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Abstract: This paper presents an exercise in the 
verification of a connection establishment protocoL 
A specification language named SPEX, tailored for 
the needs of communications protocols, is proposed, 
and its relation to a semi-automated verification 
system, AFFIRM, is discussed. This language is then 
used to specify a connection protocol currently 
being used. Certain errors are uncovered by analysis 
using the verification system. However, the major 
portion of the protocol's operation are shown to be 
correct. 

i. INTRODUCTION 

Computer networks are becoming increasingly 
widespread; their use already permeates our 
everyday life. As a consequence, their correct 
functioning becomes paramount. Given that computer 
networks are extremely complex systems, the tash of 
certifying that they behave properly is non-triviaL 

This paper presents an exercise in verifying that 
a particular algoritm to realize an important 
function in computer networks, namely connection 
estab~isT~en~does indee behave properly. The 
methods dlscussed are applicable for analyzing a 
wide range of other network functions as well. 

The remainder of this section gives background 
material. Section i.I discusses the nature and need 
for connection establishment in computer networks ; 
Section 1.2 then presents a new language suitable 
for the specification of protocols, and Section L3 
describes a system in which properties of such 

specifications can be proved. 

Section 2 presents a specification of a 
connection protocol currently being used in 
practice, given in the language introduced earlier. 
Section 3 then discusses particular properties of 
this protocol and shows their verification. 

I.I Connection Establishment Protocol - This 
section presents the motivation for connection 
establishment protocols in ~eneral and for the 

*'lnis research was conducted at the Information 
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Defense Advanced Research Projects Agency under 
contract number DAHCI5 72 C 0308. The author was 
partially supprted bv CAPES-Brazilian Government 
under contract 1247/76. Views and conclusions 
contained in this paper are the author's. 

threeway handshake used in the ARPANET in 
particular". 

Consider a di~tirbuted system with several 
interconnected nodes. The ~]o!cs .~fo 

connected by an unreliable transmisson medium in 
which messages may be lost or duplicated and each 
node has several processes. Imagine now that two 
processes wish to communicate; a common method to 
overcome this possible loss of data is to attach a 
sequence number to each data packet that flows, in 
either direction, between them. If the two nodes 
can agree on a starting number to be used, again in 
each direction, then this will allow the detection 
of packets arriving out of order or beingduplic~te~ 

Suppose now that the system, when it is created, 
initializes the nodes to have agreed upon sequence 
numbers, thus allowing the data transfer to take 
place immediately. Unfortunately, such systems are 
impractical, for a number of reasons. 

First, since the system is intended to be 
distributed, a failure at one node would require 
the whole system to be re-initialized. Second , 
although there is a potential for communication 
between any two processes in the system, only a few 
pairs will actually be engaged in data exchange at 
any one time. Since the resources needed to 
maint~mcommunication between processes is quite 
significant, it is desirable for the nodes to be 
able to keep these resources allocated only while 
the exchange is taking place, thus increasing their 
utilization. 

These considerations lead to the notion of 
connections: When two processes wish to communicat% 
the corresponding nodes will cooperate among 
themselves to establish a common frame of referenc% 
e.g., sequence numbers for data flowing in each 
direction, for the exchange of data; when the 
exchange is complete, the connection is closed, 
freeing the resources for use by other processes. 
The period of time that a particular connections 
is open between two processes, i.e., a particular 
frame of references is in effect, is called an 
incarnation of that connection. 

It is clear that for the exchange of data to be 
successful, the two nodes must agree on the state 
of the connection. A further problem is introduced 
by the fact that the transmission medium may delay 
and/or duplicate packets that flow between the two 
nodes. Since connections can open and close, it is 

*The reader familiar with the three-way 
handshake may skip this section. 
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possible for packets from old incarnations to be 
in the medium, and obviously they should not be 
mistaken for packets belonging to a newly opened 
connection. 

Since packets may be lost, a positive 
acknowledgement-retransmission on timeout scheme 
is used. In other words, a copy of each packet 
sent iskept by the sender until an acknowledgement 
of its reception by the receiver is received. If. 
after some predefined amount of time, no acknowk 
edgment themselves are not acknowledged. 

An important fact to notice is that if there is 
a positive probability(no matter how small) that a 
packet is lost, then it is actually impossible to 
completely separate the connection establishment 
from the data transfer itself. To see why, 
consider the last(synchronization) packet 
exchanged during the connection establisment; 
each node will consider the connection to be open 
upon sending and receiving this packet . It is 
clear that the node receiving this paket can be 
sure that the other node has a compatible view of 
the connection. The sender, however, cannot be so 
sure, given the possibility that this last packet 
may be lost; only when the first data packet 
arrives(in the reverse direction) will it be sure 
that the other node actually received it.Therefor% 
the sender node must maintain both the data 
exchange and the connection establishment 
information for that period of time. A problem 
equivalent to this is discussed in [2]. 

In many systems,connections are opened and closed 
quite frequently. In view of the fact that the 
medium may duplicate packets, it is possible for a 
connection request packet from a previous incarna- 
tion to appear at one node at such a time as to be 
mistaken as a current one, thereby initiating a 
connection with the wrong frame of reference[4]. 

A problem still remains as to how to identify 
packets from previous incarnations as being old. 
The sequence numbers chosen to stablish the frame 
of reference of a new connection must prevent that 
Reference[18] discusses this issue in more detail. 

A protocol has been proposed to handle the 
connection establishment problems as discussed in 
the previous paragraphs. It is called the three- 
way handshake[14,19]. The particular version used 
here is taken from TCP[TCP80], the second gene~ 
ation transport level protocol being used in the 
ARPA internet_ sytem. 

This protocol derives its name from the 
sequence of steps a node goes through in order to 
establish a connection. Suppose node A wishes to 
cormnunicate with node B, and that node A taskes 
the initiative. Then, they through the following 
steps: 

1. Node A sends node B a connection request,called 
SYN(for SYNchronize). 

2. Node B receives the SYN packet, and responds 
with a SYN of its own together with an 
acknowledgmenent,together called SYNACK(for 
SYNchronize and ACKnowledge). 

3. Node A receives the SYNACK packet, verifies 
that the ACK portion does indeed acknowledges 
its own previous SYN, and sends an ACK packet 
acknowledging node B's SYN. At this point, node 

A considers the connection to be ovened. 

4. Node B receives the ACK packet, verifies that 
it does acknowledge is own previous SYN, and 
then considers the connection to be opened. 

There are two basic modes in which to open a 
connection: an active mode, in which the issuing 
node takes the initiative, and a passive mode, in 
which the issuing node merely listens for incoming 
connection requests, and accepts the first to come 
in. The basic protocol described above can be 
modified to handle the case when both nodes do an 
active open simultaneously. 

If at any point an incorrect packet arrives,then 
a RST(reset) packet is sent back to abort the 
connection opening procedure. 

Figure i-I contains a state transition diagram taken 
from [16]. It does not show transitions caused by 
RST or incorrect packets. 

1.2 Overview of SPEX - We present here an overview 
of a language, called SPEX,to be used for the 
specification of a layer of a distributed system in 
general and computer networks in particular. This 
language will be used later to describe the three- 
wav handshake vrotocol. As will be evident from 
the deta.ils given below, the underlying model in 
SPEX is that of a non-deterministic state transi- 
tion system, with some s~ecialized features to 
facilitate protocol s~ecification. SPEX is 
discussed at greater length in [12]. 

A layer is regarded as consisting of inter- 
connected Nodes. In the case of the example 
presented here, a Node can be a Station or a 
Medium. The pattern of interactions of the nodes 
constitutes the layer's definition. A particular 
pattern of behavior characterizes a node's type ; 
A layer may in general be composed of several 
distinct types of nodes, each with its own behavio~ 
and may have several instances of each type of node 
as well. 

Thus, in order to completely characterize a 
layer, it is necessary to describe the behavior of 
each of node (given in the Node Behavior part of 
the specification), the set of instances of each 
node type and the way the instances are inter- 
connected (given in the Topology aprt), and the 
desired properties of the interactions between the 
instances (given in the Properties part). In addi- 
tion, the specification of any data types used in 
specifying a node's behavior must also be included. 

A node is some entity that has some internal 
State Variables and some externally visible Inter- 
face Variables; these variables may be of 
arbitrarily complex data types (which may be 
defined using algebraic data type specification 
methods[4,8,8,9]. A node reacts to a set of 
specified Events. When one such event occurs, some 
state variables and some interface variables may 
have their values changed as a result of this 
occurrence. 

