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ABSTRACT

In actual computer systems, the number of jobs multiprogrammed in each job class is not fixed but waries dy~-
namically with the nature of the class and with the amount of memory available for each workload. This pa -

per presents an algorithmic way to compute performance measures such as throughput, mean response

time and

memory utilization, for system in which the number of.jobs per workload varies within a given range. Our mo-

del alows the performance analyst

to handle queueing for main memory and systems with several job classes

of different types such as batch, timesharing and transaction processing. The techniques presented here have
been succesfully used to model actual computer systems, and the results obtained with the model presented
here are compared with those of a well known capacity planning software package.

1. INTRODUCTION

Queueing network models of computer systems have gained
considerable attention from the performance analyst in
the last few years. The first analytic results in queue-
ing networks are due Jackson [1 and 2] and Gordon and
Newell [3]. In 1971, Buzen [4] introduced a convenient
model of multiprogrammed systems - the central server mo
del - and presented [4 and 5] efficient computational al
gorithms for closed queueing networks. Baskett, Chandy ,
Muntz and Palacios [6] extended the theory to allow mul-
tiple classes, different queueing disciplines and non -
exponential servers.

In 1976, Buzen [7 and 8] introduced operational analysis
and explained why some of the classic results in queue -
ing theory hold even when the assumptions upon which they
were based are not verified. Later, Denning and Buzen
[9 and 10] applied operational analysis to the study of
queueing networks. Bouhana [11] gave an operational treat
ment of centralized queueing networks - a generalization
of the central server model. Roode [12] extended these
results to treat multiclass queueing neétworks.

The first closed queueing networks models to be studied
suffered from a severe limitation since they required
that the number of jobs in the system be fixed. It turns
out that in actual systems, the number of jobs multipro-
grammed in each job class is not fixed but varies dyna -
mically depending on the nature of the class and on the
amount of memory available for each class. In 1977, Lam
[17] showed how to handle queueing network models with
population size constraints and applied it to multipro -
grammed computer systems with varying degree of multipro
gramming. However, his approach, which is based on state-
dependent lost and triggered arrivals, is not suitable
for modeling queueing for main memory since jobs are lost
instead of queued.

In this paper we present the solution of a multiclass
queueing network model in which the number of jobs of a
given class i (1l<is<R) is not fixed, but is allowed to va
ry within a given range. Our approach allows us to model
queueing effects for main memory and to handle simulta -
neously many job classes of different types such as
batch, timesharing and transaction processing.

Let a configuration be a tuple (nl, ....,nR) such n; is

the current number of class i jobs being multiprogrammed.
We present here an algorithm to obtain performance mea -
sures (e.g. throughput, response time) for each job
class, averaged over all configurations observed during
an observation period. This algorithm allows us to build
convenient software. packages for performance evaluation.

*This work was partially supported byFinanciadora de Es-
tudos e Projetos (FINEP), by CNPqzand by IBM Brasil.

97

Section 2 presents the computer system model considered
here and characterizes the types of workloads analyzed .
Section three presents the corresponding queueing network
model. Section four presents an analysis of the different
types of workload classes considered and presents the al
gorithm that should be used to treat models with varia —
ble degree of multiprogramming. Finally, section five
presents some comparisons between numerical results ob-
tained with our model and with those obtained with BEST1,
[13], a BGS Systems proprietary software package for ca-
pacity planning.

2. COMPUTER SYSTEM MODEL AND WORKLOAD CHARACTERIZATION

Our model of a computer system consists of a central sub
system which contains the CPU and I/0 devices. A collec—
tion of terminals outside the central subsystem generate
timesharing and transaction processing jobs which are
executed by the central subsystem along with batch jobs.
(see Figure 1).

Let us describe below the three types of workloads con-
sidered in our model, namely batch, timesharing and
transaction processing.

The batch type of class is characterized by the average
degree of multiprogramming of that class. We assume that
a continuous backlog situation exists for batch jobs.
For this type of class the main performance measures are
the throughput and the turn—-around time.

