
FORMAL SPECIFICATION AND VERIFICATION
OF A

CONNECTION ESTABLISHMENT PROTOCOL

Daniel Schwabe*

Departamento de Informatica
PUC/RJ

Abstract: This paper presents an exercise in the
verification of a connection establishment protocoL
A specification language named SPEX, tailored for
the needs of communications protocols, is proposed,
and its relation to a semi-automated verification
system, AFFIRM, is discussed. This language is then
used to specify a connection protocol currently
being used. Certain errors are uncovered by analysis
using the verification system. However, the major
portion of the protocol's operation are shown to be
correct.

i. INTRODUCTION

Computer networks are becoming increasingly
widespread; their use already permeates our
everyday life. As a consequence, their correct
functioning becomes paramount. Given that computer
networks are extremely complex systems, the tash of
certifying that they behave properly is non-triviaL

This paper presents an exercise in verifying that
a particular algoritm to realize an important
function in computer networks, namely connection
estab~isT~en~does indee behave properly. The
methods dlscussed are applicable for analyzing a
wide range of other network functions as well.

The remainder of this section gives background
material. Section i.I discusses the nature and need
for connection establishment in computer networks ;
Section 1.2 then presents a new language suitable
for the specification of protocols, and Section L3
describes a system in which properties of such

specifications can be proved.

Section 2 presents a specification of a
connection protocol currently being used in
practice, given in the language introduced earlier.
Section 3 then discusses particular properties of
this protocol and shows their verification.

I.I Connection Establishment Protocol - This
section presents the motivation for connection
establishment protocols in ~eneral and for the

*'lnis research was conducted at the Information
Sciences Institute-UCC,and was supported by the
Defense Advanced Research Projects Agency under
contract number DAHCI5 72 C 0308. The author was
partially supprted bv CAPES-Brazilian Government
under contract 1247/76. Views and conclusions
contained in this paper are the author's.

threeway handshake used in the ARPANET in
particular".

Consider a di~tirbuted system with several
interconnected nodes. The ~]o!cs .~fo

connected by an unreliable transmisson medium in
which messages may be lost or duplicated and each
node has several processes. Imagine now that two
processes wish to communicate; a common method to
overcome this possible loss of data is to attach a
sequence number to each data packet that flows, in
either direction, between them. If the two nodes
can agree on a starting number to be used, again in
each direction, then this will allow the detection
of packets arriving out of order or beingduplic~te~

Suppose now that the system, when it is created,
initializes the nodes to have agreed upon sequence
numbers, thus allowing the data transfer to take
place immediately. Unfortunately, such systems are
impractical, for a number of reasons.

First, since the system is intended to be
distributed, a failure at one node would require
the whole system to be re-initialized. Second ,
although there is a potential for communication
between any two processes in the system, only a few
pairs will actually be engaged in data exchange at
any one time. Since the resources needed to
maint~mcommunication between processes is quite
significant, it is desirable for the nodes to be
able to keep these resources allocated only while
the exchange is taking place, thus increasing their
utilization.

These considerations lead to the notion of
connections: When two processes wish to communicat%
the corresponding nodes will cooperate among
themselves to establish a common frame of referenc%
e.g., sequence numbers for data flowing in each
direction, for the exchange of data; when the
exchange is complete, the connection is closed,
freeing the resources for use by other processes.
The period of time that a particular connections
is open between two processes, i.e., a particular
frame of references is in effect, is called an
incarnation of that connection.

It is clear that for the exchange of data to be
successful, the two nodes must agree on the state
of the connection. A further problem is introduced
by the fact that the transmission medium may delay
and/or duplicate packets that flow between the two
nodes. Since connections can open and close, it is

*The reader familiar with the three-way
handshake may skip this section.

II
C H 1 6 9 4 - 9 / 8 1 / 0 0 0 0 / 0 0 1 1 5 0 0 . 7 5 © 1981 I E E E

possible for packets from old incarnations to be
in the medium, and obviously they should not be
mistaken for packets belonging to a newly opened
connection.

Since packets may be lost, a positive
acknowledgement-retransmission on timeout scheme
is used. In other words, a copy of each packet
sent iskept by the sender until an acknowledgement
of its reception by the receiver is received. If.
after some predefined amount of time, no acknowk
edgment themselves are not acknowledged.

An important fact to notice is that if there is
a positive probability(no matter how small) that a
packet is lost, then it is actually impossible to
completely separate the connection establishment
from the data transfer itself. To see why,
consider the last(synchronization) packet
exchanged during the connection establisment;
each node will consider the connection to be open
upon sending and receiving this packet . It is
clear that the node receiving this paket can be
sure that the other node has a compatible view of
the connection. The sender, however, cannot be so
sure, given the possibility that this last packet
may be lost; only when the first data packet
arrives(in the reverse direction) will it be sure
that the other node actually received it.Therefor%
the sender node must maintain both the data
exchange and the connection establishment
information for that period of time. A problem
equivalent to this is discussed in [2].

In many systems,connections are opened and closed
quite frequently. In view of the fact that the
medium may duplicate packets, it is possible for a
connection request packet from a previous incarna-
tion to appear at one node at such a time as to be
mistaken as a current one, thereby initiating a
connection with the wrong frame of reference[4].

A problem still remains as to how to identify
packets from previous incarnations as being old.
The sequence numbers chosen to stablish the frame
of reference of a new connection must prevent that
Reference[18] discusses this issue in more detail.

A protocol has been proposed to handle the
connection establishment problems as discussed in
the previous paragraphs. It is called the three-
way handshake[14,19]. The particular version used
here is taken from TCP[TCP80], the second gene~
ation transport level protocol being used in the
ARPA internet_ sytem.

This protocol derives its name from the
sequence of steps a node goes through in order to
establish a connection. Suppose node A wishes to
cormnunicate with node B, and that node A taskes
the initiative. Then, they through the following
steps:

1. Node A sends node B a connection request,called
SYN(for SYNchronize).

2. Node B receives the SYN packet, and responds
with a SYN of its own together with an
acknowledgmenent,together called SYNACK(for
SYNchronize and ACKnowledge).

3. Node A receives the SYNACK packet, verifies
that the ACK portion does indeed acknowledges
its own previous SYN, and sends an ACK packet
acknowledging node B's SYN. At this point, node

A considers the connection to be ovened.

4. Node B receives the ACK packet, verifies that
it does acknowledge is own previous SYN, and
then considers the connection to be opened.

There are two basic modes in which to open a
connection: an active mode, in which the issuing
node takes the initiative, and a passive mode, in
which the issuing node merely listens for incoming
connection requests, and accepts the first to come
in. The basic protocol described above can be
modified to handle the case when both nodes do an
active open simultaneously.

If at any point an incorrect packet arrives,then
a RST(reset) packet is sent back to abort the
connection opening procedure.

Figure i-I contains a state transition diagram taken
from [16]. It does not show transitions caused by
RST or incorrect packets.

1.2 Overview of SPEX - We present here an overview
of a language, called SPEX,to be used for the
specification of a layer of a distributed system in
general and computer networks in particular. This
language will be used later to describe the three-
wav handshake vrotocol. As will be evident from
the deta.ils given below, the underlying model in
SPEX is that of a non-deterministic state transi-
tion system, with some s~ecialized features to
facilitate protocol s~ecification. SPEX is
discussed at greater length in [12].

A layer is regarded as consisting of inter-
connected Nodes. In the case of the example
presented here, a Node can be a Station or a
Medium. The pattern of interactions of the nodes
constitutes the layer's definition. A particular
pattern of behavior characterizes a node's type ;
A layer may in general be composed of several
distinct types of nodes, each with its own behavio~
and may have several instances of each type of node
as well.