State variables can be accessed only locally at 
each node. Interface variables, on the other hand, 
can be accessed from the outside-this is how a node 
communicates with the outside world, i.e., other 
nodes in the same layer or other layers using the 
layer in which the node is defined. 
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Figure 1-1: ThreeAVay Handshake State Transition Diagram 

Accordingly, the inter~ace varlaDLe~ as e a c u  ,ouu 
are divided into two kinds: Those that are e~orted 
to other layers and those that are connected to 
other nodes in the same layer. In addition, each 
interface variable may have a direction of data 
flow associated with it, meaning that data in that 
variable flows into or out of a node; if no direc 
tion is specified, this means data in that vari- -- 
able flows in both directions. 

The actual behavior of a node is given by 
discribing how a node reacts to the occurrence of 
certain specified events. Each event known at a 
node has a pre-condition associated with it; this 
pre-condition is a predicate involving state and 
interface variables at that node. As long as a pre 
conditions is type, its associated event is said 
to be enabled; enabled events may fire at any time. 

The node's behavior is given in terms of the 
new values of all its variables when each of the 
possible events occurs. All changes for an event 
are considered to happen simultaneously, i.e. the 
events are considered atomic. This means that if 
any variable Z is used to compute the new value of 
some variable, the value used in the computation 
is the value X had before the event happened. For 
brevity's sake, whenever a variable is not men- 
tioned on the left hand side of any event effects 
statement it means that its value is not changed 
by the occurrence of that event. 

Since state variables are not visible 
externally, they can be regarded as histo~ vari- 
ables[ll] which accumulate information about the 
computation. 

Since interface variables are externally vis- 
ible, it is possible for an event e7 at some node 
N1 to change the value of some interface variable 
at another node, say N2. In fact, e] may actually 
enable some event at N2; this is effectively how 
nodes exchange data and synchronize their activ- 
ity. 

~ne ~as~ ~cem necessary to completely describe 
a node's behavior is its fnitial State, specifying 
the value of any variables at system creation tim~ 
The most general way to specify this is by giving 
predicates which must be t~e in the initial state; 
it may not be necessary or even possible to give 
actual values to the variables. 

All of the above must be specified for each 
node type that exists in the layer. 

The overall system behavior specified ~defined 
as the set of all valid sequences of events. A 
valid sequence is formed by starting from an 
initial state(i.e, a state satisfying the initial 
state predicates) and successively firing enabled 
events; it may be of infinite length. If it is of 
finite length, then the final state arrived at by 
executing the sequence has no enabled ecents. 

Once all node types have been specified, it is 
necessary to describe how the several nodes are 
connected. This is achieved by allowing interface 
variables at each node to be connected to interfa~ 
variabl~at other nodes; the intended semantics is 
that these are.in faqt shared variables between 
t~e correspondzng noGes. 

The iDpology part then specifies how the inter- 
face variables of each node in the system (i.e. , 
each instance of each type of node) are connected 
to interface variables of the other nodes. 

The Properties section states two kinds of 
properties of the protocol,Ass~ed and Asserted 
properties. Asserted properties are those that 
must be proved true by the specifier, and serve 
as an additional check of the accuracy of the 
specification. In other words, proving these 
properties increases the confidence of the 
specifier that the specification corresponds to 
her/his intuite understanding of the system. 

Assumed properties are used to ~flne certain 
operations in a non-computational fashion by 
giving inputputput relationships between 
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arguments and returned values. 

SPEXifications**can be conveniently translated 
into algebraic style data type specifications of 
the kind that are supported by the AFFIRM system 
(see Section 1.3). This capability can be exploited 
to prove properties of the protocol using analysis 
methods from the abstract data type specification 
domain, or to perform a limited form of symbolic 
execution of the specification, which helps in 

• . • ~ *  

determining the accuracy of the speczflcatzon . 
Reference[12] discusses this translation in detail. 

An overview of algebraic specification of data 
types and of AFFIRM is given in the next section. 

1.3 - Overview of Algebraic Specification of 
Data Types and of AFFIRM 

The material presented in this section has been 
abridged from[4,17]. 

AFFIRM[IO] is an experimental system for the 
algebraic specification of and the verification of 
properties of user-defined abstract data types. 
The heart of the system is a natural deduction 
theorem prover for the interactive proof of these 
properties, which are stated in the predicate cal- 
culus extended with data types. Programs, written 
in a variant of Pascal extended with user-defined 
abstract data types, may be verified using the 
inductive assertion method[3]. Addtional features 
include tools for the analysis of algebraic specif ! 
cations, a library of useful data types, and user 
interface facilities. Experience with AFFIRM in- 
cludes extensive experimentation with data type 
specifications, verification of small programs, 
the specification and partial proof of a large 
file updating module, and the proof of high level 
properties of security kernels. 

The specification and theorem-proving portions 
of AFFIRM are relevant to the current discussion. 

Like other specification and verification 
systems, AFFIRM follows its own particular theor- 
etical and programming paradigm-abstract data 
types specified algebraically and properties 
verified by rewriting rule techniques. A brief 
description of the algebraic style of data type 
specifications and of the theorem proving portions 
of AFFIRM follows. 

Following the algebraic style of specifications 
[5,6,7,8,9], a data type specified by first 
defining three sets of functions: 
l. Const~ctors. These functions create values of 
the type. Their range is the data type being 
specified. All values of the type can be described 
in terms of a some functional composition of these 
functions. 

2. Extenders(or Modifiers). These functions also 
have the data type being specified as their range, 
but in constrat to the constructors, they are not 
needed to express values of the data type-they are 
derived operators. These functions can be defined 
in terms of the constructors. 

3.Selectors. These functions yield values of types 
other than. the one being ~peci~ied. The general 
term for these functions is selector,but lunctlons 
yielding values of type Boolean are often termed 

*'NPEXification'will be used to mean 
SPEXspecification. 

** I.e., whether the specification captures the 
designer's intuitive understanding of the system 

predicates. These functions are defined in terms 
of the parameters of the constructors. 

For example, the constructors of a queue are 
NewQueue(the empty queue) and A~(Appends an el- 
ement to a queue). Example extender functions are 
Remove(deletes the first element from a queue) and 
Append (concatenates two queues). Observe that 
these extender functions can be defined in terms of 
the constructors NewQueue and Add. Examole selector 
functions are Front, #Elements and In(a predi- 
cate). These are definable in terms of the 
parameters to Add. 

The effect such a specification is to view 
values of the type in terms of the constructors 
wich can build them. Hence, all selectors and 
extenders are defined in terms of these 
constructors. For example, the queue of integers 
<1,2,3> is represented (in infix form) as 
((NewQueueOflnteger Add I) Add 2) Add 3 

This first part of a specification gives the 
signature of all operations, i.e., their domains 
and their ranges. Figure 1-2 shows an example for 
the type ~eueOfZnteger. The second part of a data 
type specification 

declare q,q':QueueOflnteger; 
declare i:lnteger; 

interface NewQueueOflnteger, q Add i : QueueOflnteger; 
interface Remove(q), Append(q,q') : QueueOflnteger; 
interface # Elements(q), Front(q) : Integer; 
interface i in q: Boolean; 

Figure 1-2: Signature of type QueueOflnteger 

provides semantics for the operations whose domain 
and information was give in the first part. 
Extenders and selectors are defined by equational 
axioms of the form lhs == rhs relating how each 
function behaves when applied to each of the 
constructors. Constructor functions are treated as 
primitive, unspecified operations. 
Example of axioms taken from a specification of the 
tvve ~eueOfZnteger are given in Figure 1-3. 

axioms 
Remove(NewQueueOflnteger) : = NewQueueOflnteger, 
Remove(q Add i) = = if q = NewQueueOflnteger 

then q 
else Remove(q) Add i, 

#Elements(NewQueueOflnteger) = = 0, 
#Elements(q Add i) = = #Elements(q) + 1; 

Append(q, NewQueueOflnteger) = = q, 
Append(q1, q2 Add i) = = Append(q1, q2) Add i, 

Figure 1-3: Some axioms for type QueueOf'[nteger 

Data types in general have propertzes that the 
specifier may wish to prove. For example, "The 
number of elements in each queue". Formally, this 
property is stated as 

#Elements(Append(q,q ' ) )  = #Elements(q)+#Elements(q') 

14 



Properties of a data type are proved using a 
method called structural induction [7,13] which is 
based on the notion that all values of the data 
type can be produced by repeated applications of 
the constructor functions. To prove a property P 
of all elements of a data type, it suffices to 
show that 
I. It is true for the "base" cases - the 

constructors that produce values of the type 
without taking values of the type as arguments 
(e.g.,P(NewOueue)). 