The timesharing class is described by the number of ter-—
minals, by the average think time and by the maximum le-
vel of multiprogramming for this class. Think time is de
fined as the interval between a response to a terminal
and the submission of a new ecommand (job) by the same
terminal, The main performance measures in this case are
response time and throughput,

Finally, the transaction processing class is character-
ized by the average transaction arrival rate to the cen
tral .subsystem and by the maximum level of multiprogram
ming. The main performance measure in this case is res-—
ponse time.

The existence of these three types of workloads implies
that a multiclass queueing network is needed. A job
class characterizes a common behavior and resources usa
ge statistic observed for a collection of jobs. We con—
sider the existence of R classes numbered from 1 to R.
Each class may be of one of the three types described
above, i.e. batch, timesharing and transaction process-
ing. However other types of classes may be imagined.The
methods described in this paper work as well for any
type of class, provided one can derive the fraction of
time that the system is in a given state, in terms of
the throughput for that particular class.



The central subsystem is assumed to be a centralized net
work -, as introduced in [11]. Figure 2 illustrates such
a type of network. As it can be seen, a centralized net-
work is a generalization of the central server model [4]
in which aside from having a central server (possessing
a loop), the rest of the network can have an arbitrary
topology.

The loop around the central server represents a comcep=
tual exit of a job from the system, i.e. a fraction
qgo, for 1<r<R, of all class r jobs that leave the cen-
tral server are said to leave the system and are imme -
diately replaced by a new job of the same class. The
conceptual exit is an extremely interesting modeling de
vice since it allows us to consider arrivals and depar-
-tures of jobs in a closed network.

3. QUEUEING NETWORK MODEL

This section presents the quantities which describe the
queueing network model used to model computer systems.
Consider a queueing network consisting of M devices
(e.g. processor, i/o devices). Jobs in the system may
belong to any one of R classes. Jobs are not allowed to
change classes.

Let,

n.. = number of class r jobs at device i.
M

n =3 n., = total number of class r jobs

r . ir

i=1
R

N =3I n = total number of jobs in the system.
r=1 :

We assume that all devices in the network have a load
independent behavior, i.e. the time a job takes to be
serviced at the device does not depend on.the size of
the queue at the device

3.1 NETWORK. SOLUTION

A network state n is defined as n = (31’32""’BM)
where:n, is the state of device i given by

n., =
—1

(nil’ “12"""’“iR)

In order for n to be a feasible network state it is
necessary that

P (1
=1 Yir .

Let T(n) be the total time that the network was in sta-

te n during the observation period T. The proportion
of Time that the system is in state n is given by

P - P @

and % p(n) = 1 where the summation is over all possi-

ble st:tes n .

The network solution can be shown to be given by the ex
pression below:

iR
iR

M n n
I S S G
P =g =1 Y41 Yio

where Yi is the total amount of service time accumula-
T

(3)

R

ted by a job in all visits to device i averaged over all
class r jobs. G is a normalization constant defined as
follows
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(4)

N R

nes (N,M,R)

The summation in (4) is over the set S(N,M,R) defined as
follows

S(N,M,R)= {n = (nll’n12""’an’ n21,.,n2R,..,nMR)|

M R
Y n,=n &I n_=N&mn, 20¥%i,r}
io1 i =1 F ir (5)

It should be emphasized that mo assumption regarding ser
vice time distribution must be made in order to obtain
expression (3). However the following operational assump-
tions, which are defined in [10], must hold for expres -
sion (3) to be true:

Flow Balance: arrivals equal departures at each system
device or network state.

One-Step Behavior: the only observable state changes re-
sult from single jobs either entering
or leaving the system, or moving from
one device into another.

Device Homogeneity: the output rate of a device is in-
dependent of the system state and
may depend only on the queue size
at the device.

Routing Homogeneity: the routing frequencies between de~
vice is independent on the system
state.