Thus, in order to completely characterize a
layer, it is necessary to describe the behavior of
each of node (given in the Node Behavior part of
the specification), the set of instances of each
node type and the way the instances are inter-
connected (given in the Topology aprt), and the
desired properties of the interactions between the
instances (given in the Properties part). In addi-
tion, the specification of any data types used in
specifying a node's behavior must also be included.

A node is some entity that has some internal
State Variables and some externally visible Inter-
face Variables; these variables may be of
arbitrarily complex data types (which may be
defined using algebraic data type specification
methods[4,8,8,9]. A node reacts to a set of
specified Events. When one such event occurs, some
state variables and some interface variables may
have their values changed as a result of this
occurrence.

State variables can be accessed only locally at
each node. Interface variables, on the other hand,
can be accessed from the outside-this is how a node
communicates with the outside world, i.e., other
nodes in the same layer or other layers using the
layer in which the node is defined.

12

÷ ÷ .

J CLOSED J

p a s s i v e OPEN CLOSE
.

c r e a t e TCB d e l e t e TCB

÷ ÷

I LISTEN I
÷ ÷

rcv SYN I
.]

+ + snd SYN,ACK /

I I

[SYN J r c v SYN

active OPEN

C r e a t e TCB
snd SYN

CLOSE

d e l e t e TCB
v

I !
I sYw I

I RCVD I .. I SENT I
I I snd ACK I I
I I . I I
+ + rcv ACK o f SYN \ I r c v SYN.ACK + +

. I I ~ - - -
x I J snd ACK

v v
÷ ~ _ . - ÷

I ESTAB I
÷ ÷

Figure 1-1: ThreeAVay Handshake State Transition Diagram

Accordingly, the inter~ace varlaDLe~ as e a c u ,ouu
are divided into two kinds: Those that are e~orted
to other layers and those that are connected to
other nodes in the same layer. In addition, each
interface variable may have a direction of data
flow associated with it, meaning that data in that
variable flows into or out of a node; if no direc
tion is specified, this means data in that vari- --
able flows in both directions.

The actual behavior of a node is given by
discribing how a node reacts to the occurrence of
certain specified events. Each event known at a
node has a pre-condition associated with it; this
pre-condition is a predicate involving state and
interface variables at that node. As long as a pre
conditions is type, its associated event is said
to be enabled; enabled events may fire at any time.

The node's behavior is given in terms of the
new values of all its variables when each of the
possible events occurs. All changes for an event
are considered to happen simultaneously, i.e. the
events are considered atomic. This means that if
any variable Z is used to compute the new value of
some variable, the value used in the computation
is the value X had before the event happened. For
brevity's sake, whenever a variable is not men-
tioned on the left hand side of any event effects
statement it means that its value is not changed
by the occurrence of that event.

Since state variables are not visible
externally, they can be regarded as histo~ vari-
ables[ll] which accumulate information about the
computation.

Since interface variables are externally vis-
ible, it is possible for an event e7 at some node
N1 to change the value of some interface variable
at another node, say N2. In fact, e] may actually
enable some event at N2; this is effectively how
nodes exchange data and synchronize their activ-
ity.

~ne ~as~ ~cem necessary to completely describe
a node's behavior is its fnitial State, specifying
the value of any variables at system creation tim~
The most general way to specify this is by giving
predicates which must be t~e in the initial state;
it may not be necessary or even possible to give
actual values to the variables.

All of the above must be specified for each
node type that exists in the layer.

The overall system behavior specified ~defined
as the set of all valid sequences of events. A
valid sequence is formed by starting from an
initial state(i.e, a state satisfying the initial
state predicates) and successively firing enabled
events; it may be of infinite length. If it is of
finite length, then the final state arrived at by
executing the sequence has no enabled ecents.

Once all node types have been specified, it is
necessary to describe how the several nodes are
connected. This is achieved by allowing interface
variables at each node to be connected to interfa~
variabl~at other nodes; the intended semantics is
that these are.in faqt shared variables between
t~e correspondzng noGes.

The iDpology part then specifies how the inter-
face variables of each node in the system (i.e. ,
each instance of each type of node) are connected
to interface variables of the other nodes.

The Properties section states two kinds of
properties of the protocol,Ass~ed and Asserted
properties. Asserted properties are those that
must be proved true by the specifier, and serve
as an additional check of the accuracy of the
specification. In other words, proving these
properties increases the confidence of the
specifier that the specification corresponds to
her/his intuite understanding of the system.

Assumed properties are used to ~flne certain
operations in a non-computational fashion by
giving inputputput relationships between

]3

arguments and returned values.

SPEXifications**can be conveniently translated
into algebraic style data type specifications of
the kind that are supported by the AFFIRM system
(see Section 1.3). This capability can be exploited
to prove properties of the protocol using analysis
methods from the abstract data type specification
domain, or to perform a limited form of symbolic
execution of the specification, which helps in

• . • ~ *

determining the accuracy of the speczflcatzon .
Reference[12] discusses this translation in detail.

An overview of algebraic specification of data
types and of AFFIRM is given in the next section.

1.3 - Overview of Algebraic Specification of
Data Types and of AFFIRM

The material presented in this section has been
abridged from[4,17].

AFFIRM[IO] is an experimental system for the
algebraic specification of and the verification of
properties of user-defined abstract data types.
The heart of the system is a natural deduction
theorem prover for the interactive proof of these
properties, which are stated in the predicate cal-
culus extended with data types. Programs, written
in a variant of Pascal extended with user-defined
abstract data types, may be verified using the
inductive assertion method[3]. Addtional features
include tools for the analysis of algebraic specif !
cations, a library of useful data types, and user
interface facilities. Experience with AFFIRM in-
cludes extensive experimentation with data type
specifications, verification of small programs,
the specification and partial proof of a large
file updating module, and the proof of high level
properties of security kernels.

The specification and theorem-proving portions
of AFFIRM are relevant to the current discussion.

Like other specification and verification
systems, AFFIRM follows its own particular theor-
etical and programming paradigm-abstract data
types specified algebraically and properties
verified by rewriting rule techniques. A brief
description of the algebraic style of data type
specifications and of the theorem proving portions
of AFFIRM follows.

Following the algebraic style of specifications
[5,6,7,8,9], a data type specified by first
defining three sets of functions:
l. Const~ctors. These functions create values of
the type. Their range is the data type being
specified. All values of the type can be described
in terms of a some functional composition of these
functions.

2. Extenders(or Modifiers). These functions also
have the data type being specified as their range,
but in constrat to the constructors, they are not
needed to express values of the data type-they are
derived operators. These functions can be defined
in terms of the constructors.

3.Selectors. These functions yield values of types
other than. the one being ~peci~ied. The general
term for these functions is selector,but lunctlons
yielding values of type Boolean are often termed

*'NPEXification'will be used to mean
SPEXspecification.

** I.e., whether the specification captures the
designer's intuitive understanding of the system

predicates. These functions are defined in terms
of the parameters of the constructors.

For example, the constructors of a queue are
NewQueue(the empty queue) and A~(Appends an el-
ement to a queue). Example extender functions are
Remove(deletes the first element from a queue) and
Append (concatenates two queues). Observe that
these extender functions can be defined in terms of
the constructors NewQueue and Add. Examole selector
functions are Front, #Elements and In(a predi-
cate). These are definable in terms of the
parameters to Add.

