the ra2writing rules [10]
embodied in the oparations are now applied in a single
direction. [a order to improve readability the canonical
teras ar2 dritten using square brackets instead of
parenthesas 111 "|" instead of comma. The languaye features
are s21f ex>linatory except, perhaps, for "?", which stands
for any valil valus of an argument, and "?<variasle>" which,
in addition, 3ssigans ths value found to a variable, as in
PLANNER {sea {181]).

If the >p:rations in the expression below

tfire(83,C2,21122(E2,C2,hir2(E1,22,subscrib2(2,1,nire(E1,C1,
hire(Eu,C1,1p;Lg(E1,hire;?},cz,apply(E2,apply(Eu,subscribe(C2,3,
apply (E3,sups:cibe(C1,2,initag()))))))))))] '

-

are ex2>1t2d, the resulting canomnical tarm is

HIRE[E1 | €1 | HIRE(E2 | C2 | HIRE[E4 | C1 | SUBSCRIBE[C1 | Z |
SUBSCRIBE[(C2 | 4 | APPLY[E1 | APPLY[E2 | APPLY[E3 |
APPLY[E4 | LiLZAG 111111111

The asz:cts of accessibility, wusage intarface and
representation, mantioned 1in the introduction, are covered in
a rudimenticy form in this original specification. As a
preliminary »aise ia thair application, the query and update
operations ir: assumed +to be able to access the relevant
components »f aglb objocts. Usage interface is covered in
that tha op2ritions supplied can be used as eleuents in a
language f£orc th2 manipulation of such objects. Finally,
. canonical t2ras are a form of represantation for agdt
objects.

However, the s5iz2 and complexity of wmost data Dbase
applications c:juirs further development of the features of
the specificition tnat deal with the aspects abova. In order
to select (121 sometimas order) the components to be
accessed, w2 aiy n2el to creatz and maintain othar structures

of appropriit: typ=2s, superimposad on the data base

276

application, nich share the compouents involved. These
auxiliary strcictur=ss are said to provide acgass paths. Since
data base p:zlications are handled by differcnt classes of
users with diff2rant needs and degrees of authorization, they
must be jiv:in 1interfaces tailored to their distinct

characteristizs.

Most obvilisly, the representation of ajdb objects by
canonical tacn: must be replaced, perhaps throuygan 1 series of
levels, auantil some representation is obtained that can be
implemented :fficiently. This requires consilerable effort
that one i3 ot willing to spend except for important or
extraordinacy ipplications., Hence, we should look for some
data mcd2l, 4hich we view as the nmost jeneral (least
restricted) 1:2aber of a family of data base applications.
Assuuing tiit the data model has be=<n effectively
implemented, 111 we have to do 1is to build upon it the
representationr of our data base application.

3. Later staj23 :

We now 12velop a modular architecturs, centared on the
agdp data ty»>2 module. The addition of modules for adequate
accessibility, usage interface and represantation should not
disturb the >rijinal set of valid agdb objects.

3.1. Access 2ath

17

We shall use sat-structured access paths. Since sets of

elements ar: a wall-known (parametric) data type, the
respectiva lici type module is not included (see [6]).

In our a»>dular architecture the connection beaetween twc
data type mdli1l2s for the definition of access paths is done
through a tzaasfersnce module, the operations of which are
essentially 12 composition of (in the example) query
operations £z:a thz agdb data type and constructors from the
set data typ:. Figur2 2 shows one such operation - sempcomp =
which gives ch2 s=2t of =mployees working for a companye.

v

3.2. Usage iatarfacs

18

1

Usage iac:irfaces Aar=2 provided as ihtzrfface moilles, the
operaticns »>f which are caertain data base application
operations, vaich can be restricted by incorporating further
applicability coniitions and extended by triggering other

data basa aprlication op=rations [161].

271

Figure 3 3nows on=2 oparation - C-hire - of th2 interface
"of a particuliz coupany C. The operation allows C to hire a
person who 115 not appliel to the agency, provided that at
least 10 vaciic positions will remain; as a trigjered action,
an apply is ai1l: on the person's behalf. In the case of less
than 10 viziat positions, the simple hirs opzration 1is
invcked.

3.3 mepraszaration
As a 1]ita nodel ve chose a version of the
entity-relatiocaship model [4,15], supporting only binary

relationshi»>s ind allowing atributes for entities but not for
relationshins. '

The data molel corresponds to the data type wmodule
(erm), showar in figure 4. The operations allow to create and
delete entities within entity-sats, wodify values of
attributes ('*' stands for ths undefined value) and link or
unlink entici:s via a relationship. Corresponding gquery
operations (ill are predicates) are providad.