3.2 THE NORMALIZATION CONSTANT

Computationally efficient algorithms for calculating the
normalization constant in closed queueing networks were
first presented by Buzen in [4 and 5]. Briel and Balbo in
their recent book [14] present a nice and comprehensive
study of computational algorithms for closed networks.

We briefly review here the results we need. The normali-
zation constant G, given in equation (4), can be efficien
tly obtained as GM(nl,.....,nR) using the recursive equa-

tion below and the initial conditions given by equations
(7) and (8).

Gy (RyseeesKy) = Gy g (Kpsen Kp) +

R
§=1Yir 6, (Kppeees KimlyuonKp)
for i=ly...,M (6)
G (Ryseenesky) = 1 iE Ky = L. =Ky=0 (7
and ' 1 if Ry=.....7K=0
6. (K K )= ®
01t TR 0 otherwise

One of the nice properties of the normalization comnstant
is that several useful performance measures, such as the
ones listed below, can be derived from it.

utilization of device i, when the sys-—
tem contains 0yseeeslp jobs of classes

Ui(nl,...,nR) :
1 through R, respectively.

Uir(nl""’nR) : utilization of device i by class r jobs,

when there are n,,.., jobs of classes
12 e20g J

1 through R, respectively, in the sys-

tem.



system throughput when the system
‘contains LERRR jobs of classes. 1

Xo(nl,...,nR)
through R respectively.

Xor(nl,...,nR) :
system contains LSTRERPLY jobs of

classes 1 through R respectively.

average number of class r jobs pre
sent at device i when there are
Dpseesslp jobs of classes 1. through

Qir(nl’ . ",UR)
R, respectively, in the system.

4, VARYING THE DEGREE OF MULTIPROGRAMMING PER JOB CLASS

In actual computer systems thecnumber of jobs multi -
programmed in each job class is not fixed but varies dy
namically depending on the class nature and mainly on
the amount of memory available for each class during the
period of observation.

For instance in a given installation one may have the
following upper limits on the level of multiprogramming
per workload type.

TABLE 1 - Example of Varying Degree of Multiprogramming
WORKLOAD | WORKLOAD MAXIMUM LEVEL
# NAME OF MULTIPROGRAMMING
1 FAST BATCH 3
2 NORMAL BATCH 1
3 TIMESHARING 3
4 DB QUERY 2
5 DB UPDATE 1

Therefore, at a given instant, the number of FAST BATCH
jobs being multiprogrammed may be 0, 1, 2 or 3, Let a
configuration ‘be the'tuple(nl,..;,nR) where n,, for
1<i<R, is the current number of class i jobs being mul-
tiprogrammed. In section 3 this number was assumed to be
fixed for each job class (workload). In this section we
let this number be any integer from zero up to a given
limit Ni (the maximum level of multiprogramming of class

i); Some examples of possible configurations for the ta
ble above are (2, 0, 2, 1, 1), (3, 1, 1, 2, 0) and
(1, 1, 3, 2, ).

This section presents an algorithm which allows us to ob
tain performance measures for each class when several
different configurations exist during the observation
period. In other words, we do not require that the num-
ber, n., of class i jobs be fixed, but we allow it to

vary from zero up to the maximum level of multiprogram-—
ming N, . :

i
The next three subsections show how to model workloads
of the three different types (batch processing, time -
sharing and transaction processing). Then we present the
algorithms used to obtain performance measures in the
varying degree of multiprogramming case.

4.1 BATCH PROCESSING CLASS

The batch processing (BP) class is modeled assuming a
continuous backlog situation. Therefore, the number of
batch jobs in the central subsystem (see Figure 3) os -
cillates between two consecutive integers NL and N, .

H
The average number of jobs in the system is N.

throughput of class r jobs when the
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Let,

N: average number of batch jobs in the central subsystem.

XO(N): throughput of the batch class when there are N
jobs of this class in the system.

R: average response time of batch jobs.

NL: greatest integer smaller than N. (LNI)

N,: smallest integer greater than N. ([N1)

p(%): fraction of time that there are £ jobs in the sys-—
tem,

amount of time during which there are % jobs in
the system.