2. Assuming P is true for some value q, then it is 
also true for all values obtained by a applying 
constructors to q(e.g., for all q,i P(q) 
implies PCq Add i)). 
There much more to specifying a data types 

specification than just giving a set of axioms. A 
good data type specification should provide the 
desired set of operations. These operations should 
have the expected (intuitive) properties. Also, 
the axioms should facilitate simple proofs. In 
other words, the type has an associated theory 
that expresses properties derived from the axioms. 
(Building these theories is a mathematical art.) 
The main method of proof of such properties is 
induction, for which the schema part of a type 
provides the proof structure. 

AFFIRM is not exactly a proof checker, nor is it a 
proof finder. The responsibility for finding and 
executing a proof strategy rests solely with the 
user. At each proof step, modifications are made 
to a system maintained proof structure. Then the 
rewriting rules of the data types of the program, 
together with the rules of propositional logic, 
are applied to simplify the proposition currently 
being worked upon. In general, the user is 
attempting to reduce a formula to a set of subgoa~ 
so simple that their proofs are immediate, i.e., 
can be obtained by the system without further 
direction. Some example commands for carrying out 
proofs and their effects are: 

try proposition Set up proposition as the current 
goal. 

employ Induction(v) 
Induction is a user-defined 
schema for the the type of induc 
tion desired and V is the varia- 
ble to be induced upon. The proof 
structure is modified to show the 
induction. 

apply proposition Use proposition as a lemma in 
the proof (proposition must 
separately be proved or assumed). 
A separate put command 
instantiates the variables in the 
lermna to the proper values in the 
current goal. 

suppose proposition - Break the current goal into 
two subgoals, one with the addi- 
tive hypothesis proposition and 
the other with ~ proposition. 

split Break up the proposition at a 
designated spot into subgoals, e. 
g., the proposition H imp(Cl'and 
C 2) can be split into the two 
propositions H imp C I and (H and 
CI ) impC,. 

replace i z . Replace subexpresslons with other 

subexpressions according to desig- 
nated equalities in the current 
proposition. 

invoke defn Invoke a definition defn that the 
user has made at some time. 

The user can explore various avenues of proof 
until the proof is complete or until the conjecture 
is found to be unprovable, at which point the proof 
of the corrected conjecture must be restarted or 
the bad proof steps corrected. 

Each theorem or intermediate propositioninAF~RM 
is represented by a named node in a directed 
acyclic graph called the proof forest. The proof of 
a theorem comprises a tree, whose named arcs repr~ 
sent AFFIRM commands and thus deductive steps. 
AFFIRM checks for circularity within the current 
tree. 

An example of an AFFIRM proof is discussed in 
Section 3. 

1.4 Relation to Other Work - There is a large body 
of work regarding techniques for specifying proto- 
cols. These include Petri nets(and related graph 
models), formal languages, sequencing expression, 
and (parallel) programming languages. Much of this 
work is limited in expressive power, in the sense 
that specifications grow unproportionally large as 
the complexity of the protocol being specified 
increases. Also, many suffer from lack of a solid 
theory and/or of automated tools for verification. 
Reference[15] provides a survey of this work. 

Although the underlying model of SPEX is not 
new, it is beleived to be the first language allo- 
wing the formal specification of non-deterministic 
state transition systems in a modular, hierarchical 
fashion, and for which semi-automated verification 
tools exist. An important advantage of the modulari 
zation and the symbolic nature of the specificatio~ 
is that there is no combinational explosion when 
analyzing more complex protocols. Reference [IF] 
contains an example in which a complex protocol, 
involving an arbritary number of nodes, is 
specified, but where the complexity of the proof is 
independent on the number of nodes. 

2. SPECIFICATION OF THE THREE-WAY HANDSHAKE IN 
SPEX 

This section examines a SPEXification of the 
three-way handshake protocol described informally 
in Section i.i. Appendix I contains the actual text 
of the SPEXification. 

After giving the state variables, interfaces, 
initial state, and events for one station, the 
main portion of the specification shows the behav- 
ior of the station for each event. A small specif~ 
cation for the medium is also given, stating that 
the medium is essentially a queue with an added 
LoseMessage event. In the sequel, a brief 
explanatlon of the SPEXification is given. 

The three way handshake protocol involves two 
nodes with identical behavior. The corresponding 
node type is Station. 
Each station needs the following State Variables: 
ISS-is some constant to be used as Initial Send 
Sequence number. 
Incarnation#In - is an incarnation identification 
for the packets coming in from the other node. 
Incarnation#Out - is an incarnation identification 
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for the packets leaving this node• 
OlaT/nack - is the sequence number of the oldest 
sent packet which has not yet been acknowledged. 
Seq#ToSend - is the sequence number that should be 
attached to the next data Dacket to be sent• 
Seq#ToReceive - is the expected sequence number of 

Next packet coming in. 

Tim~out~uffe r - is ~ ~ueue of packet§ ~ontaining 
CODle Ol packets wnlcn nave been sent put not yet 
ackonowledged*• 

The exported interface to using layers contains 
two variables. 

Command - is a command buffer through which the 
user indicates what type of open request is desired 

StateOf- is a variable that remembers the state 
of the station, i.e., somehow remembers the recent 
history of messages that have been exchanged. Its 
value can be one of {Closed, Listen, SynSent, 
SynReceived, Established}. 
Each station has two interface variables which are 
internal to the layer, namely; 
InPort - is a queue incoming packets, with poss ! 
ble loss. 
OutPort - is a queue of outgoing packets, with 
possible loss. 

The initial state of each station requires that 
the State of the station be Closed, the Timeout 

Bufferbe empty and the sequence numSers and incar 
nation number of incoming packes be zero** 

The events to which a station can react are: 

ActiveOpen - which is caused when the user issues 
an active open command. This means that a connec- 
tio6 request will be sent to the other party. 

PassiveOpen - which is causedwhentheuser issues a 
passive open corm~and• This means that the station 
will listen for incoming connection requests, and 
accept the first one that comes. 

Timeout - which is caused when a timeout occurs,i. 
e• when a certain amount of time has elapsed 
without a packet being acknowledged. 
ReceiveRst - which is caused when a packet arrives 
whose control fiel is rst(reset). This is control 
packet used to indicate the discovery of an 
anomalous situation. 
ReceiveAck - which is caused when an acknowl- 
edgement packet arrives. 
ReceiveSyn - which is caused when a packet arrives 
whose control fiel is syn(synchronize). This is a 
connection request. 
ReceiveSynAck - which is caused when a packet 
which is both an acknowledgement and a connection 
request arrives. 

The node type representing the medium has only 
an interface variable, Buffer, which is a queue of 
packets. There is only one event that can happen , 
LoseMessage, which models the medium being faulty. 
Note that the transmit operation of the medium is 
modeled as an Add to the queue, and ~he queue, and 
the receive operation is modeled a R~move from the 

queue, with the packet delivered obtained by from 
of the queue(before the Remove). 

The definition of the data type Packet can be 

* Strictly speaking, Timeou~buffer does not have 
to be a queue, but just a collection, of packets. 
Modeling it as a queue results in simpler axioms 
in this situation. 

**Zero is used an arbritary initial value. 

found in Appendix II. A brief description is given 
here. 

The fields of a packet are the following: 
SeqNumber - is the sequence number of the packet• 
Seq#Inc - is the incarnation number associated 
with the sequence number. 
AckNumber - is the sequence number that the packet 
is acknowledging• 
Ack#1nc - is the incarnation number of the 
acknowledgement field• 
Ctl - is the control field of the packet• 

As an illustration of the effects of an event , 
consider the ActiveOpen event. Its pre-condition 
states that it can fire only if the StateOf the 
node is Closed, and the user issued an active open 
command by placing the value Active in the com- 
mand buffer. When this event fires, the 
effects specified state, for instance, that a $¥N 
packet is sent to the other side by appending it 
to the OutFort interface variable. It is also 
specified that the StateOf state variable becomes 
SynSent. 

Finally, the Topology section states that there 
are two stations, Left and Right, connected by a 
medium in each direction(i.e., OutPort@Left, Buffer 
@LeftToRight, and InPort@Right are all a single 
shared queue)• 

The Properties section states properties con- 
cerning the correct operation of the system that 
will be discussed in section 3. 

The SPEXification given in Appendix I is a sim 
plication of the one given in TCP. The main dif--- 
rences are: 

• TCP allows connections between arbitrary 
pairs of addresses within a large address 
space. As in TCP, the SPEXification assumes 
this addressing function is performed by a 
higher(sub) level, so that only fixed pairs 
of nodes need be considered. 