The conicction between the data type modulss (of the
data base application and of the data model) dafining the
representatis>a, is done through a reprssentation module,
partly showy in figur= 5 (see also (8], pg. 75). The
operations i1 representation modules are spacifiz2d as the
substitution 3f projrams involving data mod21 operations for
cach data pas2 application oparation.

The dati godel can b sesn to be fully compatible with
the data bas: ipplication. Persons (candidates and employees)
and compani2; ire entitiss, nuaber of positions offered is an
attribute of ccmpani2s and WORKS is a r2lationship between
persons and s»apanic¢s. The basic integrity constraint of the
data model - links can only be maintained if both entities
linked exist (in at least one entity-set) - 1is somplemented,
put not contcidicted, by the special constraints governing
the WORKS r:lationsnip.

Phe pry» 3sed architecture (figure &) can be further
exteuded by iacorporatiny other access paths (based, for
example, on Lists aud mappings [11]), which can, in turm, be
represented 1t lowar levels. of particular interest is tc

"M"glide down'! th2 transferznce between the data base
application 12l the access paths, toward their lower-level
represaentatioas, for r=asons of efficiency (think, for

example, of s:ctiny inversion records to point to data file
records). AL33, us:zrs of adejuate degree of :cxpertise may
gain interfaz:s at various points in the architecturc.

278

4. Ongoing Wiz s

Since all kinls of modules discussed here are specified
using th2 saa2 formalism, the correctness of the architecture
can be verifiad as it is developed. Wz arc currently
investigating ipprapriate methodologies for this.

It is 2spacially important to verify that the
architecturz2 gresarv=s the Dbehavior of the data base
application iaitially specified. This involves, 1mong other
_ problilems, prrving tne faithfulness of representations and the

suf ficiency »Z interfaces to jointly handle cthe antire data
"pase application. 42 would also like to datzrmine how the
execution of operations at each interface affacts or is
affected by »p:irations exacuted at the other interfaces.

279

References
[1] ANSI/X3/322R8C iut2rim report - FDT bulletin of ACH/SIGMOL
7,2 {137%).

{2] d.L. Brali: - data abstraction, databases, and conceptual
modelliiy =: an annotated bibliography - WBS special
publicicion 500-59 (1980).

{3) R.M. Burstill aud J.A. Goguen - CAT, a systsm for the
structized 2laboration of correct programs fronm
structircd spacifications =~ working draft , UCLA and

SRI (1373).

[4] P.?. Ch21 - The entity-relationship mod2l: towards a
unifizl view of data - ACM/TODS 1,1 (1376) - 9-36.

[5) H. Ehrijy, 1.J. Kreowski and H.J. Weber - Algebraic
sgpecifi:ition schemas for data base systems - Proc.
VLDB~3:21in (1978) 427-440.

[6] A.L. Furtiio ana P.A.S. Veloso - Procedural
specific itions and implementations for abstract data
types - AZM/SIGPLAN Notices - to appz2ar.

(7] JoA. Goj1:i, J.W. Thatcher and E.G. Wagner - An initial
algebri ipproach to the specification, correctness, and
izplem:atation of abstract data types - in 3 Current
Trends ia Programming Hethodology - v. IV - R.T. Yeh
(ed.) 2raatice Hall (1978) - 80-149. '

(8] J.V. Guttayj, Z. Horowitz and D.R. Musser - Th2 design of
data tyga specifications - in : Current Trends it
Prcqgramving #“2thodology - v. IV - R.T. Yeh ({ed.)
Prentiz: Hall (1978) - 60-79.

(9] J.V. sutcay, B. Horowitz and D.R. Musser - Abstract data
typas 11d software validation - ACH/Conaunications
21,12 (1978) - 1048-1064,

[10] G. Huet and D.C., Oppen - Equations and rewrite rules, a
survey - Computer Science Departmant, Stanford
University, Rzport No. STAN-CS-80-785 - (1980).

[11] C.B. Jo1:3 - 3o0ftware devalopment : i rijorous approach
- Prenti:z2 Hall (1980).

{12] P.C. Lo:z<20ann, LT, Mayr and K.R. Dittrich - A

pragmicic approach to the algebraic specification of

" goftwic: moduir=s - Univarsitat Karlsruhz, Fakultat fur
Inforaicik, Tnterner Bericht Nr. 1/79 ({1979).

280

[13] T.S.E. %1iibaum and C.J. Lucena - Highar order data types
- Int:raational Journal of Computer and Information
Scienz:s 9,1 (1980) - 31-53.