I(R):

If N is an integer, the average response time of batch

jobs can be obtained from Little's Law [15](1) . Thus

©)
Let us now examine the case where N is not an integer.
From the definitions of N, NL and NH and from our con -
tinuous backlog assumption, it follows that,

pN) +p (N =1 (10)

N TN Ny IOV

T =N

(11)

If we observe that p(%) = I(L)/T, expression (11) can be

rewritten as

N, p(N) + Ny p(N) = N (12)
From (10) and (12) it follows that

p(N) =N, - N (13)

P(NH) =N- N (14)
The average throughput is given by

X, () = p(N) X )+p (W)X, (W) (15)

and the average response time of batch jobs can be obtai-
ned by applying Little's Result.

Hence, (16)

Since NL and NH

X(NH) can be obtained through the normalization constant.

are integers, the throughputs X(NL) and

Notice therefore that formula (15) allows us to obtain
the throughput when the average number of batch jobs in
the system is not an integer.

4,2 TIMESHARING

Figure 4 shows a computer system devoted exclusively to
the processing of timesharing jobs.

Let,

Z : average think time (i.e., average time between the
system response to a user request and the submissim
of a new request)

NT : number of terminals

J : maximum level of multiprogramming (i.e. maximum num
ber of active timesharing jobs in the central sub -
system)

N : current number of active jobs in the system.

XO(N): throughput of the timesharing class when there are

N jobs in the central subsystem.

TI)" The operational coounterpart of Little's Law was pro
ved by Buzen in [7].



service completions equal to SO(N) = 1/X(N). The princi-

ple of decomposition is used again in this analysis
There may be.up to J jobs in memory. The remaining jobs
must wait for memory. Therefore, the central subsystem
is again viewed as a server and a queue. The throughput
of this server is XO(N) if N<J and XO(J) if N>J.

Assuming that the system is in operational equilibrium
and assuming single arrivals and departures one can de-
rive balance equations for p(n) in a way similar to Bu-

%
zen in [8]. Let N be the maximum number of jobs in the
central system during the observation period. Then

L
p(N) = ———— p(n-1) n=l,...,J (28)
Xy (n)
1 %
p(n) = —F—— p(n-1) n=J,...,N (29)
XO(J) ’
The normalization equation is
J~1 N*
I p(m)+ I p(n) =1 (30)
n=0 n=J

From (29) we can obtain the value of p(n) as a function
of p(J) for n2J.

L n—-J %
p(n) = (—-—— ) p(3)  n=J,...,N (31)
XO(J) ’
£ N* . .. (D
) is large and L<XO(J) we can write
* N* 3
L o= )
Zp(n) = ¢ D) p(J) = Bﬁi% (32)
n=J n=. 0 1- 3{-6-(?)

We are now ready to find the true values of p(n) for any
value of n as follows.

1. Set p(0) =1

2. Calculate p(n), for n=l,....J, iteratively using (28)

3. Use the values obtained in step 2 to calculate

s &)
C= 1 pn) + L
n=0 1- o
XO(J)

4. Divide the values of p(n) obtained in step 2 by C.
These are the true values of p(n) for n=1,...,J. The
true value of p(0) is 1/C.

. The true value of p(n) for n>J is obtained from ex -
pression (31) where p(J) is the one obtained in step
4,
The average number of jobs in memory, ﬁﬁ, is given by
J-1
ﬁh = L. ip(i) + J.2 p(i) (33)
i=1 i2J
Using (32) in (33) we obtain
J-1
N, = ¢ dp(i) + UL (36)
i=1 1- .
XO(J)
The average number of jobs waiting for memory, ﬁd, is ob-
tained by
¥ = 3 ip (i) (35)
o 0

where PQ(i) is the fraction of time that there are i

jobs waiting for memory. Since P
follows that

(D)

Q(i) = p(i+J) for i21, it

R A N* ~ J+1
More precisely we require that [X L <<1,

07
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N

i

- . L
N, = £ ip(itJ) = I i [z—=]1 p(D)
Qs 51 XO(J)
L
. X, (J)
L ] L i ' (0]
=D 1 Lk gl O
0 y i1 %o T
o ( XO(J))

(36)

Notice that the distribution of jobs waiting for memory
is easily obtained from p(n) as follows.