The effect such a specification is to view
values of the type in terms of the constructors
wich can build them. Hence, all selectors and
extenders are defined in terms of these
constructors. For example, the queue of integers
<1,2,3> is represented (in infix form) as
((NewQueueOflnteger Add I) Add 2) Add 3

This first part of a specification gives the
signature of all operations, i.e., their domains
and their ranges. Figure 1-2 shows an example for
the type ~eueOfZnteger. The second part of a data
type specification

declare q,q':QueueOflnteger;
declare i:lnteger;

interface NewQueueOflnteger, q Add i : QueueOflnteger;
interface Remove(q), Append(q,q') : QueueOflnteger;
interface # Elements(q), Front(q) : Integer;
interface i in q: Boolean;

Figure 1-2: Signature of type QueueOflnteger

provides semantics for the operations whose domain
and information was give in the first part.
Extenders and selectors are defined by equational
axioms of the form lhs == rhs relating how each
function behaves when applied to each of the
constructors. Constructor functions are treated as
primitive, unspecified operations.
Example of axioms taken from a specification of the
tvve ~eueOfZnteger are given in Figure 1-3.

axioms
Remove(NewQueueOflnteger) : = NewQueueOflnteger,
Remove(q Add i) = = if q = NewQueueOflnteger

then q
else Remove(q) Add i,

#Elements(NewQueueOflnteger) = = 0,
#Elements(q Add i) = = #Elements(q) + 1;

Append(q, NewQueueOflnteger) = = q,
Append(q1, q2 Add i) = = Append(q1, q2) Add i,

Figure 1-3: Some axioms for type QueueOf'[nteger

Data types in general have propertzes that the
specifier may wish to prove. For example, "The
number of elements in each queue". Formally, this
property is stated as

#Elements(Append(q,q ')) = #Elements(q)+#Elements(q')

14

Properties of a data type are proved using a
method called structural induction [7,13] which is
based on the notion that all values of the data
type can be produced by repeated applications of
the constructor functions. To prove a property P
of all elements of a data type, it suffices to
show that
I. It is true for the "base" cases - the

constructors that produce values of the type
without taking values of the type as arguments
(e.g.,P(NewOueue)).

2. Assuming P is true for some value q, then it is
also true for all values obtained by a applying
constructors to q(e.g., for all q,i P(q)
implies PCq Add i)).
There much more to specifying a data types

specification than just giving a set of axioms. A
good data type specification should provide the
desired set of operations. These operations should
have the expected (intuitive) properties. Also,
the axioms should facilitate simple proofs. In
other words, the type has an associated theory
that expresses properties derived from the axioms.
(Building these theories is a mathematical art.)
The main method of proof of such properties is
induction, for which the schema part of a type
provides the proof structure.

AFFIRM is not exactly a proof checker, nor is it a
proof finder. The responsibility for finding and
executing a proof strategy rests solely with the
user. At each proof step, modifications are made
to a system maintained proof structure. Then the
rewriting rules of the data types of the program,
together with the rules of propositional logic,
are applied to simplify the proposition currently
being worked upon. In general, the user is
attempting to reduce a formula to a set of subgoa~
so simple that their proofs are immediate, i.e.,
can be obtained by the system without further
direction. Some example commands for carrying out
proofs and their effects are:

try proposition Set up proposition as the current
goal.

employ Induction(v)
Induction is a user-defined
schema for the the type of induc
tion desired and V is the varia-
ble to be induced upon. The proof
structure is modified to show the
induction.

apply proposition Use proposition as a lemma in
the proof (proposition must
separately be proved or assumed).
A separate put command
instantiates the variables in the
lermna to the proper values in the
current goal.

suppose proposition - Break the current goal into
two subgoals, one with the addi-
tive hypothesis proposition and
the other with ~ proposition.

split Break up the proposition at a
designated spot into subgoals, e.
g., the proposition H imp(Cl'and
C 2) can be split into the two
propositions H imp C I and (H and
CI) impC,.

replace i z . Replace subexpresslons with other

subexpressions according to desig-
nated equalities in the current
proposition.

invoke defn Invoke a definition defn that the
user has made at some time.

The user can explore various avenues of proof
until the proof is complete or until the conjecture
is found to be unprovable, at which point the proof
of the corrected conjecture must be restarted or
the bad proof steps corrected.

Each theorem or intermediate propositioninAF~RM
is represented by a named node in a directed
acyclic graph called the proof forest. The proof of
a theorem comprises a tree, whose named arcs repr~
sent AFFIRM commands and thus deductive steps.
AFFIRM checks for circularity within the current
tree.

An example of an AFFIRM proof is discussed in
Section 3.

1.4 Relation to Other Work - There is a large body
of work regarding techniques for specifying proto-
cols. These include Petri nets(and related graph
models), formal languages, sequencing expression,
and (parallel) programming languages. Much of this
work is limited in expressive power, in the sense
that specifications grow unproportionally large as
the complexity of the protocol being specified
increases. Also, many suffer from lack of a solid
theory and/or of automated tools for verification.
Reference[15] provides a survey of this work.

Although the underlying model of SPEX is not
new, it is beleived to be the first language allo-
wing the formal specification of non-deterministic
state transition systems in a modular, hierarchical
fashion, and for which semi-automated verification
tools exist. An important advantage of the modulari
zation and the symbolic nature of the specificatio~
is that there is no combinational explosion when
analyzing more complex protocols. Reference [IF]
contains an example in which a complex protocol,
involving an arbritary number of nodes, is
specified, but where the complexity of the proof is
independent on the number of nodes.

2. SPECIFICATION OF THE THREE-WAY HANDSHAKE IN
SPEX

This section examines a SPEXification of the
three-way handshake protocol described informally
in Section i.i. Appendix I contains the actual text
of the SPEXification.

After giving the state variables, interfaces,
initial state, and events for one station, the
main portion of the specification shows the behav-
ior of the station for each event. A small specif~
cation for the medium is also given, stating that
the medium is essentially a queue with an added
LoseMessage event. In the sequel, a brief
explanatlon of the SPEXification is given.

The three way handshake protocol involves two
nodes with identical behavior. The corresponding
node type is Station.
Each station needs the following State Variables:
ISS-is some constant to be used as Initial Send
Sequence number.
Incarnation#In - is an incarnation identification
for the packets coming in from the other node.
Incarnation#Out - is an incarnation identification

15

for the packets leaving this node•
OlaT/nack - is the sequence number of the oldest
sent packet which has not yet been acknowledged.
Seq#ToSend - is the sequence number that should be
attached to the next data Dacket to be sent•
Seq#ToReceive - is the expected sequence number of

Next packet coming in.

Tim~out~uffe r - is ~ ~ueue of packet§ ~ontaining
CODle Ol packets wnlcn nave been sent put not yet
ackonowledged*•

The exported interface to using layers contains
two variables.

Command - is a command buffer through which the
user indicates what type of open request is desired

StateOf- is a variable that remembers the state
of the station, i.e., somehow remembers the recent
history of messages that have been exchanged. Its
value can be one of {Closed, Listen, SynSent,
SynReceived, Established}.
Each station has two interface variables which are
internal to the layer, namely;
InPort - is a queue incoming packets, with poss !
ble loss.
OutPort - is a queue of outgoing packets, with
possible loss.

The initial state of each station requires that
the State of the station be Closed, the Timeout

Bufferbe empty and the sequence numSers and incar
nation number of incoming packes be zero**

The events to which a station can react are:

ActiveOpen - which is caused when the user issues
an active open command. This means that a connec-
tio6 request will be sent to the other party.

PassiveOpen - which is causedwhentheuser issues a
passive open corm~and• This means that the station
will listen for incoming connection requests, and
accept the first one that comes.