L] T.H.C. 227ucno and P.A.S5. Veloso - Do not W4rite more
axioms than you have to - Proc. Intesrnational Computer
Symposiin, Nankang (1978)- 488-498,

[15] C.s. 405 santos, E.J. Neuhold and A.L. Furtalo - A data
type 1pptoach to the entity-relationship model - in :
Entity-c:2lationship approach to systsms analysis and
design - P.,P. Chen (ed.) - North Holland (1980) -
103-113,

[16] K.C. S2v:zik and A.L. Furtado - Compl2tz and compatible
sets »>E update operations - Proc. International
Confer:21:2 on Database Management Systems - Milanc
(1978) 247-260.

[17] T.W. Toas»i - A practical example of the specification of

abstrizt data types - Acta Informatica 13,3 (1980) -
205-2214.
[18] H.K.T. donyj and J. Mylopoulos - Two views of data

semantizs : a survey of data models in artificial
intelliy:ace and Jatabase management =~ TINFOR 15,3
(1977) - 344-382, -

281

type agdb

op initag():agdb
> INITAG
endop

op apply (x:person,s:agdb):agdb -l:
var z:person,w:company,n:natural,si:agdb
(v iscandidate(x,s) AV worksfor(x,?,s)) =s

match s t t
HIRE[z|w] 1] = HIRE[z|wl|apply(x,51)] ¢

SUBSCRIBELw|n|$1] = SUBSCRIBE[w|n|apply(x,s1)]
APPLY[z|s1] = if x > z then APPLY[z| apply (x,s%)]
else APPLY[x|s]
otherwise = APPLYLx|s]
endmatch

endog

op subscribe(y:company,m:natural,s:agdb):agdb
.var z:person,w:company ,n:natural,sl:agdb
m=0=s _
match s : :
BIRE[z|w]s1] = HIRE[z|wl]subscribe(y,m,s1)]
SUBSCRIBE[w|n|sl] = if y = w then SUBSCRIBE[y| ntm|s1] : A
else if y > w then SUBSCRIBE[w|n|subscribe(y,m,s1)]
else SUBSCRIBE[y!m|s]
" otherwise = SUBSCRIBE[y|m[s] '
endmatch o

endop

op hire(x:person,y:company,s: agdb) :agdb
var z:person,w:company,sl:agdb
~(iscandidate(x,s) A haspositions(y,s) > 0) ®s
match s : T
HIRE[z|wls1] = if x>z then HIRE[z|w|hire(x,y,s1)]
else HIRE[x|yls]
otherwise = HIRE[x|yls]
endmatch

endop

op fire(x:person,y:company,s:agdb) :agdb
var z:person,w:company,sl:agdb
n worksfor (x,y,s) = s
match s
HIRE[z|w|sl] = if x = z then sl
' else HIRE[z|w|fire(x,y,s1)]

endmatch
endop

283

op iscandidate (x:person,s:agdb):logical
var z:person,sl:agdb
match s
HIRE[z|7}s1] = if x = z then F
else iscandidate(x,sl)
SUBSCRIBEL?]?|s1] = iscandidate(x,sl)

APPLY[z|s1] = if x = z then T
else if x > z then iscandidate(x,sl)

else F
otherwise = F
endmatch
endop

op hasposi tions(y:company,s:agdb) tnatural
var wi company,n:natural,sl: agdb
match s
HIREL?]wlsl] = if y = w then haspositions(y,sl) -~ 1
: else haspositions(y,sl)

SUBSCRIBE[w|nls1] = if y = w then n | ,
o else if y>w then haspositions(y,sl)

else O
otherwise =0
endmatch
endop

op worksfor (x:person,ys:company,s :agdb) :logical
var z:person,w:company,sl:agdb

match s : v
T HIRE[z|w]s1] ®if x.y = z.w then T

P

else if x > z then worksfor (x,¥,51)
. : else F ‘

otherwise = F
endmatch

endop
endtype

FIG. 1

284

transference agdb to set

S 000 CyC0E0EB0EEO0

op sempcomp(y:company,s: agdb) :set
2> buildsetz(y,s,empty())
endop ,
hidden op buildsetz(y:company, s:agdb,z:set):set
" var x:person =

ifanotheremp(?X,¥,S,2) » buildsetz(y,s,insert(x,z))
2> 2 .

endop

hidden op ifanotheremp(x:person,y:company,s:agdb,z:set):logical
= worksfor (x,y,s) AV has(x,z) :

. endog

endtrausference

FIG. 2

interface of C
PO ® 009 0000000

op C-hire(x:person,s: agdb):agdb
haspositions(C,s) > 10 2 hire(x,C,apply(x,s))
= hire(x,C,s)

endo

ecoepocsece e

endinterface

EIG. 3

285

type erm
op $(d:erm

= §

endop .