I
i=

p(i)

PQ(O) o

1}

Po() = p(it)) for i>1

The average number of jobs in the central subsystem,

g > is given by

NS = NM + NQ

From Little's law we obtain the average response time of
transaction type jobs, as

(37)

4.4 COMPOSITION OF JOB CLASSES

As mentioned already, queueing network theory literature
contains algorithmsto analyze queueing networkswith mul-
tiple classes. However, these results require that the
number of jobs in the system be fixed. This section pre-
sents an extension to the operational analysis of queue~
ing networks that allows the performance analyst to deal
with models which contains multiple classes of jobs and
where the number of jobs in each class may vary in a gi-
ven range, determined by the maximum degree of multiprom
ming of each class. Therefore, the number of jobs in the
system is not fixed anymore. This is achieved by the
class composition algorithm given below.

First we introduce the notation used in this section.
Then, we present the algorithm followed by a set of ex-—
planatory comments about the crucial steps. The reader
is advised to follow the algorithm and the comments in
parallel.

Let,

pgnrlnr~l,....,n1): fraction of time that there are n.
class r jobs in the central subsystem

given that there are n_qse-

jobs in classes r-1,...,1 respecti =~
vely.

ety

fraction of time that there are n

class r jobs in the central subsys -
tem, independently of the number of
jobs in other classes.

:throughput of class r jobs when there
are n, class 1 jobs,..,n_classr jobs
1 r

independently of how many jobs there
are of classes r+l through R. For

1,.....,nR) = XOR(nl,..,an

throughput of class r jobs when there
n jobs of this class in the central

+
r=R, XOr(n
XOr(nr)

subsystem, independently of the num
ber of jobs in the other classes.

We assume that any class may be of one of the three types
defined in section two, namely batch, timesharing and



L(N) : average arrival rate of timesharing jobs when
there are N jobs in the central subsystem.

ﬁﬁ : average number of jobs in main memory

ﬁQ :. average number of jobs waiting for memory

ﬁs : average number of jobs in the central subsystem .
T oW O+
NS NQ NM.

p(N) : fraction of time that there are N jobs in the cen
tral subsystem.

Timesharing systems were first analyzed using decomposi~
tion methods by Brandwajn [20]. His model is a single
job class onee The analysis of the timesharing case done
here considers the central subsystem as a load dependent
server with mean time between service completions equal
to SO(N) = 1/X(N). Notice that X(N) is the throughput of

the central subsystem obtained, under a constant load of
N jobs, i.e, studying the offline behavior of the cen—
tral subsystem. This kind of approach is the decomposi -
tion principle introduced by Courtois in [16]. This prin
ciple allows the analyst to replace a subsystem by a sin
gle state dependent server. The service rate of this ser
ver is determined by studying the subsystem in isolation.
Little error is obtained with this approximation if the
rate at which transitions occur within the subsystem is
much greater than the rate at which the subsystem inte -
racts with the rest of the system.

Let us consider the central subsystem in more detail as
in Figure 5. If there are N jobs in the central subsystem
then min(N,J) jobs are in memory. These jobs may be'.in
one of three different states: ready (R), executing (E)
and suspended (S). If there are more than J jobs in the
central subsystem, then there will be (N-J) jobs waiting
for memory. The central subsystem may now be viewed as
being formed by a server and a queue. The thronghput of
this server is equal to XO(N) if N<J and XO(J) if N<J.

Let us write balance equations for the fraction of time,
p(N), that there are N jobs in the central subsystem. Lf
one assumes that the system is in operational equilibrium
and if one assumes single arrivals and departures [8] one
can obtain the balance equations given below, following
an argument similar to the one presented by Buzen [8] to
derive the General Birth-Death Formula.