Timeout - which is caused when a timeout occurs,i.
e• when a certain amount of time has elapsed
without a packet being acknowledged.
ReceiveRst - which is caused when a packet arrives
whose control fiel is rst(reset). This is control
packet used to indicate the discovery of an
anomalous situation.
ReceiveAck - which is caused when an acknowl-
edgement packet arrives.
ReceiveSyn - which is caused when a packet arrives
whose control fiel is syn(synchronize). This is a
connection request.
ReceiveSynAck - which is caused when a packet
which is both an acknowledgement and a connection
request arrives.

The node type representing the medium has only
an interface variable, Buffer, which is a queue of
packets. There is only one event that can happen ,
LoseMessage, which models the medium being faulty.
Note that the transmit operation of the medium is
modeled as an Add to the queue, and ~he queue, and
the receive operation is modeled a R~move from the

queue, with the packet delivered obtained by from
of the queue(before the Remove).

The definition of the data type Packet can be

* Strictly speaking, Timeou~buffer does not have
to be a queue, but just a collection, of packets.
Modeling it as a queue results in simpler axioms
in this situation.

**Zero is used an arbritary initial value.

found in Appendix II. A brief description is given
here.

The fields of a packet are the following:
SeqNumber - is the sequence number of the packet•
Seq#Inc - is the incarnation number associated
with the sequence number.
AckNumber - is the sequence number that the packet
is acknowledging•
Ack#1nc - is the incarnation number of the
acknowledgement field•
Ctl - is the control field of the packet•

As an illustration of the effects of an event ,
consider the ActiveOpen event. Its pre-condition
states that it can fire only if the StateOf the
node is Closed, and the user issued an active open
command by placing the value Active in the com-
mand buffer. When this event fires, the
effects specified state, for instance, that a $¥N
packet is sent to the other side by appending it
to the OutFort interface variable. It is also
specified that the StateOf state variable becomes
SynSent.

Finally, the Topology section states that there
are two stations, Left and Right, connected by a
medium in each direction(i.e., OutPort@Left, Buffer
@LeftToRight, and InPort@Right are all a single
shared queue)•

The Properties section states properties con-
cerning the correct operation of the system that
will be discussed in section 3.

The SPEXification given in Appendix I is a sim
plication of the one given in TCP. The main dif---
rences are:

• TCP allows connections between arbitrary
pairs of addresses within a large address
space. As in TCP, the SPEXification assumes
this addressing function is performed by a
higher(sub) level, so that only fixed pairs
of nodes need be considered.

• TCP uses a sequence number and an initial
send sequence number selection algorithm to
handle the problems of distinguishing incar-
nations. TCP sequence numbers correspond
~ughly +o a concatenation of incarnation and
sequence number in our specification. TCP
sequence numbers are of finite size, whereas
they are of infinite size in the
SPEXification.

• The SPEXification concerns itself only with
the connection opening phase of the protocol;
it does not allow closing of the connection
in the middle of an opening• Likewise, it
does not allow data to be sent while a con-
nection is being opened.

• When a RST packet arrives at a node that is
in SYNSENI state, the TCP remembers whether
the connection started via an active or via
a passive open. If the open was a passive on%
the station returns to the LISTEN state
rather than closing the connection• The
SPEXification always closes the connection
after a reset. This modification does not
affect the functional correctness of the
protocol, but makes the corresponding
SPEXification simple•

For the purpose of verifying properties of the
three-way handshake, the SPEXification has been
manually translated into an algebraic datatype

16

specification that can be understood by the AFFIRM
system. Appendix II contains the generated axioms
and auxiliary data type definitions (e.g., Packet,
QueueOfPacket, etc.) in AFFIRM system

3. VERIFICATION

3.1 - Introduction - This section discusses the ve
rification of properties conaerning functional cor
rectness and liveness. The discussion is presente~
in terms of the algebraic style data type
specification as understood by AFFIRM.

As was discussed in section i.I, the functional
correctness of a connection protocol cannot be com-
pletely separated from the succeeding data transfer
phase. This introduces a problem as to the point
in time at which the claim of functional correc -
ness should be made. Ideally, functional correct-
ness should state that

"At the end of the connection phase, both
stations are in the Established state and are
synchronized, which means that 'old' data will not
be accepted, but 'new' data will be'~

Therefore, it would be necessary to describe at
least part of the data transfer protocol as well.

Because the data transfer has been omitted from
the specification, a modified version of this
property must be used. The following sections des-
cribe this in more detail.

3.2 - Functional Correctness - Consider now the
functional correctness of the protocol, as stated
above, but considering only one node's point of
view~

(StateOf = Established)@Ri~ht
imp ~eq#ToReceive@Left=Seq#To~end@Ri ght and

Incarnation#1n@Left=Incarnation#Out@Right;

Stated in words, this says that if the station
on the Right side in the Established state, then
the connection is synchronized for data flowing
out of this node.

This property is proved to be invariant using
inductive proof methods which are used for abstract
data types. After working with this specification,
it became apparent that this theorem was not
strong enough to be used in an inductive proof, for
the following reason. Careful study of the protocol
shows that it is possible for the above properties
to hold in the SynSent state also, when simulata-
neos active open commands are issued at both nodes,
as follows: one side may be in the SynSent state
and may have already received an acknowledgement
for its SYN packet; this side would not enter the
Established state until it receives the SYN packet
from the other side. This situation is characte-
rized by the fact thar OldUnack (the oldest unack-
nowledged sequence number) is not ISS anymore. Sin
ce this side has received an acknowledgement for
its SYN, it can be sure that the other side knows
its Seq#ToSend and its Incarnation#Out.
Hence the statement of functional correctness
must be strengthened(for one side only) as
follows:

Theorem FC:
((StateOf=E~tablished)or((StateOf=SynSent)and

OldUnack-=ISS)@Right

imp

* Th~ notation i~n means P is to be evaluated in
no~e n.

Seq#ToReceive@Left = Seq#ToSend@Right

and Incarnation#1n@Left= Incarnation#Out@Right;

This need to strengthen or generalize a theorem
in order to prove its invariance is typical of
inductive proof methods used for abstract data ty-
pes.

Notice that this strengthened statement implies
the weaker one, so that proving the stronger one
proves the weaker one as well.

Figure 3.1 contains a proof tree for this theorem
produced by the AFFIRM system; the lemmas and defin !

tions used are given in Figure 3-2(these figures
contain axioms and theorems stated using AFFIRM
syntax; the correspondence to SPEX syntax should
be obvious)*. The proof follows an inductive
argument, over all possible events in the system.
Broadly speaking, this amounts to, given a goal
state(e.g., Established , examining how each event
can move the system into that state(e.g., Receive
Ack event in SynReceived state). In general, there
are many states from which the system may move in-
to the goal state. Considering now each of those
states, one uses the inductive hypothesis to try
to prove the theorem.

After some examination of the proof tree, it is
possible to see that most cases follow directly
from the inductive hypotheses; this can be seen in
the proof tree by looking at the branches and noti
cing where only an invoke IH command(possibly
preceded and/or followed by some replace, case
and invoke commands) was given. Now the cases are
examined which do not follow directly from the
inductive hypotheses, i.e., involve the applica-
tion of some lemmas.

Consider what happens when a Received@Right
occurs(++< i)*~ The relevant case to consider has
the node at right in SvnSent or in SynReceived ,
and the incoming acknowledgement has the current
incarnation number(since otherwise the packet
would be discarded as old). In other words, the
incarnation number in the packet is equal to Incar
nation#Out@Right (See hypotheses of theorem
AcksAndSyns in Fig. 3-2, applied at ++< 2). But if
the incarnation number is current, then there
must have been a SYN packet in the past which this
current packet acknowledges(see definition of
HasSyn, invoked at ++<3). Thus, the current ACK
carries the same incarnation number that the SYN
carried, which means that the station at left has
its Incarnation#In set to the incarnation number
of that SYN packet. Therefore, we can conclude
that Incarnation#Out@Right=Incarnation#In@Left.