op. cx (x:ent,treset,s:erm) sexm
var y;:exxt,;:ent,u:eset,a:attr,i:val,r:rel,sl:em
exs{x,t,s) s
match s
IKLylzlrlsi] = LKLyl z|rlcr(x,t,s1)]
MobLylalilsl] = MoDfylalilex(x,t,s1)]
celylulsl] ® if x.t > y.u then cRlylulcr(x,t,s1)]
: eise CR[x|tls '
. otherwise CRIx|tls]
endmatch
endop

_gg_mod(x:ent,a:attr,i:(val,{*})',s:em):erm
_ y_gg_y:ent,z:ent,b:attr,j:val,r:rel,sl:erm
a (exs(x,?,s) M hv(x,a,i,s)) s :
match s
“LKly!zlrls1] 2 IK[y]z|r|mod (x,a,1,51)]
MODLylbljls1] = if x.a = y.b then
: if i = * then sl
else MOD[x[alilsl]
else if x.a > y.b’ then
MoDLy|bljlmod (x,a,i,51)]
‘ ~ else MOD[x|alils]
otherwise = MOD[xlalils]
endmatch
endop

op 1k(x:ent,y:ent,r:rel,s:erm) :erm
var z;en_t:,w;ent,q:rel,sl:erm
n(exs(x,?,8) A exs(y,?,s) AV isr(x,y,r,s)) ®s
match s
IXlzlwlqlsl] if x.y.r > z.w.q then
' 1XK[z|wlql1k(x,y,r,s1)]
else LK(x|ylrls]
otherwise = IK[x[ylr|s]
endmatch
endop

op del(x:ent,t:eset,s:erm):erm
var y:ent,z:ent,u:eset,v:eset,a:attr,i:val,r:rel,sl:erm
(exs (x,t,8) A (inothereset(x;?v,t,s) V
(v isr(x,7?,7,s) A isr(?,%,7,8) AMhv(x,?,2,8)))) &8
match s
IK[ylzlrlsl] $LK[y|zlrIde1(x,t,sl)]
MOD[ylalilsl] @MOD[ylalildel(x,t,sl)]
CR[ylulsl] = if x.t = y.u then sl
eise CRLyluldel(x,t,s1)]
endmatch
endop ' 286

op ulk(x:ent,y:ent,r:rel,s:erm) term
var z:ent,w:ent,q:rel,sl:erm
" isr(x,y,r,s) =8
match s
LK{z|wiq]sl] > if x.y.r = z.w.q then sl
. else LK[zlwlqlulk(x,y,r,sl)]
endmatch '

endog

op exs (x:ent,t:eset,s:exrm):logical
var y:ent:,z:ent,v:eset,a:attr,i:val,r:rel,sl:em
match s . . '
IX(ylzlrlsl] = exs(x,t,sl)
MoD[ylalils1] = exs(x,t,sl)
CRLylv[sl] = if x.t = y.v then T
: : else if x.t > y.v then exs(x,t,s1)

—em——c— P

: else F ’
otherwise = F v '
endmatch
endop

op hv(x:ent,a:attr, i:val,s:erm):logical
var y:em:,z:enc,b:attr,j:val,r':rel,sl:erm
match s
1K[ylzlrlsl] 2> hv(x,a,i,s1)
MoDLy|bljlsl] = if x.a.i = y.b.j then T :
else if x.a > y.b then hv(x,a,1,s1)
else F '

otherwise =>F
endmatch

k

op isr(x:ent,y:ent,r:rel,s:erm) :logical
var z:ent,w:ent,q:rel,sl:erm
match s S
IKL z|wlqlsl] = if x.y.r = z.v.q then T
else if x.y.r > z.w.q then_isr(x,y,r,sl)

else F
otherwise = F
endmatch
endop

hidden op inothereset(x:ent,v:'eset,t:eset,s:erm):1ogiéa1
> exs(x,v,s) AV #t '
endop

endtype

FIG. 4

287

representation agdb by erm

2006 @MOIQOEROROE

gﬂ_hir@{x:parsun,y:company,s:agdb):agdb
var sl:ierm ,
n(iscandidate(x,s) A haspositions(y,s) > 0) ®s
match s
REPAGLs1] = REPAG[1k(x,y,WORKS,cr (x,EMP,del (x,CAND,s1)))]
endmatch ' , ‘

_&ndop

dOecCPO02OPB0COW

ggﬁhaspo@itions(y:company,s:agdb):natural‘
ggg‘x:ent,n:natural,sl:erm
match s ‘
- REPAG[s1] ﬁﬁi§<isr(?x,y,WORKS,s1) then
: haspositions(y,REPAGfulk(x,y,WORKS,s)]) -1
else if hv(y,NP0S,?n,sl) then n
‘else O ‘

endmatch

endop

endrepresentation

FIG. 5

{ interface

type type

erm
type

PIG. 6

288

