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1. INTRODUCTION

The main goal of this paper is to describe some numerical

methods for solving nonlinear variational problems in incom-

pressible finite elasticity.

In Sec. 2 we discuss a decomposition principle for a large
class of variational problems and then derive several itera-
tive methods of solution from this principle. We give in
Sec. 3, the formulation of elastostatics two-dimensional and

axisymmetric problems for incompressible Mooney-Rivlin mate-

rials.

In Sec. 4 we describe the application of the algorithms of
Sec. 2 to the iterative solution of the mechanical problems
of Sec. 3. In Sec. 5 we give some brief indication on the fi-

nite element approximation of the problems of Sec. 3.

Finally some numerical results obtained applying the methods

of Sec. 4,5 are presented and discussed in Sec. 6.

2. DECOMPOSITION OF VARIATIONAL PROBLEMS AND ASSOCIATED ALGO-
RITHMS.

2.1. A family of Variational Problems.

Restricting our attention to real Hilbert spaces, we consider

| ana

¢ ’

two such Hilbert spaces V and H equipped with-
and inner products ((+,+)) and (-,j), respectively.
Let B ¢ #£(V,H) and F,G be two proper, convex, lower semicon-

tinuous functionals from H,V to IR, respectively, such that

(2.1) dom(G) ndom(FoB) # @
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We associate with the above V,H,B,F,G the following minimiza-

tion problem

(P) Find u ¢V such that J(u) <J(v) ¥ veV,

where J : V - IR is defined by

(2.2) J(v) = F(Bv) + G(v).

It appears from (2.2) that J(-) and therefore (P) have very
special structures and taking this into account it is then

quite natural to design special methods of solution for (P).

Remark 2.1 : Most of the considerations which follow can be

applied to variational problems like
(2.3) £ ¢B'A; (Bu) + A,(u), :

where £ ¢V' (dual space of V) and where Al (resp. Az) is a

monotone operator (possibly multivalued) from H to H' (dual

space of H) (resp. V to V') ; the operator A = B*quoB+A2,
from V.- -+ V' is not in general the differential (or subdif-
ferential) of a functional J. For many results on these
generalizations we refer to P.L. LIONS-B. MERCIER [1] and
GABAY [2]. If we suppose that in addition to {2.1) we also

have

(2.4) lim J(v) = +
I [f e
then (P) has a solution which is unique if J is strictly

convex.

Remark 2.2 : The applications in finite elasticity that we
have in view are actually related to nonconvex minimization

problems.

2.2 A decomposition principle.
Let us define W cV XH by
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(2.5) W= {{v,q} ¢VxH, Bv-q = 0} .
Problem (P) is then clearly equivalent to

Find {u,p} ¢W such that

(m)

j(u,p) <Jj(v,q) ¥ {v,q} eW,
where
(2.6) j(v,q) = F(g)+ G(v).

Remark 2.3 : The new problem (m) has clearly a mixed formula-
tion "flavor" since the linear relation Bv-g = 0 suggests the

introduction of a Lagrange multiplier.

Remark 2.4 : Problems (P) and (r) -are equivalent, but consi-
dering (m) we have in some sense simplified the nonlinear
structure of (P), at the expense however of the new variable

g and of the relation

I
o
B

(2.7) Bv-gq

Actually since (2.7) is a linear relation, very efficient

techniques may be used to treat it ; in the following this
will be done by using, simultaneously, penalty and Lagrange

multipliers, via a convenient augmented lagrangian functio-

.

nal.

2.3. An augmented lagrangian functional associated with (m).
Let r >0 ; define %r :VXHXH - IR by

(2.8) £ (v,q,m) = F(@)+6(v)+ 5 [Bv-q|®+(u,Bv-q).

It can be proved that if {u,p,A} is a saddle-point of £

over VxHxH, i.e., if

{u,p, A} eVxHXH and ¥ {v,q,n} e VxHxH

(2.9)
£ (u,p,u) £ (u,p,A) <L (v,q,}) ,
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then {u,p} solves (m), i.e., u solves (P) (with p = Bu).

2.4. A first algorithm for solving (P) .

To solve (P) and (m) we shall compute the saddle-points of
£r by an algorithm derived from the duality algorithms con-
sidered, for example, in GLOWINSKI-LIONS-TREMOLIERES [3,41,
Chap. 2. Such an algorithm applied to the solution of (2.9)
is

(2.10) 2° ¢eH, given

n+l

then if n 20, A" given, we compute un,pn,K by

Find {u®,p"} ¢VxH such that

(2.11)
2_(@”,p" M =2 (v,q,2") ¥ (v,q) eV,
(2.12) AP = 3P4 (Bu"-p™ .
Concerning the convergence of algorithm (2.10)-(2.12) it

can be proved (see [5, Chap. 3] and [6, Chap. 5]) that under

very reasonable assumptions on F,G,B and if

(2.13) 0 <p <2r,

then we have as n > +<

(2.14)

c
¥

u strongly in V,
(2.15) p =+ p = Bu strongly in H,
(2.16) A7 ~» X weakly in H,

where u is the solution of (P), and where A is such that

{u,p,r} is a saddle-point of &£  over VxHxH.