• TCP uses a sequence number and an initial 
send sequence number selection algorithm to 
handle the problems of distinguishing incar- 
nations. TCP sequence numbers correspond 
~ughly +o a concatenation of incarnation and 
sequence number in our specification. TCP 
sequence numbers are of finite size, whereas 
they are of infinite size in the 
SPEXification. 

• The SPEXification concerns itself only with 
the connection opening phase of the protocol; 
it does not allow closing of the connection 
in the middle of an opening• Likewise, it 
does not allow data to be sent while a con- 
nection is being opened. 

• When a RST packet arrives at a node that is 
in SYNSENI state, the TCP remembers whether 
the connection started via an active or via 
a passive open. If the open was a passive on% 
the station returns to the LISTEN state 
rather than closing the connection• The 
SPEXification always closes the connection 
after a reset. This modification does not 
affect the functional correctness of the 
protocol, but makes the corresponding 
SPEXification simple• 

For the purpose of verifying properties of the 
three-way handshake, the SPEXification has been 
manually translated into an algebraic datatype 
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specification that can be understood by the AFFIRM 
system. Appendix II contains the generated axioms 
and auxiliary data type definitions (e.g., Packet, 
QueueOfPacket, etc.) in AFFIRM system 

3. VERIFICATION 

3.1 - Introduction - This section discusses the ve 
rification of properties conaerning functional cor 
rectness and liveness. The discussion is presente~ 
in terms of the algebraic style data type 
specification as understood by AFFIRM. 

As was discussed in section i.I, the functional 
correctness of a connection protocol cannot be com- 
pletely separated from the succeeding data transfer 
phase. This introduces a problem as to the point 
in time at which the claim of functional correc - 
ness should be made. Ideally, functional correct- 
ness should state that 

"At the end of the connection phase, both 
stations are in the Established state and are 
synchronized, which means that 'old' data will not 
be accepted, but 'new' data will be'~ 

Therefore, it would be necessary to describe at 
least part of the data transfer protocol as well. 

Because the data transfer has been omitted from 
the specification, a modified version of this 
property must be used. The following sections des- 
cribe this in more detail. 

3.2 - Functional Correctness - Consider now the 
functional correctness of the protocol, as stated 
above, but considering only one node's point of 
view~ 

(StateOf = Established)@Ri~ht 
imp ~eq#ToReceive@Left=Seq#To~end@Ri ght and 

Incarnation#1n@Left=Incarnation#Out@Right; 

Stated in words, this says that if the station 
on the Right side in the Established state, then 
the connection is synchronized for data flowing 
out of this node. 

This property is proved to be invariant using 
inductive proof methods which are used for abstract 
data types. After working with this specification, 
it became apparent that this theorem was not 
strong enough to be used in an inductive proof, for 
the following reason. Careful study of the protocol 
shows that it is possible for the above properties 
to hold in the SynSent state also, when simulata- 
neos active open commands are issued at both nodes, 
as follows: one side may be in the SynSent state 
and may have already received an acknowledgement 
for its SYN packet; this side would not enter the 
Established state until it receives the SYN packet 
from the other side. This situation is characte- 
rized by the fact thar OldUnack (the oldest unack- 
nowledged sequence number) is not ISS anymore. Sin 
ce this side has received an acknowledgement for 
its SYN, it can be sure that the other side knows 
its Seq#ToSend and its Incarnation#Out. 
Hence the statement of functional correctness 
must be strengthened(for one side only) as 
follows: 

Theorem FC: 
((StateOf=E~tablished)or((StateOf=SynSent)and 

OldUnack-=ISS)@Right 

imp 

* Th~ notation i~n means P is to be evaluated in 
no~e n. 

Seq#ToReceive@Left = Seq#ToSend@Right 

and Incarnation#1n@Left= Incarnation#Out@Right; 

This need to strengthen or generalize a theorem 
in order to prove its invariance is typical of 
inductive proof methods used for abstract data ty- 
pes. 

Notice that this strengthened statement implies 
the weaker one, so that proving the stronger one 
proves the weaker one as well. 

Figure 3.1 contains a proof tree for this theorem 
produced by the AFFIRM system; the lemmas and defin ! 

tions used are given in Figure 3-2(these figures 
contain axioms and theorems stated using AFFIRM 
syntax; the correspondence to SPEX syntax should 
be obvious)*. The proof follows an inductive 
argument, over all possible events in the system. 
Broadly speaking, this amounts to, given a goal 
state(e.g., Established , examining how each event 
can move the system into that state(e.g., Receive 
Ack event in SynReceived state). In general, there 
are many states from which the system may move in- 
to the goal state. Considering now each of those 
states, one uses the inductive hypothesis to try 
to prove the theorem. 

After some examination of the proof tree, it is 
possible to see that most cases follow directly 
from the inductive hypotheses; this can be seen in 
the proof tree by looking at the branches and noti 
cing where only an invoke IH command(possibly 
preceded and/or followed by some replace, case 
and invoke commands) was given. Now the cases are 
examined which do not follow directly from the 
inductive hypotheses, i.e., involve the applica- 
tion of some lemmas. 

Consider what happens when a Received@Right 
occurs(++< i)*~ The relevant case to consider has 
the node at right in SvnSent or in SynReceived , 
and the incoming acknowledgement has the current 
incarnation number(since otherwise the packet 
would be discarded as old). In other words, the 
incarnation number in the packet is equal to Incar 
nation#Out@Right (See hypotheses of theorem 
AcksAndSyns in Fig. 3-2, applied at ++< 2). But if 
the incarnation number is current, then there 
must have been a SYN packet in the past which this 
current packet acknowledges(see definition of 
HasSyn, invoked at ++<3). Thus, the current ACK 
carries the same incarnation number that the SYN 
carried, which means that the station at left has 
its Incarnation#In set to the incarnation number 
of that SYN packet. Therefore, we can conclude 
that Incarnation#Out@Right=Incarnation#In@Left. 

To see that the sequence numbers correspond,it 
suffices to see that, if the state of a node is 
not Listen or Close, then its Seq#ToSend is 
always equal to ISS+l(Seq#ToSend will not change 
until data is sent-see theorem Seq#ToSendVals, 
applied at ++<~), and that all SYN packets carry 
ISS as their sequence numbers. Since the Seq#ToRe- 
ceive is taken from the SYN packet, it must 

7, Numbers on the left should be iEnored; they 
result from bookkeeping in AFFIRM. 

**Indicators of the from ++<n are used to point 
to the corresponding places in the proof tree 
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perforce be ISS+l(see theorem Seq#ToReceiveVals, 
applied at +~-<5.). Therefore Seq#ToReceive@Left = 
Seq#ToSend@Right. 

The next relevant case is when a ReceiveSyn@ 
Left occurs(*-+<6). This can be correct only if 
the node at left is in either Listen or SynSent ; 
all other cases either cause an error or ignore 
the packet. But a careful examination of the state 
machine shows that it is not possible to have the 
station at one side in either Listen or SynSent , 
and the other in either Established or in 
SynReceived with OldUnack - = ISS (theorem 
SynchNoLorCorSS, applied at +~-<7).Therefore this 
situation really cannot occur. 

The other relevant cases are when a Receive 
SynAck occurs at either node. If it happens at the 
node at right, then the proof follows the same 
argument as the case for the ReceiveAck@Right. If 
it happens at the node at left, then the proof 
follows the reasoning for the case ReceiveSyn@Lef~ 

3.3 Liveness - Another useful property that we 
may want to show that this protocol possesses is 
Liveness, which states that either some event in 
the system is enabled or the system is in its final 
state. Since open events are user generated, 
these events are ignored, and we assume that the 
system starts in a state where neither side in 
the Closed state and both sides are not passively 

listening, in this case, it is expected that the 
correct protocol will complete the connection 
establishment and reach a final global state in 
which bot sides have reached the Established 
state. 

In order to prove such a property, however, it 
is necessary to prevent certain sequences from 
actually being valid for the system. These are 
sequences composed entirely of LoseMessage and/or 
Timeout events. Such sequences reflect faiz~ess 
assumptions on the medium, as well as finite 
capacity. Thus, restrictions must be made in the 
specification to ~nsure *e fairness of the 
medium. These restrictions are incorporated by 
including a limit in the number of occurrences of 
the LoseMessc~e event, as well as on the size of 
the medium. 

Accordingly, the number of ocurrences of the 
LoseMessage event is limited by having an extra 
auxiliary counter such that LoseMesscaje can be 
enabled only when the counter is positive, and 
each time LoseMessage fires it decreases the 
counter by one. It is set to some constant value 
each time a message or an acknowledgement is 
received. This constant value must be finite, but 
can be arbitrarily large. 