To see that the sequence numbers correspond,it
suffices to see that, if the state of a node is
not Listen or Close, then its Seq#ToSend is
always equal to ISS+l(Seq#ToSend will not change
until data is sent-see theorem Seq#ToSendVals,
applied at ++<~), and that all SYN packets carry
ISS as their sequence numbers. Since the Seq#ToRe-
ceive is taken from the SYN packet, it must

7, Numbers on the left should be iEnored; they
result from bookkeeping in AFFIRM.

**Indicators of the from ++<n are used to point
to the corresponding places in the proof tree

17

perforce be ISS+l(see theorem Seq#ToReceiveVals,
applied at +~-<5.). Therefore Seq#ToReceive@Left =
Seq#ToSend@Right.

The next relevant case is when a ReceiveSyn@
Left occurs(*-+<6). This can be correct only if
the node at left is in either Listen or SynSent ;
all other cases either cause an error or ignore
the packet. But a careful examination of the state
machine shows that it is not possible to have the
station at one side in either Listen or SynSent ,
and the other in either Established or in
SynReceived with OldUnack - = ISS (theorem
SynchNoLorCorSS, applied at +~-<7).Therefore this
situation really cannot occur.

The other relevant cases are when a Receive
SynAck occurs at either node. If it happens at the
node at right, then the proof follows the same
argument as the case for the ReceiveAck@Right. If
it happens at the node at left, then the proof
follows the reasoning for the case ReceiveSyn@Lef~

3.3 Liveness - Another useful property that we
may want to show that this protocol possesses is
Liveness, which states that either some event in
the system is enabled or the system is in its final
state. Since open events are user generated,
these events are ignored, and we assume that the
system starts in a state where neither side in
the Closed state and both sides are not passively

listening, in this case, it is expected that the
correct protocol will complete the connection
establishment and reach a final global state in
which bot sides have reached the Established
state.

In order to prove such a property, however, it
is necessary to prevent certain sequences from
actually being valid for the system. These are
sequences composed entirely of LoseMessage and/or
Timeout events. Such sequences reflect faiz~ess
assumptions on the medium, as well as finite
capacity. Thus, restrictions must be made in the
specification to ~nsure *e fairness of the
medium. These restrictions are incorporated by
including a limit in the number of occurrences of
the LoseMessc~e event, as well as on the size of
the medium.

Accordingly, the number of ocurrences of the
LoseMessage event is limited by having an extra
auxiliary counter such that LoseMesscaje can be
enabled only when the counter is positive, and
each time LoseMessage fires it decreases the
counter by one. It is set to some constant value
each time a message or an acknowledgement is
received. This constant value must be finite, but
can be arbitrarily large.

The capacity of the medium can be taken into
consideration by augmenting the pre-condition of all
events that put something into the medium with a
test to see if the length of the corresponding
queue is less than a certain constant, which again
must be finite but arbitrarily large. This rules
out behaviors in which a node times out over and
over, without anything else happening in the
system.

With these modifications introduced, an attempt
was made to prove that this protocol is alive,
i.e., it satisfies.

Theorem Liveness:

forall S,i

[~ PreCond(S,ReceiveXX) and
- PreCond(S,Timeout)

and -PreCond(S,LoseMessage) and

StateOf-=Closed]@i
and -(StateOf~i= Listen and

StateOf@OppositeSide(i)=Listen)

imp (StateOf=Established)@Left and
(StateOf=Established)@Right;

where XX={Ack,Syn,SynAck,Rst}

An inductive proof goes through for all cases
except for ReceiveRst. After some investigation, it
was found that there is a scenario in which it is
possible for the two nodes to end in the Closed
state, which is a contradiction of the theorem~
Figure 3-3 shows this scenario(with SEQ treated as a
single item representing both the sequence number
and the incarnation number).

This situation is considered an error because
old duplicate packets in the medium prevent a con-
nection from being established. Note that this is a
liveness error, not a safety error, since nothing
bad happerns, i.e., no incorrect synchronization or
data transfer takes place, but the intended
progress does not occur.

Another situation in which there is no progress
may occur because of the protocol simplification
introduced that a node always returns to Close
state when a RST packet arrives. Note that this is
not the scenario describe above.

An interesting observation is that, if data
packets are allowed to be sent, this scenario can
be continued in such a way that it actually accepts
data incorrectly. It is sufficient for the
appropriate old data packets to arrive at Node A
at the point in which it went into the Established
state, and before any RST packets were sent by
Node B; this is indicated in Figure 3-3. However,
it should be noted that this situation depends on
an extremely unlikely timing of message exchanges,
which is not expected to be of practical signifi -
cance.

This incorrect data can be avoided with a small
change in the protocol. Work is under way to verify
that a corrected version of the three-way handshake
avoids it.

Reference[i] discusses the verification of other
types of liveness properties in algebraically
described state transition systems.

4. CONCLUSIONS

This paper has presented an exercise in the ve-
rification of properties of a connection
establishment protocol. A specification language
tailored for the need of communications protocols
has been proposed, and is relation to a seml-auto-
mated verification system discussed. This language
was then used to specify a connection protocol
currently being used, and certain errors were
uncovered using the verification system, although
the major portion of the protocol's operation was
shown to be correct.

This work is part of an ongoing project to
develop better protocol specification and analysis

18

Node A

C L O S E D
act. Open

(delayed)

S Y N S E N T

S Y N S E N T

rcv ACK
S Y N S E N T

rcv S Y N
ESTABLISHED

snd ACK

ESTABLISHED

~ v R S T
C L O S E D

rcv S Y N
C L O S E D
snd R S T

rcv ACK
C L O S E D
snd R S T

C L O S E D

<SEQ = 200XCTL = SYN> -> ...
<- <SEQ = 3 0 0 X C T L = SYN>

<- <SEQ = 3 0 1 X A C K = 2 0 1 X C T L = A C I O

<- <SEQ = 100XC 'FL= SYN> old duplicate .t.t

<SEQ = 201MACK = 101XCTL = ACK> -> bad A CK H

.

*** bad data might be accepted here ***
e.g. <- <SEQ = 101>(DATA>

.

<- <SEQ = 1 0 1 X C T L = RST>

<- <SEQ = 300XCTL = SY-N> original delayed syn

<SEQ = 0 X A C K = 3 0 1 X C T L = RST> ->

<- <SEQ = 301MACK = 201XCTL = A C I O

<SEQ = 2 0 1 X C T L = RST> ->

Node B

CLOSED

act. OPEN

SYNSENT
... rcv S YN
S Y N R E C E I V E D

snd ACK

S Y N R E C E I V E D

S Y N R E C E I V E D

rcv ACK
S Y N R E C E I V E D
snd RST

SY-NRECEIVED

S Y N R E C E I V E D

rcv RST
discard- bad A C K #
snd ACK
S Y N R E C E I V E D
rcv RST

CLOSED

Figure 3-3: Example o f a liveness error in the three-way handshake

19

techniques; further work is described in [12,18].
Our preliminary experience indicates that the co n
bination of state transition and abstract data
type specification methods being pursued provides
a reasonably convenient and powerful approach to
these problems.

Acknowledgements - I wish to thank Carl Sunshine
for his constructive criticism of the work
presented in this paper and careful review of the
paper itself; Jon Postel for bearing with me and
taking the time to answer all those stupid
questions about TCP; the members of the Program
Verification group at ISl, in particular Susan
Gerhart, David Thompson and Rod Erickson for the
discussions while the work was being developed
and for making AFFIRM such a convenient tool to
use. Finally, I thank Danny Cohen, whose support
made it possible for me to work at ISI.