Remark 2.5 : The only nontrivial step in the above algorithm
is clearly the solution of the minimization problem (2.11).
Actually to solve (2.11), taking into account its special
structure, it is very convenient to use a functional block

relaxation method (like those discussed in CEA-GLOWINSKI [7];
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see [5],[6] for more details on the block relaxation solu-
tion of (2.11)). If this relaxation method is used, and if in
the calculation of {un,pn} we only do one inner relaxation,

n-1 n—l}

starting from {u P , we obtain the algorithm described

in Sec. 2.5.

2.5. A second algorithm for solving (P).

The new algorithm is defined by

(2.17) {u_l,Ao} e VxH, given,

then for n =0, un—l’Kn given, we compute pn,un,kn+l by

Find p" ¢H such that

(2.18) :
=£r(un_l,pn,>\n> si-r(un—l,q,%n) ¥q ¢ H,
Find u" ¢V such that
(2.19)
£r(un,pn,kn) < £r(v,pn,kn) ¥v eV,
(2.20) A% = Ao (Bu-pM) .

Remark 2.6 : Several variants of (2.17)-(2.20) are available.
We can for, example
(i) Exchange the role of q and v (see also Remark 2.7)
(ii) Update also A" between the steps (2.18),(2.19) ;
doing so we obtain the following variant (due to
GABAY [2]1) of (2.17)-(2.20) :

(2.21) {u—l,ko}e VxH, given,

n-1

then for n z0, u ,Xn given we compute pn,kn+l/2,un,kn+l by

£r(unfl,pn,kn) sir(un—l,q,Xn) ¥ g eH,
(2.22)

pn eH,
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(2.23) "2 2 P ed® ™),

£r(un,pn,kn+]/2) sir(v,pn,xn+l/2) ¥v eV,
(2.24)

un eV,
(2.25) At - AL/ 2, 0 (BuP-p™)

g and v play a more symmetrical role in (2.21)-(2.25) than
in (2.17)-(2.20).

Remark 2.7 : If one uses algorithm (2.17)-(2.20), it is re-
commended to solve, in the second step, the problem which
has the best properties of ellipticity (for more details,
see [5,6]). If one uses (2.21)-(2.25), the character of the
problems ellipticity does not matter since g and v play a

symmetrical role. ®

Concerning the convergence of (2.17)-(2.20) it is proved in
[5,6] that under vary reasonable assumptions on F,G,B we
still have (2.14)-(2.15) if

(2.26) 0 <p <li7f5 r

If G is linear it follows from GABAY-MERCIER [8] that we can

again take 0 <p <2r.

2.6. Remarks on the choice of p and r.

For a given r, the optimal choice of p is very close to p=r,
as shown by the various numerical experiments that we have
done on the algorithms of Secs. 2.5 and 2.6. The choice of «r

is a more delicate matter. Theoretically, the larger r is,

the faster is the convergence of (2.10)-(2.12). Actually, for
large values of r the problem (2.11) will not be well-condi-
tioned and its accurate solution will be a costly operation ;

moreover, for very large values of r, round-off errors play

a significant(negative) role. As we can see, we have there-

fore two contradictory behaviors as r increases. The global
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effect of these phenomena on (2.10)-(2.12) is to produce an
algorithm which is not very sensitive to the choice of r and

which is wvery robust.

2.7. Relations with Alternating Directions Methods.

2.7.1. Relations between algorithms (2.17)-(2.20), (2.21)-
(2.25) and A.D.I.

We suppose for simplicity that V=H and B=I. We suppose also

that ¥ and G have as differentials (or subdifferentials) Al
and Az,

monotone (possibly multivalued) operators. Then (P) is equi-

respectively. Note that Al and Az are necessarily
valent to

(2.27) Ay (W)+A,(w) =0

where the equal sign has to be replaced by 3 if Al and/or

A
2
of A™ in (2.17)-(2.20) we obtain

are multivalued. Suppose that p=r ; then by elimination

(2.28) u_l given,
then for n =0,

(2.29) rp" + Al(pn)

It
H
o
>

N
o

(2.30) ru® + A, (M)

1l
H
c
1
b
i
3

un+1/2 _ pn+l

Setting , we finally have
(2.3 ™2 4 a @) - - oa, 0",
(2.32) run+l + Az(un+l) S Al(un+l/2).

We recognize in (2.31),(2.32) a Douglas-Rachford Alternating
Direction Implicit (ADI) method (see [9]). Similarly, by

elimination of A® and Xn+l/2 we obtain from (2.21)-(2.25)

(still supposing p=r)

(2.33) a2 4 Al(un+l/2) = - A, ()
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n+1l n+1l

(2.34) ru + Az(u = run+l/2

) un+l/2)

._Al(
which is (see [10]) a Peaceman-Rachford ADI method. Such ADI
methods involving fairly general monotone operators Al and

A. have been studied in [1,2].

2

2.7.2. An initial value problem interpretation of (2.17)-
(2.20) and (2.21)-(2.25).

It follows from Sec. 2.7.1 that if p=r and V=H, B=I, then

(2.17)-(2.20) and (2.21)-(2.25) can be seen as implicit sche-

mes, based on fractional steps, for the discrete time inte-

gration of the initial value problem

u(0) = ug
(2.35)

du _

E-'—A(u)—o

where A = Al+A2.

From that interpretation r appears as the inverse of a time
step At (i.e. r=1/At). As shown in [11], this interpretation
of the avove algorithms, using the initial value problem
(2.35), may be very helpful in obtaining insight concerning
the behavior of these algorithms ; for example, the larger

r is, the safer the algorithms.