The capacity of the medium can be taken into 
consideration by augmenting the pre-condition of all 
events that put something into the medium with a 
test to see if the length of the corresponding 
queue is less than a certain constant, which again 
must be finite but arbitrarily large. This rules 
out behaviors in which a node times out over and 
over, without anything else happening in the 
system. 

With these modifications introduced, an attempt 
was made to prove that this protocol is alive, 
i.e., it satisfies. 

Theorem Liveness: 

forall S,i 

[~ PreCond(S,ReceiveXX) and 
- PreCond(S,Timeout) 

and -PreCond(S,LoseMessage) and 

StateOf-=Closed]@i 
and -(StateOf~i= Listen and 

StateOf@OppositeSide(i)=Listen) 

imp (StateOf=Established)@Left and 
(StateOf=Established)@Right; 

where XX={Ack,Syn,SynAck,Rst} 

An inductive proof goes through for all cases 
except for ReceiveRst. After some investigation, it 
was found that there is a scenario in which it is 
possible for the two nodes to end in the Closed 
state, which is a contradiction of the theorem~ 
Figure 3-3 shows this scenario(with SEQ treated as a 
single item representing both the sequence number 
and the incarnation number). 

This situation is considered an error because 
old duplicate packets in the medium prevent a con- 
nection from being established. Note that this is a 
liveness error, not a safety error, since nothing 
bad happerns, i.e., no incorrect synchronization or 
data transfer takes place, but the intended 
progress does not occur. 

Another situation in which there is no progress 
may occur because of the protocol simplification 
introduced that a node always returns to Close 
state when a RST packet arrives. Note that this is 
not the scenario describe above. 

An interesting observation is that, if data 
packets are allowed to be sent, this scenario can 
be continued in such a way that it actually accepts 
data incorrectly. It is sufficient for the 
appropriate old data packets to arrive at Node A 
at the point in which it went into the Established 
state, and before any RST packets were sent by 
Node B; this is indicated in Figure 3-3. However, 
it should be noted that this situation depends on 
an extremely unlikely timing of message exchanges, 
which is not expected to be of practical signifi - 
cance. 

This incorrect data can be avoided with a small 
change in the protocol. Work is under way to verify 
that a corrected version of the three-way handshake 
avoids it. 

Reference[i] discusses the verification of other 
types of liveness properties in algebraically 
described state transition systems. 

4. CONCLUSIONS 

This paper has presented an exercise in the ve- 
rification of properties of a connection 
establishment protocol. A specification language 
tailored for the need of communications protocols 
has been proposed, and is relation to a seml-auto- 
mated verification system discussed. This language 
was then used to specify a connection protocol 
currently being used, and certain errors were 
uncovered using the verification system, although 
the major portion of the protocol's operation was 
shown to be correct. 

This work is part of an ongoing project to 
develop better protocol specification and analysis 
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Node  A 

C L O S E D  
act. Open 

(delayed) 

S Y N S E N T  

S Y N S E N T  

rcv ACK 
S Y N S E N T  

rcv S Y N  
ESTABLISHED 

snd ACK 

ESTABLISHED 

~ v R S T  
C L O S E D  

rcv S Y N  
C L O S E D  
snd R S T  

rcv ACK 
C L O S E D  
snd R S T  

C L O S E D  

<SEQ = 200XCTL = SYN> -> ... 
<- <SEQ = 3 0 0 X C T L =  SYN> 

<- <SEQ = 3 0 1 X A C K  = 2 0 1 X C T L =  A C I O  

<- <SEQ = 100XC 'FL=  SYN> old duplicate .t.t 

<SEQ = 201MACK = 101XCTL = ACK> -> bad A CK H 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*** bad data might be accepted here *** 
e.g. <- <SEQ = 101>(DATA> 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

<- <SEQ = 1 0 1 X C T L =  RST> 

<- <SEQ = 300XCTL = SY-N> original delayed syn 

<SEQ = 0 X A C K  = 3 0 1 X C T L  = RST> -> 

<- <SEQ = 301MACK = 201XCTL = A C I O  

<SEQ = 2 0 1 X C T L =  RST> -> 

Node  B 

CLOSED 

act. OPEN 

SYNSENT 
... rcv S YN 
S Y N R E C E I V E D  

snd ACK 

S Y N R E C E I V E D  

S Y N R E C E I V E D  

rcv ACK 
S Y N R E C E I V E D  
snd RST 

SY-NRECEIVED 

S Y N R E C E I V E D  

rcv RST  
discard- bad A C K #  
snd ACK 
S Y N R E C E I V E D  
rcv RST  

CLOSED 

Figure 3-3: Example o f a  liveness error in the three-way handshake 
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techniques; further work is described in [12,18]. 
Our preliminary experience indicates that the co n 
bination of state transition and abstract data 
type specification methods being pursued provides 
a reasonably convenient and powerful approach to 
these problems. 
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theorem Synchronized, Sta teOf (S ,R igh t )  = Established 
or S ta teOf (S ,R igh t )  SynSent and OldUnack(S,Right)  ~= ISS(Rtght)  

imp synchronized(S);  
Synchronized uses EorSSimpEorSRX, SynchNoLorCorSS%, AcksAndSyns%, FrontInQ~. 
Seq#ToSendVals%, and Seq#ToReceiveVal%. 

aroof  t ree :  
SNnchronized 

apply EorSSimpEorSR {proved by Schwabe using AFFIRM 120 on 4-Feb-81 in  
t r a n s c r i p t  <SCHWABE>AFFIRMTRANSCRIPT.3-FEB-81.Z} 

54 put S'=S 
55 employ Induct ion(S)  

Empty: 
Immediate 

apt: 
56 employ NormalForm(ii$) 
ActiveOpen: 

57 cases 
65 invoke IH 
66 replace 
67 invoke synchronized I a l l  I 
(p roven! )  

PassiveOpen:{Synchronized, a p r : }  
58 cases 
1Z5 invoke IH 
126 invoke synchronized I a l l  I 
(p roven! )  

LoseMessage:{Synchronized, a p r : }  
50 invoke IH 
128 invoke synchronized ~ a l l  I 
(p roven! )  

T imeout : {Synchronized,  a p t : }  
60 invoke IH 
130 invoke synchronized I a l l  I 
(p roven! )  

ReceiveRst : {Synchronized,  a p r : }  
61 cases 
131 employ NormalForm(i') 
Left: 

132 invoke IH 
134 invoke synchronized I all 
(p roven! )  

Right:  
133 invoke IH 
136 invoke synchronized I a l l  
(p roven! )  

ReceiveAck:{Synchronized, a p t : }  
62 cases 
69 employ NormalForm( i ' )  

Left: 
70 invoke IH 
72 invoke synchronized I a l l  
(p roven! )  

Right:  ~ < 1  
71 invoke IH 
74 replace 
75 invoke synchronized I a l l  
76 apply AcksAndSyns ~ < 2  
77 put pk = Front(Medium(ss ' ,  L e f t ) )  

and S=ss' 
78 apply FrontInQ 
79 put Q = Medium(ss', Le f t )  
80 replace 
81 invoke PreCond I -4 : -3 I 
82 apply Seq#ToSendVals ~ < 4  
83 put S=ss' 
84 invoke IncomingAck#Valid J a l l  I 
85 invoke HasSyn ~ < 3  
86 replace 
87 apply Seq#ToReceiveVal ~ < 5  
88 put S=ss' 
(proven! )  

ReceiveSyn:{Synchronized, a p t : }  
63 cases 
g0 invoke IR ~ < 6  
gl  rep lace 
92 invoke synchronized I a l l  I 
93 cases 
94 rep lace 
95 apply SynchNoLorCorSS ~ ( 7  
97 put S=ss' 
98 rep lace 
(p roven ! )  

ReceiveSynAck:{Synchronized, a p r : }  
64 cases 
9g employ NormalForm( i ' )  

Le f t :  
100 invoke IH 
102 invoke synchronized ~ a l l  I 
103 cases 
104 replace 
105 apply SynchNoLorCorSS 
106 put S=ss' 
(nroven!~ 

Figure 3-1: Proof~ee for the functional correctness of  the 

three way handshake 

Rignt:{Synchronized, ap r : ,  ReceiveSynAck:} 
101 invoke IH 
108 invoke synchronized I a l l  ] 
109 apply AcksAndSyns 
110 put S=ss' 

and pk = Front(Medium(ss', Left)) 
111 apply FrontInQ 
112 put O = Medium(ss', Left) 
113 rep lace 
114 invoke IncomingAck#Valid I l a s t  I , 
115 rep lace 
116 invoke HasSyn 
117 invoke PreCond 
118 replace 
119 apply Seq#ToSendVals 
120 put S=ss' 
121 rep lace 
122 apply Seq#ToReceiveVal 
123 put S=ss' 
124 rep lace 
(p roven ! )  