The presentation of this paper was made possi-
ble in part by a grant from IBM-Brasil and zn part
by the Brazilian Government.

References

1 - Berthomieu,B., Proving Progress Properies of
Communication Protocols in AFFIRM, Informa
tion Sciences Institute, Program Verifica ~
tion Project, Affirm Memo 35, September
1980.

2 - Cohen,D. and Yemini,Y., "Protocols for D~ing
Coordination", in Proceedings of the 4 ~
Berkeley Conference on Distributed Data
Management and Computer Networks, pp.179-
188, Lawrence Berkeley, California,August
28-30 1979. Also in The Oceanview Tales,
ISI/RR-79-83, USC/Information Sciences
Institute, Marina Del Rey, California.

3 - Floyd,R.W., "Assining meanings to programs",
in J.T.Schwartz(ed.), Proceedings of
Symposia in Applied Mathematics, pp.19-32,
American Mathematical Society, 1967.

4 - Gerhart,S.L., et al.,"An overview of AFFIRM:
a specification and verification system",
in Proceedings IFIP80 , pp. 343-348, Austr~
lia, October 1980.

5 - Goguen,J.A., Thatcher,J.W., and Wagner,E.G.,
"An Initial Algebra Approach to the Speci-
fication, Correctness, and Implementation
of Abstract Data Types", in Yeh,R.T.(ed.),
Current Trends in Programming Methodology,
pp.80-149, Prentice-Hall, Inc. Englewood
Cliffs, New Jersey, 1978

6 - Guttag ,J.V., The Specification and Applica-
tion to Programming of Abstract Data Types,
Ph.D. thesis, Department of Computer
Science, University of Toronto, October,
1975.

7 - Guttag,J.V., Horowitz,E., and Musser,D.R.,
"Abstract Data Types and Software Valida -
tion", Communications of the ACM 21,
December 1978, 1048-1064. (Also USC Infor-
mation Sciences Institute RR-76/48, August
1976).

8 - Guttag, J.V., and Horning, J.J.,
"The Algebraic Specification of Abstract
Data Types", Acta Informatica I0, 1978 ,
27-52

9 - Liskov,B.H. and Zilles,S.N., "S~ecification
Techniques for Data Abstractions", IEEE

Transactions on Software Engineering
SE-I,(1), March 1975, 7-19

I0 - Musser,D.R. , "Abstract data type spe-
cification in the AFFIRM system
Transactions on Software Engineeri~
SE-6,(1), January 1980, 24-32

II - Owicki,S.S. and Gries,D., "Verifying
Properties of Parallel Programs: An
Axiomatic Approach", Communications
of the ACM 19,(5), May 1976

12 - Schwabe,D., Formal Techniques for
Specification and Verification of
Protocols, Ph.D. thesis, Report CSD
810401, Computer Science Department,
University of California at Los
Angeles, 1981.

13 - Spitzen,J. and Wegbreit,B. ,"The
verification and synthesis of data
structures", Acta Informatica 4,1975,
127-144.

14 - Sunshine,C.A. and Dalal,Y.K.,"Connection
Management in Transport Protocols, "Compu-
ter Network 2, (6), December 1978.

15 - Sunshine,C.A., Formal Modelling of
Communication iJrotocois, 0~C information
Sclences Instltute, Technical Report ISI/
RR-81-89, February 1981

16 - J.B. Postel, Editor, DoD Standard Transmis-
sion Control Protocol-January 1980. Prepa
red by University of Southern California-
Information Sciences Institute for DARPA-
IPTO. Also in ACM SIGCOMM Quartely Review
October 1980

17 - Thompson,D.H.S.L. Gerhart,R.W. Erickson ,S.
Lee, and R.L.Bates, eds., The AFFIRM
Reference Library, USC Information
Sciences Institute, 1981. 5 vols: Referen
ce Manual, User's Guide, Type Library,
Annotated Transcripts, and Collected
Papers; 500 pages

18- Thompson,D.H.C.A. Sunshine,R.W.Erickson,S.L.
Gerhart, and D.Schwabe, Specification and
Verification of Communication Protocols
in AFFIRM using State Transition Models,

19 -

USC Information Sciences Institute,
Technical Report ISI/RR-81-88, February
1981. (Also submitted for publication)

Tomlinson,R.S. "Selecting Sequence Numbers",
in Proceedings of the ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, pp
11-23, ACM, Santa Monica, California,
March 1975. Also IFIP TC6.1(INWG)
Protocol Note N9 2, August 1974.

20

theorem Synchronized, Sta teOf (S ,R igh t) = Established
or S ta teOf (S ,R igh t) SynSent and OldUnack(S,Right) ~= ISS(Rtght)

imp synchronized(S);
Synchronized uses EorSSimpEorSRX, SynchNoLorCorSS%, AcksAndSyns%, FrontInQ~.
Seq#ToSendVals%, and Seq#ToReceiveVal%.

aroof t ree :
SNnchronized

apply EorSSimpEorSR {proved by Schwabe using AFFIRM 120 on 4-Feb-81 in
t r a n s c r i p t <SCHWABE>AFFIRMTRANSCRIPT.3-FEB-81.Z}

54 put S'=S
55 employ Induct ion(S)

Empty:
Immediate

apt:
56 employ NormalForm(ii$)
ActiveOpen:

57 cases
65 invoke IH
66 replace
67 invoke synchronized I a l l I
(p roven!)

PassiveOpen:{Synchronized, a p r : }
58 cases
1Z5 invoke IH
126 invoke synchronized I a l l I
(p roven!)

LoseMessage:{Synchronized, a p r : }
50 invoke IH
128 invoke synchronized ~ a l l I
(p roven!)

T imeout : {Synchronized, a p t : }
60 invoke IH
130 invoke synchronized I a l l I
(p roven!)

ReceiveRst : {Synchronized, a p r : }
61 cases
131 employ NormalForm(i')
Left:

132 invoke IH
134 invoke synchronized I all
(p roven!)

Right:
133 invoke IH
136 invoke synchronized I a l l
(p roven!)

ReceiveAck:{Synchronized, a p t : }
62 cases
69 employ NormalForm(i ')

Left:
70 invoke IH
72 invoke synchronized I a l l
(p roven!)

Right: ~ < 1
71 invoke IH
74 replace
75 invoke synchronized I a l l
76 apply AcksAndSyns ~ < 2
77 put pk = Front(Medium(ss ' , L e f t))

and S=ss'
78 apply FrontInQ
79 put Q = Medium(ss', Le f t)
80 replace
81 invoke PreCond I -4 : -3 I
82 apply Seq#ToSendVals ~ < 4
83 put S=ss'
84 invoke IncomingAck#Valid J a l l I
85 invoke HasSyn ~ < 3
86 replace
87 apply Seq#ToReceiveVal ~ < 5
88 put S=ss'
(proven!)

ReceiveSyn:{Synchronized, a p t : }
63 cases
g0 invoke IR ~ < 6
gl rep lace
92 invoke synchronized I a l l I
93 cases
94 rep lace
95 apply SynchNoLorCorSS ~ (7
97 put S=ss'
98 rep lace
(p roven !)