The numerical integration of initial value problems by ADI
methods is discussed in [1] under fairly general assumptions

on Al and A2.

2.7.3. Further comments.

The solution of problems like (P) by decomposition-coordina-

tion methods via augmented lagrangians seems to be due to
GLOWINSKI-MARROCCO [12,13,14] (see also POLJAK [15]) . For
more details and various applications see also {r1,2,5,6,8,
11,16-22]. Ref. [11],[22] in particular describe the appli-
cation of the above algorithms to large displacement calcu-
lations of flexible, inextensible, bending pipe lines.

To the best of our knowledge the relations between the al-
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gorithms of Sec. 2.5 and ADI methods have been observed for
the first time by CHAN-GLOWINSKI [23]. In Sec. 2 we have
basically followed the presentation of FORTIN—GLOWINSKI [5]
and GLOWINSKI [6].

3. — FORMULATIONS OF ELASTOSTATIC PROBLEMS FOR INCOMPRISSI-
BLE MOONEY-RIVLIN MATERIALS.

3.1. Notation and mechanical assumptions.

A fundamental problem in nonlinear elasticity is the calcu-
lation of the deformations of a solid body made of an homo-
geneous, incompressible, hyperelastic material, subjected

to volumetric forces p,f (pO : density in the reference con-

figuration) and superficial forces SO. In a lagrangian for-

mulation, the related energy functional, corresponding to a

displacement field v is

(3.1) m(v) = J o (o(v)-f-v)dx - J s .v ar ,
< o ~ e TS o ~
Q N
2

where Q is a bounded domain of E@q corresponding to the re-
ference configuration ; 3Q(= anlJBQ2) is the boundary of ,
the body being fixed on BQl. We have denoted by o(v) the
stored energy functional (per mass unit). For a Mooney-Riv-

lin material we have

(3.2) ¢ o(v)

1

E, (T;-2) if N=2 ,
(3.3) 0(v) = B (I{-3)+E,(I,~3) if N=3

with, in (3.2),(3.3), Ii the i-th invariant of the th ten-
sor, where

(3.4) F = Vv+I

and Eq,E, are coefficients which are material dependent.

The displacement also has to satisfy the incompressibility

condition which here has the following form

(3.5) det F(Y) =1 a.e. on Q.
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Remark 3.1 : We have supposed in (3.1) that So amif are indepen-
dent ‘of v. This corresponds to the standard simplifying assumption
known as the dead loading hypothesis for which f and §o do
not vary during the motion ; if we deal with pressure type
forces, then §o is a function of u (the actual displacement),
given by

-1
(3.6) So = ~a(xtu(x)) (I+Vu) "n
where g(x+u(x)) 1is the pressure at the point x+u(x) of the

actual configuration and n is the unit outward normal at 9%,

in the reference configuration.

3.2. Mathematical formulations.

We shall give in this section several possible formulations
of the elasto-static problems ; it is still an open problem
to prove their equivalence in general (see [24]-[26] for a
discussion of these equivalence, and also the comments of
Sec. 3.2.4).

3.2.1. Formulation by minimization.

Tt is reasonable to suppose that those displacements u cor-

responding to stable equilibrium position obey

is a local minimizer over K of the functional

[ ¥=]

(3.7)

1<

+ m{v),

with for an incompressible Mooney-Rivlin material

kK = {ve (# (@), v=0 on 30;, det F(v) =1
(3.8)
a.e., Ftonte @@,

The existence of solutions for (3.7),(3.8) is proved in [27].

3.2.2. Formulation by equilibrium equations.

The equilibrium positions correspond to the solutions of
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the following system of nonlinear partial differential equa-
tions
ue K,

(3.9) |
(DT (u) ,v)+ J plu,vl] dx = 0 ¥ veX,
2y R v

where DT is the differential of 7 (on (Hl(Q))N) and where

9
Ju

(det F())vy 5 .

(3.10) [u,vl = 5

i,3

(3.11)  x = {ve @@, v=0 on 30,3

(in (3.10) we have used the standard summation and derivative
notations). The above function p, which is clearly a Lagrange
multiplier associated with the incompressibility condition

(3.5), appears as a pressure.

3.2.3. Formulation by augmented lagrangian.
We proceed as in Sec. 2 by "relaxing" the linear relation

(3.4) using an augmented lagrangian. We obtain thus the fol-

lowing formulation

Find {u,F,%}e W= XXYX(LZ(Q))NXN, stationary point

over W of the augmented lagrangian
(3.12) S (v,c,m) = 7(v) + S|lvv+i-cl|?, -
R'~"x'x ~ 2 Ve 3 L2
- J us (Vv-I-G) dx ,
Q¥ Y = R ~

where, in (3.12), we have R>0 and
v = re @)™, @hte @@V get F=1 ace.}.

3.2.4. Some relations between formulations (3.7),(3.9) and

(3.12).
The following results are proved in [24] =

a) Formulations (3.9) and (3.12) are equivalent.

b) Every "smooth" solution of (3.7) is a solution of (3.9),

(3.12),
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c) If the functional m is convex (case of a Mooney-Rivlin
material if N=2), then every solution of (3.12) is such
that u is a minimizer of

)

v+ £ (v,F,

>

R

similarly, for R sufficiently large every solution of

(3.12) is such that F is a minimizer of G +=£R(u,G,k).