Figure 3-1: Proof tree continued 

PreCond I I 

theorem Synchronized, StateOf(S, Right) = Established 
or StateOf(S, Right) = SynSent 

and OIdUnack(S, Right) ~ = ISS(Right) 
imp synchronized(S); 

theorem Acl,,sAndSyns, pk in Medium(S, Left) 
and StateOf(S, Left) ~ = Listen 
and StateOf(S, Left) ~ = Closed 
and Inc#Ack(pk) = Incarnation#Out(S, Right) 
and (Control(pk) =ack) or (Control(pk) = synack) 

imp HasSyn(S, pk); 

theorem FrontlnQ, Q~ = NewQueuOfPacket imp Front(Q) in Q; 

theorem Seq #ToSendVals, StateOf(S, Right) ~ = Closed 
and StateOf(S, Right) ~ = Listen 

imp Seq #To,Send(S, Right) = 1 + ISS(Right); 

theorem Seq #ToReceiveVal, StateOf(S, Right) ~ = Closed 
and StateOf(S, Right) ~ = Listen 
and StateOf(S, Left) = SynReceived 

or StateOf(S, Left) = Established 
and Incarnation #Out(S, Right) = Incarnation #in(S, Left) 

imp Seq#ToReceive(S, Left) = 1 + ISS(Right); 

theorem EorSSimpEorSR, StateOf(S, Right) = Established 
or StateOf(S, Right) = SynSent 

and OIdUnack(S, Right) ~ = ISS(Right) 
imp StateOf(S, Left) = Established 

or StateOf(S, Left) = SynReceived; 

theorem SynchNoLorCorSS, StateOf(S, Right) = Established 
or StateOf(S, Right) = SynSent 

and OIdUnack(S, Right) ~ = ISS(Right) 
imp StateOf(S, Left) ~ = Listen 

and StateOf(S, Left) ~ = Closed 
and StateOf(S, Left) ~ = SynSent; 

define synchronized(S) 
= = ( Seq#ToReceive(S, Left)= Seq#ToSend(S, Right) 

and Incarnation#In(S, Left) = Incarnation#Out(S, Right)), 

HseSyn(S, pk) 
= -- some SS, SS', pk' 

( SSjoinSS' = S  
and pk in Medium(SS, Right) 
and Inc#Seq(pk') = Inc#Ack(pk) 
and Inc#Seq(pk') = Incarnation#In(S, Left) 
and if Control(pk) = synack 

then Control(pk') = syn 
else (Control(pk') = syn or Control(pk') = synack)); 

! 
: Figure 3-2: Theorems and definitions used in the proof o f  the 

three way handshake 
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I. SPEXi f icat ion of the Th ree W a y  Handshake  

Node(Station)[ 
State Variables 
[ 

ISS, 
Incarnation # In, 
Incarnation # Out, 
OldUnack, 
Seq#ToSend,  
Seq#ToReceive  
:Nat, 

Initial Send Sequence # 
Incarnation # of incoming packets 
Incarnation # of outgoing packets 
Oldest unacknowledged seq. # 
Seq # to put in the next outgoing packet 
Next expected seq # 
Nat stands for Natural 

TimeoutBuffer : QueueOfPackets, buffer with packets sent and not acknowledged 

Interfaces 
[ 

Exported:: 
Command : Command,  
StateOf: SysState, 

Intemal:: 
InPort ,  
OutPort 
:QueueOfPackets ; 

] 

One of (Active, Passive, Null} 
State of this side of the connection 

msgs coming in 
msgs going out 

Initial State 
[ 

Incarnation# Out = Maxva](ImPort Append OutPon) andl Maxval produces a unique value 
I see Properties section 

Incarnation#In = 0 and 
Seq#ToSend = 0 and 
Seq#ToReceive = 0 and 
StateO£ = Closed and 
OldUnack = 0, 
TimeoutBuffer = NewQueueOfPackets ; 

l 

Events 
[ [ Events and their pre-conditions 

ActiveOpen : PreCond is StateOf= Closed and Command  = Active, 
PassiveOpen : PreCond is StateOf= Closed and Cornrhand = Passive, 
Timeout : PreCond is TimeoutBuffer ~ = NewQueueOfPackets, 
ReceiveRst : PreCond is InPort~ = NewQueueOfPackets and Control(Front(InPort))= rst, 
ReceiveAck : PreCond is InPor t -  = NewQueueOfPackets and Control(Front(InPort)) = ack, 
ReceiveSyn : PreCond is InPort~ = NewQueueOfPackets and Control(Front(InPort))= syn, 
ReceiveSynAck : PreCond is 

In.Port- = NewQueueOfPackets and Control(Front(InPort)) = synack 
] 

Behavior 
[ 

Ifirst we define some auxiliary predicate and 
Ifunctions to improve readability o! the specifica 

define IncomingAck#Valid = = 

(AckNumber(Front(InPort)) = + OldUnack) and 
Ack#Inc(Front(InPort))  = Incarnat ion#Out;  

define IncomingSeq# Valid - - 

(SeqNumber(Front(InPort)) = Seq#ToReceive)  and 
Seq#Inc(Front(InPort)) = Incamation#1n;  

I Acknowledgement for X has Ack = X + I 
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AetiveOpen:: 
Corrtmand ~- Null, 

Incarnation#Out ~- Maxval(InPort Append OutPort). 

OldUnack ,- ISS, 

Seq#ToSend ,- +ISS 

StateOf .- SynSent 

TimeoutBuffer .- 

NewQueueOff'ackets Add pkt(ISS,Maxval(InPort Append Outport). 
AnyNat, AnyNat.syn) 

OutPort ~- 
Outport Add pkt(ISS,Maxval(InPort Append Outport). 

AnyNat,AnyNat,syn) ; 

PasslveOpen:: 
Cormnand *- Null, 

StateOf ,- Listen. 

TimeoutBuffer ,- NewQueueOfPackets; 

ReceiveRst:: 
StateOf ,- 

if StateOf = SynSent and IncomingAck # Valid 
then Closed 
else if StateOf = Listen 

then Listen 
else if IncomingSeq# Valid 

then Closed 
else StateOf, 

TimeoutBuffer ,- 
if StateOf = SynSent and IncomingAck#Valid 
then NewQueueOfPackets 
else if IncomingSeq# Valid 

then NewQueueOfPackets 
else TimeoutBuffer, 

InPort ,- Remove(InPort); 

ReeeiveAek:: 
OldUnaek ~- 

if StateOf = SynSent 
then if IncomingAek # Valid 

then + OldUnaek 
else OldUnack 

else if StateOf= SynReceived 
then if IncomingAck # Valid and IncomingSeq # Valid 

then +OldUnack 
else OldUnaek 

else OldUnaek, 

StateOf ,- 
if StateOf = SynReceived 

then if IncomingAck # Valid and IneomingSeq # Valid 
then Established 
else SynReceived 

else StateOf, 

TimeoutBuffer ~- 
if StateOf = Closed or StateOf = Listen 

then NewQueueOfPackets 
else if StateOf = SynReceived 

then if IncomingAck # Valid and IncomingSeq # Valid 
then DeletePacket(TimeoutBuffer, Seq #ToSend) 
else TimeoutBuffer 

else if StateOf = SynSent 
then if IncomingAck # Valid 

then DeletePacket(TimeoutBuffer,Seq # ToSend) 
else TimeoutBuffer 

else TimeoutBuffer, 

OutPort ~- 
if StateOf = Closed or StateOf = Listen 

or ((StateO f=  SynSent) and ~ IncomingAck # Valid) 
then OutPort 

Add pkt(AckNumber(Front(InPort)), 
Aek # Inc(Front(lnPort)), 
AnyNat,AnyNat, 
rs0 

else if StateOf= SynReceived 
then if ~ IncomingSeq# Valid 

then OutPort 
Add pkt(Seq # ToSend, Incarnation# Out, 

Seq# ToReceive, Incamation# In, 
ack) 

else if ~ IncomingAck # Valid 
then OutPort 

Add pkt(AckNumber(Front(InPort)), 
Ack # Inc(Front(InPort)), 
A nyNat,AnyNaL 
rs0 

else OutPort 
else OutPort, 

InPort ~- Remove(InPort) ; 