ReceiveSynAck:{Synchronized, a p r : }
64 cases
9g employ NormalForm(i ')

Le f t :
100 invoke IH
102 invoke synchronized ~ a l l I
103 cases
104 replace
105 apply SynchNoLorCorSS
106 put S=ss'
(nroven!~

Figure 3-1: Proof~ee for the functional correctness of the

three way handshake

Rignt:{Synchronized, ap r : , ReceiveSynAck:}
101 invoke IH
108 invoke synchronized I a l l]
109 apply AcksAndSyns
110 put S=ss'

and pk = Front(Medium(ss', Left))
111 apply FrontInQ
112 put O = Medium(ss', Left)
113 rep lace
114 invoke IncomingAck#Valid I l a s t I ,
115 rep lace
116 invoke HasSyn
117 invoke PreCond
118 replace
119 apply Seq#ToSendVals
120 put S=ss'
121 rep lace
122 apply Seq#ToReceiveVal
123 put S=ss'
124 rep lace
(p roven !)

Figure 3-1: Proof tree continued

PreCond I I

theorem Synchronized, StateOf(S, Right) = Established
or StateOf(S, Right) = SynSent

and OIdUnack(S, Right) ~ = ISS(Right)
imp synchronized(S);

theorem Acl,,sAndSyns, pk in Medium(S, Left)
and StateOf(S, Left) ~ = Listen
and StateOf(S, Left) ~ = Closed
and Inc#Ack(pk) = Incarnation#Out(S, Right)
and (Control(pk) =ack) or (Control(pk) = synack)

imp HasSyn(S, pk);

theorem FrontlnQ, Q~ = NewQueuOfPacket imp Front(Q) in Q;

theorem Seq #ToSendVals, StateOf(S, Right) ~ = Closed
and StateOf(S, Right) ~ = Listen

imp Seq #To,Send(S, Right) = 1 + ISS(Right);

theorem Seq #ToReceiveVal, StateOf(S, Right) ~ = Closed
and StateOf(S, Right) ~ = Listen
and StateOf(S, Left) = SynReceived

or StateOf(S, Left) = Established
and Incarnation #Out(S, Right) = Incarnation #in(S, Left)

imp Seq#ToReceive(S, Left) = 1 + ISS(Right);

theorem EorSSimpEorSR, StateOf(S, Right) = Established
or StateOf(S, Right) = SynSent

and OIdUnack(S, Right) ~ = ISS(Right)
imp StateOf(S, Left) = Established

or StateOf(S, Left) = SynReceived;

theorem SynchNoLorCorSS, StateOf(S, Right) = Established
or StateOf(S, Right) = SynSent

and OIdUnack(S, Right) ~ = ISS(Right)
imp StateOf(S, Left) ~ = Listen

and StateOf(S, Left) ~ = Closed
and StateOf(S, Left) ~ = SynSent;

define synchronized(S)
= = (Seq#ToReceive(S, Left)= Seq#ToSend(S, Right)

and Incarnation#In(S, Left) = Incarnation#Out(S, Right)),

HseSyn(S, pk)
= -- some SS, SS', pk'

(SSjoinSS' = S
and pk in Medium(SS, Right)
and Inc#Seq(pk') = Inc#Ack(pk)
and Inc#Seq(pk') = Incarnation#In(S, Left)
and if Control(pk) = synack

then Control(pk') = syn
else (Control(pk') = syn or Control(pk') = synack));

!
: Figure 3-2: Theorems and definitions used in the proof o f the

three way handshake

21

I. SPEXi f icat ion of the Th ree W a y Handshake

Node(Station)[
State Variables
[

ISS,
Incarnation # In,
Incarnation # Out,
OldUnack,
Seq#ToSend,
Seq#ToReceive
:Nat,

Initial Send Sequence #
Incarnation # of incoming packets
Incarnation # of outgoing packets
Oldest unacknowledged seq. #
Seq # to put in the next outgoing packet
Next expected seq #
Nat stands for Natural

TimeoutBuffer : QueueOfPackets, buffer with packets sent and not acknowledged

Interfaces
[

Exported::
Command : Command,
StateOf: SysState,

Intemal::
InPort ,
OutPort
:QueueOfPackets ;

]

One of (Active, Passive, Null}
State of this side of the connection

msgs coming in
msgs going out

Initial State
[

Incarnation# Out = Maxva](ImPort Append OutPon) andl Maxval produces a unique value
I see Properties section

Incarnation#In = 0 and
Seq#ToSend = 0 and
Seq#ToReceive = 0 and
StateO£ = Closed and
OldUnack = 0,
TimeoutBuffer = NewQueueOfPackets ;

l

Events
[[Events and their pre-conditions

ActiveOpen : PreCond is StateOf= Closed and Command = Active,
PassiveOpen : PreCond is StateOf= Closed and Cornrhand = Passive,
Timeout : PreCond is TimeoutBuffer ~ = NewQueueOfPackets,
ReceiveRst : PreCond is InPort~ = NewQueueOfPackets and Control(Front(InPort))= rst,
ReceiveAck : PreCond is InPor t - = NewQueueOfPackets and Control(Front(InPort)) = ack,
ReceiveSyn : PreCond is InPort~ = NewQueueOfPackets and Control(Front(InPort))= syn,
ReceiveSynAck : PreCond is

In.Port- = NewQueueOfPackets and Control(Front(InPort)) = synack
]

Behavior
[

Ifirst we define some auxiliary predicate and
Ifunctions to improve readability o! the specifica

define IncomingAck#Valid = =

(AckNumber(Front(InPort)) = + OldUnack) and
Ack#Inc(Front(InPort)) = Incarnat ion#Out;

define IncomingSeq# Valid - -

(SeqNumber(Front(InPort)) = Seq#ToReceive) and
Seq#Inc(Front(InPort)) = Incamation#1n;

I Acknowledgement for X has Ack = X + I

22

AetiveOpen::
Corrtmand ~- Null,

Incarnation#Out ~- Maxval(InPort Append OutPort).

OldUnack ,- ISS,

Seq#ToSend ,- +ISS

StateOf .- SynSent

TimeoutBuffer .-

NewQueueOff'ackets Add pkt(ISS,Maxval(InPort Append Outport).
AnyNat, AnyNat.syn)

OutPort ~-
Outport Add pkt(ISS,Maxval(InPort Append Outport).

AnyNat,AnyNat,syn) ;

PasslveOpen::
Cormnand *- Null,

StateOf ,- Listen.

TimeoutBuffer ,- NewQueueOfPackets;

ReceiveRst::
StateOf ,-

if StateOf = SynSent and IncomingAck # Valid
then Closed
else if StateOf = Listen

then Listen
else if IncomingSeq# Valid

then Closed
else StateOf,

TimeoutBuffer ,-
if StateOf = SynSent and IncomingAck#Valid
then NewQueueOfPackets
else if IncomingSeq# Valid

then NewQueueOfPackets
else TimeoutBuffer,

InPort ,- Remove(InPort);

ReeeiveAek::
OldUnaek ~-

if StateOf = SynSent
then if IncomingAek # Valid

then + OldUnaek
else OldUnack

else if StateOf= SynReceived
then if IncomingAck # Valid and IncomingSeq # Valid

then +OldUnack
else OldUnaek

else OldUnaek,

StateOf ,-
if StateOf = SynReceived

then if IncomingAck # Valid and IneomingSeq # Valid
then Established
else SynReceived

else StateOf,

TimeoutBuffer ~-
if StateOf = Closed or StateOf = Listen

then NewQueueOfPackets
else if StateOf = SynReceived

then if IncomingAck # Valid and IncomingSeq # Valid
then DeletePacket(TimeoutBuffer, Seq #ToSend)
else TimeoutBuffer

else if StateOf = SynSent
then if IncomingAck # Valid

then DeletePacket(TimeoutBuffer,Seq # ToSend)
else TimeoutBuffer

else TimeoutBuffer,

OutPort ~-
if StateOf = Closed or StateOf = Listen

or ((StateO f= SynSent) and ~ IncomingAck # Valid)
then OutPort

Add pkt(AckNumber(Front(InPort)),
Aek # Inc(Front(lnPort)),
AnyNat,AnyNat,
rs0

else if StateOf= SynReceived
then if ~ IncomingSeq# Valid

then OutPort
Add pkt(Seq # ToSend, Incarnation# Out,

Seq# ToReceive, Incamation# In,
ack)

else if ~ IncomingAck # Valid
then OutPort

Add pkt(AckNumber(Front(InPort)),
Ack # Inc(Front(InPort)),
A nyNat,AnyNaL
rs0

else OutPort
else OutPort,

InPort ~- Remove(InPort) ;