~-N+
S = NTZN 1 . Xol(N) . p(y-1)
for N=1,....,d (17)
p(N) =NL;NE : YE—% . p(N-1)
for N=J+l,...,N; (18)
We also have the normalization equation
(19)

N
T .y L
i_go p(i) =1 '

Setting p(0)=l we obtain a first set of values of p(N)
for lstNT recursively from equations(17) and (18). In

order to get the true values of p(N) one must divide each
of the values obtained by the normalization constant
NT
C=1
i=0
are the ones obtained in the first place.

p(i), where the p(i)'s of the previous summation

The average number of jobs in memory is then calculated
as

N ,
ip(i) + 727 p(i) (20)
i=1 i=J

The average number of jobs waiting for memory may be cal
culated as
N, -J

¥ =
Qa1

N3

i PQ(i) (21)

where ﬁQ(i) is the fraction of time that there are i jdbs
waiting for memory. The values of pQ(i) are obtained di-

rectly in terms of the values of p(N) as follows.

pQ(i) = p(i+J) for i=l,..., NT-J (22)
J

pQ(O) =31 p(i) (23)
i=0

The average number of jobs in the system is now given by

NS = NM + NQ (24)

Notice, that while ﬁé could be obtained directly as

N
ng i p(i), the analysis above yields several interesting

memory utilization reports which include the average de-—
gree of multiprogramming (ﬁh) and the distribution of

jobs in execution and waiting for memory.

Let XNT be the central subsystem throughput when there

are NT terminals.

From the values of p(N) one can calculate XNT as

N
T 25
Xyp = 0 Xy (W) p(0) 23
N=0
Job flow balance implies that
NT—N
X @™ = - (26)
Replacing (26) in (25) it follows that
N, N_-N N N N -N
T T T T .. TS
Ry =3 G P =g~ 1 M=
N=0 N=0

Finally, applying Little's law we get the response time,
R, of timesharing jobs.

s
Ayt

4.3 TRANSACTION PROCESSING CLASS

R 27

Figure 6 presents a computer system subject to a load of
transaction type jobs which arrive from terminals at an
average arrival rate of L transactions per second.

Let,

L: average arrival rate of transaction type jobs.
J: maximum level of multiprogramming for the tran-—
saction class

XO(N) ¢ throughput of the transaction class when there
are N transaction type jobs in the central sub-
system.

N: current number of active jobs in the system

NM’ NQ and NS: as defined in section 4.2,

pN) fraction of time that there are N jobs in the

central subsystem.

Similarly to the analysis of the timesharing class done
in section 4.2 we are going to consider the central sub
system as a load dependent server with mean time between

100



transaction. It should be noted however that there may be
any number of classes of a given type.

Consider the graphical representation of classes given in
Figure 7. This example will be .used to elucidatetthe class
composition algorithm. There are three classes of jobs
with multiprogramming levels varying between 0 and 1,

0 and 2, and 0 and 3 for classes 1 through 3 respective-
ly. Notice that a path from the root to a leaf of the
tree shown in Figure 7 represents one of the possible
configurations, and the tree represents all possible con
figurations.

Class Composition Algorithm

Step 1 - Set r=R

Step 2 - [calculation of class r throughputl. Determine
the class r throughput for every possible con
figuration (nl, ..... ,nR), according to the for

mula given below

¢ ) - GM(nl,...,nr —1""HR?
op (B e veesDseensly

GM(nl,.....,nR)

for n,=0,..

1 n,=0,..

.,Nl, 9 ,Nz;...;nR=0,....,NR

Step 3 - [step 4 must be skipped for class R jobs] If r=R
then go to step 5.

Step 4 - [calculation of class r throughput independent
of higher classes] Determine the class r thr=
oughput for every possible configuration
(nl,......,nr) independently of the number of

jobs in classes r+l through R, i.e., calculate

N N
+ _ R r+l
XOr(nl"""nr) —nR E e r+§ 0 Or(nl"'nR)x
G L R ERRETLSPRRRPLIDL
....X
Py r+1In seeeesny)

for n,=0

1 ,.....,Nl;.....;nr =0,.....,N

r
Step 5 — [calculation of conditional fraction of timel

. . + .
Using the values of XOr(nl"""nr) obtained

in the previous step calculate the probability
p.(n ln__;s.pnp) fof m=05..,N:5. .50 =0,..,N .