ReceiveSyn:: 
Incarnation#Out ~- 

if StateOf= Listen 
then Maxval(InPort Append OutPort) 
else Incarnation#Out, 

Incarnation# In ~- 
if ((StateOf=Listen) or StateOf= SynSen0 

then Seq #1nc(Front(InPort)) 
else Incarnation # In, 

OldUnack ~- 
if StateOf = Listen 
then ISS 
else OldUnack, 

Seq#ToSend ,- 
if StateOf = Listen 

then +ISS 
else Seq#ToSend, 

Seq#ToReceive ~- 
if StateOf = Listen or StateOf = SynSent 
then + SeqNumber(Fr0nt(InPort)) 
else Seq#ToReceive, 
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StateOf (- 
if StateOf = Listen 
then SynReceived 
else if StateOf = SynSent 

then if OldUnack = ISS 
then SynReceived 
else Established 

else StateOf, 

TimeoutBuffer ,- 
if StateOf = Listen 
then NewQueueOfPackets 

Add pkt(ISS,Maxval(InPort Append OutPort), 
+ SeqNumber(Front(InPort)) 
,Seq # Inc(Front(InPort)), 
synack) 

else if StateOf= Closed 
then NewQueueOfPackets 
else TimeoutBuffer, 

OutPort ,- 
ifStateOf = SynSent 

then OutPort 
Add pkt(Seq# ToSend, Incamation# Out, 

+ SeqNumber(Front(InPort)) 
,Seq # Inc(Front(InPort)), 
ack) 

else if StateOf = SynReceived or StateOf = Established 
then if IncomingSeq# Valid 

then OutPort 
else OutPort 

Add pkt(Seq#ToSend, 
Incarnation # Out, 
Seq#ToReceive, 
Incarnation # In, 
ack) 

else if StateOf = Listen 
then OutPort 

Add pkt(ISS,Maxval(InPort Append OutPort), 
+ SeqNumber(Front(InPort)) 
,Seq# Inc(Front(InPort)), 
synack) 

else OutPort 
Add pkt(O',Incarnation # Out, 

+ SeqNumber(Front(InPort)) 
,Seq # Inc(Front(InPort)), 
rs0, 

InPort ,- Remove(InPort) ; 

ReeeiveSynAck:: 
Incarnation # In ~- 

if (StateOf= SynSent) and IncomingAck#Valid 
then Seq# Inc(Front(InPort)) 
else Incarnation# In, 

OldUnack (- 
if StateOf = SynSen~ 

then if IncomingAck #Valid 
then +OldUnack 
else OldUnack 

else if StateOf= SynReceived or StateOf= Established 
then if IncomingAck#Valid and IncomingSeq# Valid 

then +OldUnack 
else OldUnack 

else OldUnack, 

Seq#ToReceive ,- 

if StateOf = SynSent 
then if IncomingAck # Valid 

then + SeqNumber(Front(InPort)) 
else Seq#ToReceive 

else Seq # ToReceive, 

StateOf (- 
if StateOf = SynSent and IneomingAck # Valid 
then Established 
else StateOf, 

TimeoutBuffer (- 
if StateOf = Closed or StateOf = Listen 

then NewQueueOfPackets 
else if StateOf = SynSent 

then if IncomingAck#Valid 
then DeletePacket(TimeoutBuffer,OldUnack) 
else NewQueueOfPackets 

else TimeoutBuffer, 

OutPort ~- 
if StateOf = Closed or StateOf = Listen 
then OutPort 

Add pkt(AckNumber(Front(InPort)), 
Ack # Inc(Front(InPort)), 
AnyNat, AnyNat, 
rs0 

else if StateOf = SynSent 
then if IncomingAck # Valid 

then OutPort 
Add pkt(Seq # ToSend, Incarnation# Out, 

+ SeqNumber(Front(InPort)), 
Seq # Inc(Front(InPort)), 
ack) 

else OutPort 
Add pkt(AckNumber(Front(InPort)), 

Ack# Inc(Front(InPort)), 
AnyNat, AnyNat, 
rs0 

else if StateOf = Established 
then if IncomingSeq# Valid 

then OutPort 
else OutPort 

Add pkt(Seq # ToSenc~ 
Incarnation# Out, 
Seq#ToReceive, 
Incarnation# In, 
act) 

else if StateOf= SynReceived 
then if ~IncomingSeq # Valid 

then OutPort 
Add pkt(Seq # ToSend, lncarnation# Out, 

Seq # ToReceive,lncarnation# In, 
ack) 

else if ~ IncomingAck # Valid 
then OutPort 

Acid pkt(AckNumber(Front(InPort)), 
Ack # Inc(Front(InPort)), 
AnyNat.AnyNat, 
rs0 

else OutPort, 

In_Port ~- Remove(InPort); 

Timeout:: 
OutPort ~- OutPort AppendTimeoutBuffer ; 

] 
I noa~ s..io,, U 
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N o d e ( M e d i u m ) [  
S t a t e  V a r i a b l e s [ [  No state variables [] 
I n t e r f a c e s  
[ 

Expor ted  :: 
Buffer : QueueOfPacket ; 

] 
I n i t i a l  S t a t e  
[ Buffer = NewQueueOfPacket ; ] 
Events[ LoseMessage : 

PreCond is Buffer ~ = NewQueueOfPacket ;] 
B e h a v i o r  
[ 

LoseMessage:: 
Buffer ,- Remove(Buffer) ; 

] 
I Node Madi.n,I] 

T o p o l o g y  
[ [ There is a medium RightToLeft and a medium LeftToRight 

I There are two instances of node type Station: Left and Right 

Instances:: 
RightToLeft,LeRToRight : Medium, 
Left.Right : Station ; 

Connections:: 
InPort@Lefi.OutPort@Right <--> Buffer@RightToLeft. 
OutPort@Left, lnPort@Right <m> Buffer@LeftToRight; 

1 
P r o p e  r t i e s  

[ 
assume Maxval(Q), 

forall pk( 
pk in Q imp (Maxval(Q) > Seq#Inc(pk) 

and Maxval(Q) > Ack # Inc(pk))), 
assert CorrectSynch, 

((StateOf= Established) or StateOf= SynSent and 
OldUnack~ = ISS)@Right imp 

Seq#ToSend@Right = Seq#ToReceive@.Left and 
Incarnation#Out@Right = Incarnation#In@Left, 

assert Liveness, 
F o r  al l  i [ i can be one of {Lelt.Right} 
(~PreCond(ReceiveAck) and ~PreCond(ReceiveSyn) and 
~PreCond(ReceiveSynAck) and ~PreCond(ReceiveRst) and 
-PreCond(Timeou0 and ~PreCond(LoseMessage) 

and StateOf~ = Closed)@i and 
~(StateOf~i= Listen and StateOf@OwositeSide(i ) = Listen) 

imp (StateOf= Established)@LeR 
] and (StateOf= Established)@Right ; 

NOTE: Due to space limitations, only a 
representative se~ of the axioms generated 
from the SPEXification of the three-way 
handshake are included. The full set can 
be found in [12]. 

II. Axioms generated from the 
SPEXification of the 
Th ree Way H a n d s h a k e  

type ThreeWay; 
needs types Evant, SequenceOfEvent,Packet,QueueOfPackets,SysState,Side; 
declare Q,q,q':QueueOf Packets; 
declare seq # ,seg # ,ack# ,and # :Integer; 
declare cf:ControlField; 
declare S,SS,SS':SequenceOfEvent; 
declare pe:Event; 
declare pk,pk':Packet; 
declare i,ii,j:Side; 

interface ISS(i}:lnteger; 

interface 
TimeoutBuffer(S,i), 
Medium(S,i) 

:QueueOfPackets; 

interface 
StateOf(S,i) 

:SysState; 

interface 
Maxval(q). 
Incarnation # In(S,i), 
Incarnation # Out(S,i), 
OIdUnack(S,i), 
Seq # ToSend(S,i), 
Seq # ToReceive(S,i) 

:Integer; 

interface Induction(S):Boolean; 

{auxiliary functions to help in the readability of the axioms} 

interface PreCond(S,pe), 
IncomingAck # Valid(S,i), 
IncomingSeq # Valid(S,i) 

: Boolean; 

define {auxiliary function definitions} 

PreCond(S,ActiveOpen(i)) = = StateOf(S,i)=Closed, 

PreCond(S,PassiveOpen(i)) = = StateOf(S,i)= Closed, 

PreCond(S,Timeout(i)) = = TimeoutBuffer(S,i) ~ = NewQueueOfPackets, 

PreCond(S,LoseMessage(i)) = = Medium(S,i) ~ = NewQueueOfPackets, 

PreCond(S,RaceiveRst(i)) = = 
(Medium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and 
Control(Front(Medium(S,OppositeSide(i)))) = rst, 

PreCond(S,ReceiveAck(i)) = = 
(Medium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and 

Control(Front(Medium(S,OppositeSide(i)))) = ack, 

PreCond(S,ReceiveSyn(i)) = = 
(Medium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and 
Control(Front(Medium(S,OppositeSide(i)))) = syn, 