Remark 3.2 : If {u,F,}} is a solution of (3.12), then the

condition
adiR(E’E’é) =0
implies
(3.13) -3, (&—— (po)-Ass) = p £
) jouy 3 o ij o"i”

From (3.13), A appears as this part of the first Piola-Kir-
choff stress tensor, corresponding to the incompressibility.
We observe also that an algorithm solving (3.12) gives the

stress field directly.

3.3. Axisymmetric problems.

3.3.1. Formulation of the problems.
We consider the case of an axisymmetric incompressible hyper-

elastic body subjected to an axisymmetric system of forces.
The problem is to find the axisymmetric positionhs of equili-
brium. We denote by u = {ul,uz} the displacement, with u, the

radial displacement and u, the axial one. Using an {r,z}

system of coordinates we have

l+ul,l ul’2 0
(3.14) £+Y9 = u2,l 1+1;12,2 0 ,
0 0 e (u)
o
where e(u) = 1+ - is the extension ratio in the circumfe-

rential direction, and where

Ju u

- _ 7 _ __ 3
Y510 7% %Yy,2 7 3z ¢
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Using the notation of Sec. 3.1, we have (with e=e(u))

_ 2
11(9) = e +(6ij+ui’j) ,

_ 2 _ 2
12(9) = e“ (8., .+u; ) +(l+ul,lu2,2 ul,2u2,1+ul,l+u2’2) .

lj l,j
det (I+Vu) = e(l+uy juy 5=uy Uy o +Up 1¥Uy o).

For incompressible materials we have

det(I+Vu) =1 a.e.
implying in turn

2 2 2

Iz(g) = e (6ij+ui,j) + 1/e”.

3.3.2. Lagrangian formulation.

Let © be the half meridian section of the reference domain ;

we associate to Q the following spaces (with 1< p < +)

2P = (o] J lo(x)|P rdr dz < +=} ,
Q
g = Tele, 22, B L%

we shall use in the sequel the notation dg = rdrdz.
With respect to the general case we do the following modifi-

cations

a) Spaces:

X = {ve (y)° , v=0 on 30,1} ,

and with 1 <i,j=<2

Y = (G = (g9} <17 x (£)%, g >0, godet g=1 a.e.l,
7 = {E {uo,uij}ez£l><(£2)4} .

b) Augmented lagrangian

_ ‘R _ 2
=Z- (y,glg) = TT(Y) + 'f JQ(dlj"*'Vl,] gl]) dX

R ~
(3.15) § ¢ R 2
Jo Pi3CigTVigToig)dE T Jg(go—e () 7dx -
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- Jguo(e(y)-go)dg-

Remark 3.3 : A possible variant of:&R in (3.15) can be obtai-
ned by replacing e(y) by 95 in m(v) (leading to a functional

m (Yrgo) ).

4, - ITERATIVE SOLUTION OF THE EQUILIBRIUM PROBLEMS.

We apply to the solution of the equilibrium problem (3.12),
the iterative methods described in Sec. 2, keeping in mind

that (3.12) is a nonlinear, nongquadratic, non convex problem.

4.1. A first algorithm for solving (3.12).

We follow Sec. 2.4 ; using the notation of Sec. 3.2.3 the

algorithm is

o]

(4.1 2° given in (% (@),

then for n=z 0, A" known we obtain gn,En and 5n+l

0" e @2 @)™ by

{u”,F"} ¢ XxY and ¥ {v,G} ¢ XXY we have

(4.2)
2o @ E ") <2 (v,6,07)

(4.3 A" =P 0 > 0.

Remark 4.1 :Problem (4.2) is equivalent to the nonlinear

system
(4.4) 2 N =2 wWhe 2" ¥eey, F e,
(4.5) 32 (W ET AN ey = 0 WreX, uleX,

whose block relaxation solution leads to the algorithm des-

cribed in Sec. 4.2.
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4.2. A second algorithm for solving (3.12).

4.2.1. Description of the algorithm.

The second algorithm is given by

(4.6) ul given in X, 2° given in (L2(Q))NXN
then for n=z= 0, un—l,xn given, we obtain gn,gn,3n+l from
.7 2N s 2 @ ea™ veevr ey,

(4.8)  agp(u,F )

(4.9) AL

= An—p(Vun+I—Fn).

4.2.2. On the solution of problems (4.7),(4.8).

Problem (4.8).is equivalent to

Find u® ¢ X such that
4.10)
n
£R(Bnl€nl )

2>

< & (Y,Fn,kn) YV e X

which is an unconstrained minimization problem whose solution
is quite easy, particularly if R is sufficiently large. If N=2
then the functional to minimize is quadratic, and therefore

solving (4.8),(4.10) is equivalent to solving a linear problem

related to a second order partial differential operator which
is independent of n and whose discrete variants are linear sys-

tems associated with positive definite matrices independent

of n (we shall use therefore a prefactorization of these ma-
trices). If N=3 or in the axisymmetric case problem (4.8},
(4.10) is no longer linear ;it can be, however, efficiently

solved by a preconditioned conjugate gradient algorithm.