These probabilities are calculated accordlngly
to the methods described in section 4.1 through
4.3 for each type of class.

Set r=r-1. if r2l then go to step 2.

Step 6 -
Step 7. - [Obtaining the unconditional fractions of time
and throughputs] Calculate the unconditional

fraction of time pr(nr) for r=2,....,R and
for n. =0,...,N_, as follows.
T T
N N
1 r-1
pr(nr) = E=0...n2 S0 pr(n 5 ,.,.,nl)
1 r-1

Py (Bpg 12y gs e nsmy )X xRy (mylng )22y (0y)

Calculate the unconditiomal throughput XOr(nr)

for r=2,...,R and for n —O,...,Nr as follows.

N1 r 1
Xor(nr) =n£ =0"""n L =0 XOr(nl""’nr> x
1 r—-1
P, l(n Inr_z,.....,nl)X...sz(nzlnl)xPl(nl)

Step 8 - [Obtaining the average throughput for each class,
over all observed configurationsl
Calculate

xOr_ —0 XOr(nr)pr(nr)

HMZ

for r=1,..... >R.

Comments on the Class Composition Algorithm

Comment on Step 2: In the example of figure 7, one would
calculate XOr(O’O’O)’ XOr(l’O’O)’ ..... ,Xor(3,2,1).

Comment on Step 4: Let us first derive the expression

given in Step 4 for X (n ,....,nr). Some definitions are

‘in order. Let

number of class r system completions

Corﬁn
when there. are ny class 1 jobs,...,nR

EREREE ,nR):

class R jobs.

.,n_): number of class r system completions
when there mn,class 1 jobs,..... ,0
class r jobs.

: amount of time during which there are
n; class 1 jobs,....,nR class R jobs.

: amount of time during which there are

n, class 1 jobs,..... »T class r jobs.

From the above definitions we may write the obvious rela
tionship below.
+

< n) = cOr(nl”""’nr) (38)
0r 1 >r Ir(nl’ ...... ,n_)

cOr(nl’;'°"nR)

Ko (Dyyeeeseyhy) = w0 (39)
or 1 g I(nl,......,nR)
" NR Nr+1
C. (nyeeesn) =58 ~vvee l o C. (ny,...,n,) (40)
0or 1’ >y nR—O nr+1—0 0or 1 R
Using (39) in (40) it follows that
N N
+ R r+l
COr(nl""’nr)=n§=0" 270 Xor ,nR)I(nl,.,nR)
Drel
(41)
Dividing both sides of (41) by Ir(nl"""’nr) we get
NR Nr+1

+ .
XOr(nl"""nr) = nﬁ=0"'n§+1=0 XOr(nl"""nR) x

ECHCS) “2)

Rewriting the ratio I (nl,....
the form below, we get
I(nl, ..... ,nR)= I(nl,..,nR) § IR—l(nl’ "nR—l)xmx
Ir(nl,....,nR) IR—l(nf"’nR—l) IR—Z(nl""nR—Z)

1:+l(n ""nr+1) (43)

If we use the fact that
Ir(nl"""nr)

Pr(nrlnr—l"""nl) = )

Ir—l(nl”“’nr—l

in (42) and (43) we get the expression for X (n ...,nr)
given in Step 4.
In the example of figure 7, for r=2 one would calculate

XSQ(O,O), ng(l,o), ..... ,XSZ(Z,I) using the values of
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xoz(ososo), XOZ(I,O,O), ceepX
and the values of p3(0[0,0),....,p3(3l2,1) obtained in
step 5 for. r=3,

Comment on Step 5: Assume that class 2 is of type time:. -
sharing. Then the balance equations for pz(n In ) would

be given by NT—n2+1 .
Pz(nzlnl) = A x = % ) pz(nz*llnl)
02 112"
for n, =1,.....,N2
and No—np+l
py(n,in) = —L 2 x 1 x
2(mplny A R py(ny=lln))
02° 7172
for n2—N2+1 .,NT

accordingly to equations (17) and (18). The normalization
equation would be
N,
ZT
n,=
Comment on SteE 7: The expression for P, (n ) follows

dlrectly from the operational counterpart of the theorem
of total probab111ty, whié¢h we call theorem of total
fraction of time. We state this theorem below. A proof
of this theorem can be found in [18].