PreCond(S,ReceiveSynAck(i)) = = 
(Meclium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and 
Control(Front(Medium(S,OppositeSide(i)))) = synack, 

IncomingAck#Valid(S,i) = = 
(AckNumber(Front(Medium(S,OppositeSide(i)))) = 1 +OIdUnack(S,i)) and 
Inc#Ack(Front(Medium(S,OppositeSide(i)))) = Incamation#Out(S,i),  

IncomingSeq #Valid(S,i) = = 
(Sec:lNurnber(Front(Medium(S,OppositeSide(i)))) = Seq #ToReceive(S,i)) 
and Inc # Seq(Front(Medium(S,OppositeSide(i)))) = incarnation # In(S,i); 

axioms {ReceiveAck} 

Incarnation #Out(S apt ReceiveAck(i),j) = = Incarnation#Out(S,j), 

Incarnation#1n(S apr ReceiveAck(i),j) = = Incarnation#1n(S,j), 
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OIdUnack(S apr ReceiveAck(i),j) = = 
if i = j and PreCond(S, ReceiveAck(i)) 
then if StateOf(S,i) = SynSent 

then if IncomingAck#Val id(S, i)  
then 1 + OIdUnack(S,i) 
else OIdUnack(S,i) 

else if StateOf(S,i) = SynReceived 
then if IncomingAck # Valid(S,i) and IncomingSeq # Valid(S,i) 

then 1 + OIdUnack(S,i) 
else OIdUnack(S,i) 

else OIdUnack(S,i) 
else Old Unack(S,j), 

Seq # ToSend(S apr ReceiveAck(i),j) = = Secl # ToSend(S,j), 

Seq # ToReceive(S apr ReceiveAck(i),j) = = Seq # ToReceive(S,j), 

StateOf(S apr ReceiveAck(i),j) = = 
if i=  j and PreCond(S,ReceiveAck(i)) 
then if StateOf(S,i) = SynReceived 

then if IncomingAck # Valid(S,i) and IncomingSeq # Valid(S,i) 
then Established 
else SynReceived 

else StateOf(S,i) 
else StateOf(S,j), 

TimeoutBuffer(S apr ReceiveAck(i),j) = = 
if i=  j and PreCond(S,ReceiveAck(i)) 

then if StateOf(S,i) = Closed or StateOf(S,i) = Listen 
then NewQueueOfPackets 
else if StateOf(S,i) = SynReceived 

then if IncomingAck # Valid(S,i) and IncomingSecl # Valid(S,~ 
then DeletePacket(TimeoutBuffer(S,i),Seq #ToSend(S,i))  
else TimeoutBuffer(S,i) 

else if StateOf(S,i) = SynSent 
then if AckNumber!Front(Medium(S,OppositeSide(i)))) = 

1 + OldUnack(S.i} . i 
then DeletePacket (TimeoutBuffer(S,0,Seq # ToSend(S, )) 
else TimeoutBuffer(S,i) 

else TimeoutBuffer(S,i) 
else TimeoutBuffer(S,j), 

Medium(S apr ReceiveAck(i),j) = = 
if PreCond(S,ReceiveAck(i)) then 
i f i = j  
then if StateOf(S,i) = Closed or StateOf(S,i) = Listen 

or ((StateOf(S,i) = SynSent) and ~lncomingAck #Valid(S,i)) 
then Medium(S,i) 

Add pkt(AckNumber(Front(Medium(S,OppositeSide(i)))), 
Inc # Ack(Front(Mediu m(S,OppositeSid e(i)))), 
AnyNat, AnyNat, 
rst) 

else if StateOf(S,i) = SynReceived 
then if ~lncomingSeq # Valid(S,i) 

then Medium(S,i) 
Add pkt(Seq # ToSend(S,i), 

Incarnation #Out(S,i), 
Seq # ToReceive(S,i), 
Incarnation # In(S,i), 
ack) 

else if ~ IncomingAck # Valid(S,i) then 
Medium(S,i) 

Add pkt(AckNumber(Front(Medium(S,OppositeSide(i)))), 
Inc # Ack{Front(Medium(S,OppositeSide(i)))), 
AnyNat,AnyNat, 
rst) 
else Medium(S,i) 

else Medium(S,i) 
else if j = OppositeSide(i) 

then Remove(Medium(S,j)) 
else Medium(S,j) 

else Medium(S,j); 

axioms {LoseMessage} 

Incarnation #Out (S  apr LoseMessage(i),j) = = Incarnation #Out(S,j), 

incarnation # In(S apr LoseMassege(i),j) = = Incarnation # In(Sj'), 

OIdUnack(S apr LoseMessege(i),j) = = OIdUnack(S,j), 

Seq # ToSend(S apr LoseMessage(i),j) = = Seq # ToSend(S,j), 

Seq #ToReceive(S apr LoseMassege(i),j) = = Seq #ToReceive(S,j), 

StateOf(S apr LoseMeesege(i),j) = = StateOf(S,j), 

Medium(S apt LoseMeseage(i),j) = = 
if i = j and PreCond(S,Lo6eMassage(i)) 
then Remove(Medium(S,i)) 
else Medium(S,j), 

"rimeoutBuffer{S apr LoseMeasage(i),j) = = TimeoutBuffer(S,j); 

Aux i l ia ry  Data Type Def in i t ions 

type Packet; 

needs types Integer, ControlField; 

declare dummy, pk: Packet; 
declare s e q # ,  ack# ,  i nc#s ,  i nc#a :  integer; 
declare cf: ControlField; 

interface pkt(seq # ,  i nc#s ,  a s k # ,  i n c #  a, cf): Packet; 

interfacee SeqNumber(10k), AckNumber(pk), Inc#Seq(pk),  Inc #Ack(pk): Integer; 

interface Control(pk): ControlField; 

axiom dummy = pk 
= = ( (SeqNumber(dummy) = SeqNumber(pk)) and AckNumber(dummy 

) 
= AckNumber(pk) 

and Control(dummy) = Control(pk) 
and Inc#Ack(dummy) = Inc#Ack(pk)  
and Inc#Seq(dummy) = Inc#Seq(pk));  

axiom SeqNumber(pkt(se(:l#, i n c#s ,  a c k # ,  i nc#a ,  cf)) = = seq# ;  

axiom AckNumber(pkt(seq # ,  i n c#s ,  a c k # ,  i nc#a ,  cf)) = = ack# ;  

axiom Inc#Secl(pkt(seq#,  i nc#s ,  a c k # ,  i nc#a ,  of)) = = inc#s ;  

axiom Inc #Ack(pkt(seq # ,  i nc#s ,  a c k # ,  i nc#a ,  cf)) = = i nc#a ;  

axiom Control(pkt(seq#, i nc#s ,  a c k # ,  i nc#a ,  cf)) = = cf; 

end {Packet}  ; 
type QueueOfPacket; 

needs type Packet; 

declare dummy, q, q l ,  q2, qq: QueueOfPacket; 
declare i, i l ,  i2, ii: Packet; 

interfaces 
NewQueueOfPacket, q Add i, Remove(q), 
Append(q1, q2), que(i): QueueOfPacket; 

infix Add; 

interfaces 
Front(q), Back(q): Packet; 

interfaces 
NormalForm(q), Induction(q), i in q: Boolean; 

infix in; 

axioms dummy=dummy = = TRUE, 
q Add i = NewQueueOfPacket = = FALSE, 
NewQueueOfPacket = q Add i = = FALSE, 
q l  Add i l  = q2 Add i2 = = ((ql  = q2) and (i1 = i2)), 

Remove(NewQueueOfPacket) = = NewQueueOfPacket, 
Remove(q Add i) = = if q = NewQueueOfPacket 

then q 
else Remove(q) Add i, 

Append(q, NewQueueOfPacket) = = q, 
Append(q, q l  Add i l )  = = Append(q, q l )  Add i l ,  

(:lue(i) = = NewQueueOfPacket Add i, 

Front((] Add i) = = if q = NewQueueOfPacket 
then i 
else Front(q), 

Back(q Add i) = = i, 

i in NewQueueOfPacket = = FALSE, 
i in (q Add i t)  = = (i in q or (i = it)); 

rulelemma 
Append(NewQueueOfPacket, q) = = q; 

schemas NormalForm(q) = = cases(Prop(NewQueueOfPacket), 
all qq, ii (Prop(qq Add ii))), 

Induction(q) = = cases(Prop(NewQueu~OfPacket), 
all qq, ii (IH(qq) imp Prop(qq Add ii))); 

end {QueueOfPacket} ; 
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