Problem (4.7) is a more delicate one (apparently, at least) ;

if N=2, (4.7) is reduced to (omitting indice n)

Find F e Y and minimizing over Y the functional

G » J [RG?.—2(R(u. A8, L) =Xy 4) G, 1dx
~ 9 ij i, 3 "ij ij7 7137w
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with
2 4

()7, G116,5=G1,65; = 1 a.e. on a}.
Since derivatives of g (and E) are not involved in (4.11),

we can solve this last problem pointwise. We have therefore
to solve an infinity (in theory) of four-dimensional problems

of the following class

Find {Fij}e G and minimizing over @G the functional

(4.13)
2
{Gij} -+ RGij —2aijGij,
where
_ 4 - -
(4.14) g = {{Gij} €R" , Gy1Gy,=Gy,Gyy = 11 . ,

We diagonalize the above quadratic relation using as new

variables

Il

o
I

(F1#Fpp)/V2 , by = (Fp1-Fy5) /Y2,
(4.15)

b (F1+F ) /Y2, by = (Fy,-Fyy)/V2.

5=
Using b defined by (4.15), problem (4.13),(4.14) becomes

Find b e C and minimizing over C the functional

(4.16)

c - Rc? - 2zZ.,C. 4

< i i7i
where

C=(<~:ge]R4,ec?_=2},
(4.17)

with €l=84=1, €2=€3=—l.

The extremizers of (4.16),(4.17) are given by

4 .
(4.18) Pe R, bi=zi/(R+€ip), i=1,2,3,4,
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where the scalar p (Lagrange multiplier of Eibi = 2) is a

solution of
2,2 2 2,.2 2
(4.19)  (2(+zy)/(R+p) " = (z3+23)/(R-p)"+2

We suppose that zi+zi # 0 ; then it can be shown that (4.19)
has a unique solution in 1-R,+R[ ; moreover, using the im-
plicit function theorem (see [24]1, [25] for more details) one
can show that this solution p of (4.19) between =R and R is
precisely the one associated with the global minimum of

c - RC:Z.L—-Zzici over eici = 2, to which, therefore, corresponds
a unique global minimizer given from p in (4.16),(4.17) (ac-
tually there is no other minimizer (local or global) than the
above global minimizer).

Solving (4.19) on ]-R,+RI is a trivial problem ; we have

then 9 from p and (4.18), and then E from ? and (4.15).

Remark 4.2 : In the actual computer experiments that we have
done, we never encountered the situation zi+zz = 0 ; in fact
we have the feeling that for R sufficiently large this cannot

happen in the context of problem (3.12) if N=2.W

The solution of problem (4.7), in the axisymmetric case and
for genuinely three-dimensional problems, leads to a far more
complicated discussion, however the same general ideas still
apply . we refer to [24]1,[25] (resp. [28]) for the axisymme-

tric (resp. three-dimensional) case.

5, - FINITE ELEMENT APPROXIMATION OF THE EQUILIBRIUM PROBLEMS.

5.1. Synopsis.

A most important step to the computer use of the iterative
methods of Sec. 4, for solving the elasticity problems of
Sec. 3, is the reduction of these problems to finite dimen-—
sional one via convenient approximation methods. As it can

be guessed the main difficulty to overcome is the incompres-
sibility condition (3.5), coupled to the other nonlinearities

of the problems under consideration ; a guideline to the
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numerical treatment of the incompressibility condition is
given by those results concerning the numerical analysis of

incompressible flows governed by Stokes and Navier-Stokes

equations (owing to the very abundant litterature concerning
this subject we refer to the corresponding bibliographical
references in [24], [30] and also to the papers of Malkus

and Oden in these proceedings).

In this paper, restricting our attention to two-dimensional

problems we shall describe briefly two families of finite

element approximations, preserving the decomposition proper-

ties of the continuous problems :

a) A fairly classical one, previously used in [24],[25],[29].

b) A very recent one introduced by the third author in [301].
Corresponding numerical results will be shown in Sec. 6.

5.2. Approximation by quadrilateral finite elements.

The numerical solution of the lagrangian problem (3.12)
using the algorithms described in Sec. 4 requires the intro-
duction of finite dimensional spaces Xh,Yh,Zh approximating
X,Y,Z. An approximate gradient operator Sh from Xh to Zh
must also be defined.

In this section 5.2 the spaces Xh,Yh,Zh are constructed

using quadrilateral finite elements, with the displacements

interpolated at the vertices, the pressure and the tensor F

at the center of each element.

5.2.1. Quadrangulation of Q.

We suppose that our domain @ is a polygonal open set in R?

which can be decomposed into quadrilaterals

(5.1) a= U o -
kel
h
Here I, is a finite set of numbers and O is the image by
a mapping Ek of a reference rectangle {} such as the one

shown in Fig. 5.1 ; this mapping gk is defined by
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Figure 5.1 : Reference Rectangle
o
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1~ ~

Il o3

(5.2) X = Ek(}f) =
o
%%
where, in .(5.2), x is this vector whose coordinates are

those of the node ¢ of the kR element and where $% is the

shape function associated to the node o of the bilinear fi-
nite element {Q’{Aa}izl’ Ql(Q)}, Ql(ﬁ) being the space of

the bilinear polynomials defined on {, i.e.

(5.3) Q (@) = {gla(x) = a00+aloxl+a01x2+allxlx2}.