P(nzlnl) =1

Theorem of Total Fraction of Time: Let S be a system con
figuration and let S, -1,.....n be system conflguratlons
such that
i) if the system is in configuration S, it must be in
exactly one of configurations S1

ii) if the system is in configuration Si it must not

be at configurations Sj for j#i.
iii) the system must be,in configuration S, for an amount
of time greater than zero, for every ~ i=l,....,n

Then n

p(s) = i1 p(ss, ;p(8))

where p(SISi) is the fraction of time that the system

is observed in configuration S given that it is in con-
figuration Si'

From the definition of p(S[Si) it follows that
I(SSi)/T P(Ssi)

- (44)
I(Si)/T p(5;)

p(slsi) =

Now, from this theorem we have that

N1 Nr—l
pr(nr) = §=0"‘ﬁ'f B pr(nrlnr_ ..,n )p(n EEE n )
r—-1=0
(45)
From (44) it follows that '
p(n ""’nl) = pr_l(nr_llnr_z,,.,nl)xp(nr_z,...,nl) =

Proy (g lnpsecsmpdxp oG w2l gs e esm X8 g, oy )=

-...=pr_1(nr_1|nr_2,...,nl)x..x p,(n,yln )xp, (n;)

. (46)
Finally, u31ng (46) in (45) we get the expression for
P.(n) used in step 7.

In order to derive the expression for XOr(nr) let us

first state and prove theorem below.

02(3,2,1) obtained in step 2

103

..,0

Theorem of Total Throughput: Let S and Si for i=1,

be system configurations as defined for the theorem of
total fraction of time.

Then,

X(8) = X(SIS ;P(8))

where X(SlSi) is the throughput of the system when it

is in configuration S given that it is in configuration
Si, and X(S) is the throughput when the system is in con

figuration S.

Proof: By definition X(S) = C(S)/I(S) where C(S) is the
number of completion when the system is in configuration
S. Also, by definition

C(S88.)
XIS = ey 47)
If we observe that
C(s) = igl C(SSi) (48)
and if we use (47) in (48) it follows that
Cc(s) = ; x(slsi)l(si) (49)

i=1

Dividing both sides of (49) by I(S) the theorem is pro -
ved.

The expression for XOr(nr) used in step 7 is obtained as

a direct conmsequence of the theorem of total throughput
and of expression (46).

5. CONCLUSIONS

“ ( \ "’-:‘»
The algorithm presented in section 4 was implemented in
PL/1 apd several experiments were conducted on an IBM/370
Model 165. Several BEST/1 case studies published in the
literature were used to validate our model. Table 3 belar
presents the comparison between our model and Best/1l. We
also provide CPU time and memory requirements to run our
model.

Cases 1 and 2 have 3 different workload of the types

batch processing (BP), transaction processing (TP).and
timesharing (TS). Cases 3 through 6 have two workloads
of the types TP and BP. Case 1 was run with data from
[13] while the remaining ones were run with data from

[191.

As shown in section 4, other results such as memory re -
ports (e.g. average number of jobs in memory per class
and probability distribution of jobs in memory and wai-
ting for memory) can also be obtained. The class composi
tion algorithm presented here can be used to obtain many
other performance measures. For instance, given the ex —
pression for the average number of jobs per device for
any fixed configuration one can obtain the average num~
ber of jobs per device for the varying degree of multi -
programming case using the class composition algorithm
presented in section 4.
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