5.2.2. Discrete spaces and discrete operators.

We can now define the following spaces (with yh|k = yh[Q )
k

1 _ o, & _ -1 N
(5.4) H = {yhs c (a)y, yh|k = ZpoF T, 2y € Ql(Q)},
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(5.5) P, = {qh|qh|k = const.} ,

1

(5.6) Xy = H o X,
_ 4

(5.7) 2, = (Py)
(5.8) Y, = Yoz

Remark 5.1 : It follows from (5.2),(5.4) that the above fi-

nite element approximation is of the isoparametric type. ®

Concerning the approximate gradient operator Sy, s two quite

natural choices can be made

Either

(5.9) 1 spup) |y = Yu @ (A5)),

_ 12 . .
(5.9)2 sh(gh)|k = L"-projection of Yg on Zh'

5.2.3. Formulation of the approximate problems.

We consider only the plane strain problem since the exten-
sion to the axisymmetric case is quite obvious ; taking
into account the results of Sec. 3.2.3, 3.2.4 the discrete

approximation of (3.7),(3.8) that we consider is defined by
Find {uh,Fh,Ah}e Xy X ¥, x %, such that
Byﬁ(gh)-yh+R JQ(§+Sh(gh)-Eh).sh(Yh)dx +

(5-]0)1

- Jméh'sh(yh)d§ =0 Vyhe Xh

Fh minimizes over Yh the functional

(5.10)2
R 2
gh > §||I+Sh(uh) - §h|l +J93}1-g ax,

(5.10)3 §+Sh(9h) = Fh in Zh'
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Tt is important to observe that from the construction of Yh
and if we suppose that u, and éh are known in (5.10)2 then
this last minimization problem can be solved elementwise ;
therefore the algorithms of Sec. 4 can also be applied to
the solution of problem (5.10).

Concerning the convergence of the discrete solutions to the

continuous one we refer to LE TALLEC [24].

5.3. Approximation by incomplete gquadratic simplicial fini-

te elements.
We shall briefly discuss in this section a new type of fini-
te element approximation, using triangles ; these finite
elements have-'been recently introduced by the third author
in [30] (see also [31]) and have been denominated AQL (for
Asymmetric Quasi-Linear).
We follow [30] ; this new approximation is defined as

follows :

Let € be a triangulation of Q and let T« f% with vertices

(85ptiay 7
variables, of degree <2, defined over T and such that their

let P4_/3 be the space of the polynomials in two

restriction to two given edges, €1 and €5 for example,
are linear functions (eiT is the edge of T, opposite to

GiT) ; we clearly have dim P4/3 = 4. We introduce now the

following set of degrees of freedom {aiT}i=l’ where

a;m is for i=1,2,3 the functional value at diT’

aum is the functional value at the midpoint of edge €3m-

A fundamental property of the AQL element is given by the

following

Proposition 5.1 : Let v = {v,,v,} be a vector valued func-
_—_= 2 1772

tion defined over a triangle T and whose components belong

to P4/3, then

det (I+Vv) is linear over T.
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We refer to [30] for the proof of the above proposition.
It follows then from Prop. 5.1 that

1

(5.11) det (I+VV) (Cp) = fomg (M

J det (I+Vv(x))dx
T o ~

(where Gp = centroid of T), and (5.11) clearly suggests to

require the incompressibility condition
det (I+Vv) =1

at GT
Notice that because the nonsymmetric structure of the AQL

only.

element we have to make some restriction on the triangula-
tion upon which the space of the approximate displacements
is to be defined ; one suggests in [30] the following pro-
cess that generates nearly as general a mesh as any other
finite element triangulation

We first partition § into convex quadrilaterals arbitrarily
then each quadrilateral is subdivided into two triangles by
one of its two diagonals (any of them can be used) . The
edges over which the restrictions of the second order poly-
nomials of P4/3 are allowed to be quadratic are precisely

those diagonals.

Using the above AQL finite elements we approximate X,Y,Z

by Xh,Yh,Zh as follows

1 _ o5
(5.12) Hh = {yhe co (), yth €P4/3 YT e T%J ,
(5.13) Py {ththT = const. ¥T ¢ qih},
(5.14) X, = XonH-
. h h 7

1]

4
(5.15) 2y, (Py) ™y
(5.16) Y, = ¥YnZ.

Concerning the approximate gradient operator Sy, e use
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(5.17) Sh(gh)lT = th(GT).

Using the above spaces and operator the approximate problem
is then defined exactly as in Sec. 5.2.3 by (5.10), and the

local properties of (5.10)2 are preserved by the new element.

Remark 5.2 : We refer to [30], [31] for a detailed discussion
of the AQL element, and also for various two and three dimen-

sional generalizations.

Remark 5.3 : It will be interesting to use the AQL element
(and its generalizations) for the finite element solution of

Stokes and Navier-Stokes problems.

6. — NUMERICAL EXPERIMENTS.

All the numerical experiments displayed in this section deal

with Mooney-Rivlin materials and either a plane strain or
axisymmetric situation ; moreover the numerical results pre-
sented here have been obtained using the quadrilateral fini-
te element approximation discussed in Sec. 5.2. Other numeri-
cal experiments are done in [24],[25] (including the numeri-
cal treatment of plane stress problems) ; numerical experi-
ments using this Ruas' element of Sec. 5.3 (and some of its

generalizations are discussed in [30],[311].

6.1. Stretching of a thick cracked rectangular bar.

We consider a thick rectangular slab of Mooney-Rivlin mate-

rial, with a non-propagating crack in its middle, submitted

to vertical stretching forces applied at its extremities.
The initial configuration of the lower part of the bar and
of the crack is shown on Fig. 6.1 (a). Under the action of
the external forces this bar is stretched and its computed
equilibrium position (plane strain assumption, with O(Y)=
El(Il(Y)_z)) is shown on Fig. 6.2(b) (the various data con-
cerning this problem are indicated on Fig. 6.2).

Using p=R=8 we have convergence of algorithm (4.1)-(4.3) in
20 iterations, corresponding to a computational time of 3.2

seconds on CDC 6400. The computed stresses at the boundary
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match the applied tension with a 10_4 precision.

INITIAL (a) FINAL (b)

CAACK u,=0
X

NRARHARTARRAANIY

THE BOUNDARY CONDITIONS ARE

INDICATED ON THE FIGURE [} 411

Cl =1.psI i
TRACTION =6.0psI
HEIGTH =1.7S51x
WIDTH =1.951n T
CRACK LENGTH =0. 501w '
STRAIN ENERGY =2.212ft L8
UMAX =3.771n

Figure 6.1

6.2. Combined Inflation and Extension of a Circular Cylin-

drical Tube.
We consider here a circular cylindrical tube, made of an

incompressible isotropic elastic material, whose strain func-

tion is of Mooney-Rivlin type. This tube is inflated by im-
posing a fixed radial displacement to the inner surface BQl,

the outer surface being free of tractions. An analytical
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solution of this problem is given in CHADWICK-HADDON [32]
under the assumption that both extremities are stress free
and remain horizontal. We have approximated these conditions
by restricting the axial displacement to be zero at the mid
cross-section 893 and leaving the upper section traction free.
This physical configuration is a close approximation of the
case treated in [32] and is described in Fig. 6.2, where we
have represented the upper half part of the tube in its ini-
tial configuration.

39 g,

M

i D
Ve »
|

Figure 6.2
Using the notation of [32], the parameters in this problem
are

V)_3) 4

20(Y) = .875(I(Y)—3)+ .125(12(~

N

(outer radius/inner radius) in the reference

configuration

Q = final inner radius/initial inner radius.

The numerical values given in Table 6.1, both for the ana-

lytical and numerical solution correspond to

EXTV = final height/initial height,
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EXTH = final outer radius/initial outer radius.

The computed Cauchy stresses 949 and Oy

in the mid cross-

section are indicated (as functions of r) on Fig. 6.3, for

different values of the parameters N and Q ;

these computed

values (indicated by crosses on Fig. 6.3) are exactly loca-

ted on the curves obtained analytically in [32] and repro-

duced on Fig. 6.3

this confirms the validity of our compu-

tations.

N 1.4 1.4 1.8 1.8 2.2 2.2 2.2

Q 1.2 1.6 1.6 2.0 1.6 2.0 2.2
EXTV analytical .9460 .8583 .8991 .8432 .9252 .8794 .8578
EXTV computed . 9460 .8582 .8995 L8434 .9261 .8801 .8584
EXTH analytical 1.1191 {1.3700 | 1.2486 | 1.4334| 1.1774 | 1.3146 .3879
EXTH computed | 1.1192 [ 1.3701 | 1.2489 ) 1.4339| 1.1778 1.3154 .3882

Table 6.1
Comparison between analytical results (from

[32]) and computed results.




692

Ct1 =0.8750ps1
C2 =0.1250rs1
HEIGTH =1.2IN

0. %66

S

0

Sl

> M‘ﬂ
0.10.20.30.40.50.60.70,

11

2.

3

4

5

6

7

8

rr

Figure 6.3



693

REFERENCES

1

B

10

11

12

13

Lions P.L., Mercier B., Splitting algorithms for the sum
of two nonlinear operators, SIAM J. Num. Anal., 16, (1979)
pp. 964-979.

Gabay D., Méthodes Numériques pour 1'Optimisation Non
Linéaire, Thése d'ktat, Université Pierre et Marie Curie,
Paris, November 1979.

Glowinski R., Lions J.L., Trémolidres R., Analyse numéri-
que des Inéquations Variationnelles, Vol. 1, Dunod-Bordas,
Paris, 1976.

Glowinski R., Lions J.L., Tremolieres R., Numerical Ana-
lysis of Variational Inequalities, North-Holland, Amster-
dam (to appear).

Fortin M., Glowinski R., Résolution numérique de problémes
aux limites par des méthodes de Lagrangiens augmentés (in
preparation) .

Glowinski R., Numerical Methods for Nonlinear Variational
Problems, Lecture Notes, Tata institute, Bombay and Sprin-
ger-Verlag, Berlin, 1980.

Cea J., Glowinski R., Sur des méthodes d'optimisation par
relaxation, Revue Francaise Automatique, Informat., Re-
cherche Opérationnelle, R-3, (1973), pp. 5-32.

Gabay D., Mercier B., A dual algorithm for the solution
of nonlinear variational problems via finite element
approximation, Comp. Math. Appl., Vol. 2, N° 1 (1976) ,
pp. 17-40. .

Douglas J., Rachford H.H., On the numerical solution of
heat conduction problems in two or three space variables
Trans. Amer. Math. Soc., 82 (1956), pp. 421-439.

Peaceman D.H., Rachford H.H., The numerical solution of
parabolic and elliptic differential equations, SIAM T.
Appl. Math., 3 (1955), pp. 24-41.

Bourgat J.F., Dumay J.M., Glowinski K., Large displace-
ment calculations of flexible pipelines by finite ele-
ment and nonlinear programming method, SIAM J. Sc. Stat.
Comp., 1 (1980), pp. 34-8l.

Glowinski R., Marrocco A., Sur l'approximation par g1é-
ments finis d'ordre un et la résolution par pénalisation
dualité d'une classe de problémes de Dirichlet non li-
neaire, Compt. Rend. Acad. Sc. Paris, t. 278A (1974),
pp. 1649-1652.

Glowingki R., Marrocco A., On the solution of a class

of nonlinear Dirichlet problems by a penalty-duality
method and finite elements of order one, in Optimization
Technique : IFIP Technical Conference, G.I. Marchouk, ed.
Iecture Notes in Comp. Sciences, Vol. 27, Springer-Verlag,
Berlin, 1975, pp. 327-333.




694

14

15

16

17

18

19

20

21

22

23

24

Glowinski R., Marrocco A., Sur l'approximation par élé-
ments finis d'ordre un et la résolution par pénalisa-
tion-dualité d'une classe de problemes de Dirichlet non
linéaires, Revue Francaise d'Autom. Inf. Rech. Opération-
nelle, R-2 (1975), pp. 41-76.

Poljak B.T., On the Bertsekas' method for minimization

of composite functions, in International Symposium on
Systems Optimization and Analysis, A. Bensoussan and

J.L. Lions eds., Lecture Notes in Control and Information
Sciences, Vol. 14, Springer-Verlag, Berlin, 1979, pp.
179-186.

Glowinski R., Marrocco A., Sur l'approximation par &lé-
ments finis d'ordre un et la résolution par pénalisa-
tion dualité d'une classe de problémes de Dirichlet non
linéaires. Rapport Laboria 115, 1975 (extended version
of Ref. 14)7

Glowinski R., Marrocco A., Numerical solution of two-
dimensional magneto-static problems by augmented lagran-
gian methods, Comp. Meth. Appl. Mech. Eng., 12 (1977),
Pp. 33-46.

Marrocco A., Expériences numériques sur des problemes
non linéaires résolus par éléments finis et lagrangien
augmenté, Rapport Laboria 309, 1978.

Mercier B., Sur la Théorie et 1'Analysé Numérique de
problemes de plasticité, Theése d'Etat, Université Pierre
et Marie Curie, Paris, 1977.

Chan T., Glowinski R., Finite element approximation and

iterative solution of a class of mildly nonlinear ellip-
tic equations, STAN-CS-78-674, Compupter Sc. Department,

Stanford University, 1978.

Begis D., Analyse Numérique de l'écoulement d'un fluide
visco-plastique de Bingham par une méthode de lagrangien
augmenté, Rapport Laboria 355, 1979.

Bourgat J.F., Glowinski R., Le Tallec P., Decomposition
of Variational Problems and Applications in Finite Elas-
ticity, in Partial Differential Equations in Engineering
and Applied Science, R.L. Sternberg, ed., Marcel Dekker,
New-York, 1980, pp. 445-480.

Chan T., Glowinski R., Numerical methods for a class of
mildly nonlinear elliptic equations, Atos do Decime Pri-
meiro Coloquio Brasileiro de Matematica, Vol. I, IMPA,
Rio de Janeiro, 1978, pp. 279-318.

Le Tallec P., Numerical Analysis of Equilibrium
Problems in Incompressible Nonlinear Elasticity, Ph. D.
dissertation, The University of Texas at Austin, 1980.




25

26

27

28

29

30

31

32

695

Glowinski R., Le Tallec P., Numerical solution of problems
in incompressible finite elasticity by augmented lagran-
gian methods (I) Two-dimensional and axisymmetric problems,
submitted to SIAM J. Appl. Math.

Le Tallec P., Oden J.T., Existence and characterization
of hydrostatic pressure in finite deformation of incom-+
pressible elastic bodies, TICOM Report, University of
Texas at Austin, 1979.

Ball J.M., Convexity conditions and existence theorems
in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1977),
pp. 337-403.

Glowinski R., Le Tallec P., Numerical solution of problems
in incompressible finite elasticity by augmented lagran-
gian methods (II) Three-dimensional problems (to appear).

Glowinski R., Le Tallec P., Une méthode numérique en
élasticité non linéaire incompressible, Comptes Rendus
Acad. Sc. Paris, t.290B (1980), pp. 23-26. .

Ruas V., A class of axymmetric simplicial finite element
methods for solving finite incompressible elasticity pro-
blems, to appear in Comp. Meth. Appl. Mech. Eng.

Ruas V., Sur l'application de quelques méthodes d'éléments
finis a la résolution d'un probléme d'élasticity incom-
pressible non linéaire, INRIA, Rapport de Recherche 24,
May 1980.

Chadwick P., Haddon E.W., Inflation-Extension and Ever-
sion of a Tube of Incompressible Isotropic Elastic Mate-
rial, J. Inst. Maths. Applics., 10, (1972), pp. 258-278.