ReceiveSyn::
Incarnation#Out ~-

if StateOf= Listen
then Maxval(InPort Append OutPort)
else Incarnation#Out,

Incarnation# In ~-
if ((StateOf=Listen) or StateOf= SynSen0

then Seq #1nc(Front(InPort))
else Incarnation # In,

OldUnack ~-
if StateOf = Listen
then ISS
else OldUnack,

Seq#ToSend ,-
if StateOf = Listen

then +ISS
else Seq#ToSend,

Seq#ToReceive ~-
if StateOf = Listen or StateOf = SynSent
then + SeqNumber(Fr0nt(InPort))
else Seq#ToReceive,

23

StateOf (-
if StateOf = Listen
then SynReceived
else if StateOf = SynSent

then if OldUnack = ISS
then SynReceived
else Established

else StateOf,

TimeoutBuffer ,-
if StateOf = Listen
then NewQueueOfPackets

Add pkt(ISS,Maxval(InPort Append OutPort),
+ SeqNumber(Front(InPort))
,Seq # Inc(Front(InPort)),
synack)

else if StateOf= Closed
then NewQueueOfPackets
else TimeoutBuffer,

OutPort ,-
ifStateOf = SynSent

then OutPort
Add pkt(Seq# ToSend, Incamation# Out,

+ SeqNumber(Front(InPort))
,Seq # Inc(Front(InPort)),
ack)

else if StateOf = SynReceived or StateOf = Established
then if IncomingSeq# Valid

then OutPort
else OutPort

Add pkt(Seq#ToSend,
Incarnation # Out,
Seq#ToReceive,
Incarnation # In,
ack)

else if StateOf = Listen
then OutPort

Add pkt(ISS,Maxval(InPort Append OutPort),
+ SeqNumber(Front(InPort))
,Seq# Inc(Front(InPort)),
synack)

else OutPort
Add pkt(O',Incarnation # Out,

+ SeqNumber(Front(InPort))
,Seq # Inc(Front(InPort)),
rs0,

InPort ,- Remove(InPort) ;

ReeeiveSynAck::
Incarnation # In ~-

if (StateOf= SynSent) and IncomingAck#Valid
then Seq# Inc(Front(InPort))
else Incarnation# In,

OldUnack (-
if StateOf = SynSen~

then if IncomingAck #Valid
then +OldUnack
else OldUnack

else if StateOf= SynReceived or StateOf= Established
then if IncomingAck#Valid and IncomingSeq# Valid

then +OldUnack
else OldUnack

else OldUnack,

Seq#ToReceive ,-

if StateOf = SynSent
then if IncomingAck # Valid

then + SeqNumber(Front(InPort))
else Seq#ToReceive

else Seq # ToReceive,

StateOf (-
if StateOf = SynSent and IneomingAck # Valid
then Established
else StateOf,

TimeoutBuffer (-
if StateOf = Closed or StateOf = Listen

then NewQueueOfPackets
else if StateOf = SynSent

then if IncomingAck#Valid
then DeletePacket(TimeoutBuffer,OldUnack)
else NewQueueOfPackets

else TimeoutBuffer,

OutPort ~-
if StateOf = Closed or StateOf = Listen
then OutPort

Add pkt(AckNumber(Front(InPort)),
Ack # Inc(Front(InPort)),
AnyNat, AnyNat,
rs0

else if StateOf = SynSent
then if IncomingAck # Valid

then OutPort
Add pkt(Seq # ToSend, Incarnation# Out,

+ SeqNumber(Front(InPort)),
Seq # Inc(Front(InPort)),
ack)

else OutPort
Add pkt(AckNumber(Front(InPort)),

Ack# Inc(Front(InPort)),
AnyNat, AnyNat,
rs0

else if StateOf = Established
then if IncomingSeq# Valid

then OutPort
else OutPort

Add pkt(Seq # ToSenc~
Incarnation# Out,
Seq#ToReceive,
Incarnation# In,
act)

else if StateOf= SynReceived
then if ~IncomingSeq # Valid

then OutPort
Add pkt(Seq # ToSend, lncarnation# Out,

Seq # ToReceive,lncarnation# In,
ack)

else if ~ IncomingAck # Valid
then OutPort

Acid pkt(AckNumber(Front(InPort)),
Ack # Inc(Front(InPort)),
AnyNat.AnyNat,
rs0

else OutPort,

In_Port ~- Remove(InPort);

Timeout::
OutPort ~- OutPort AppendTimeoutBuffer ;

]
I noa~ s..io,, U

24

N o d e (M e d i u m) [
S t a t e V a r i a b l e s [[No state variables []
I n t e r f a c e s
[

Expor ted ::
Buffer : QueueOfPacket ;

]
I n i t i a l S t a t e
[Buffer = NewQueueOfPacket ;]
Events[LoseMessage :

PreCond is Buffer ~ = NewQueueOfPacket ;]
B e h a v i o r
[

LoseMessage::
Buffer ,- Remove(Buffer) ;

]
I Node Madi.n,I]

T o p o l o g y
[[There is a medium RightToLeft and a medium LeftToRight

I There are two instances of node type Station: Left and Right

Instances::
RightToLeft,LeRToRight : Medium,
Left.Right : Station ;

Connections::
InPort@Lefi.OutPort@Right <--> Buffer@RightToLeft.
OutPort@Left, lnPort@Right <m> Buffer@LeftToRight;

1
P r o p e r t i e s

[
assume Maxval(Q),

forall pk(
pk in Q imp (Maxval(Q) > Seq#Inc(pk)

and Maxval(Q) > Ack # Inc(pk))),
assert CorrectSynch,

((StateOf= Established) or StateOf= SynSent and
OldUnack~ = ISS)@Right imp

Seq#ToSend@Right = Seq#ToReceive@.Left and
Incarnation#Out@Right = Incarnation#In@Left,

assert Liveness,
F o r al l i [i can be one of {Lelt.Right}
(~PreCond(ReceiveAck) and ~PreCond(ReceiveSyn) and
~PreCond(ReceiveSynAck) and ~PreCond(ReceiveRst) and
-PreCond(Timeou0 and ~PreCond(LoseMessage)

and StateOf~ = Closed)@i and
~(StateOf~i= Listen and StateOf@OwositeSide(i) = Listen)

imp (StateOf= Established)@LeR
] and (StateOf= Established)@Right ;

NOTE: Due to space limitations, only a
representative se~ of the axioms generated
from the SPEXification of the three-way
handshake are included. The full set can
be found in [12].

II. Axioms generated from the
SPEXification of the
Th ree Way H a n d s h a k e

type ThreeWay;
needs types Evant, SequenceOfEvent,Packet,QueueOfPackets,SysState,Side;
declare Q,q,q':QueueOf Packets;
declare seq # ,seg # ,ack# ,and # :Integer;
declare cf:ControlField;
declare S,SS,SS':SequenceOfEvent;
declare pe:Event;
declare pk,pk':Packet;
declare i,ii,j:Side;

interface ISS(i}:lnteger;

interface
TimeoutBuffer(S,i),
Medium(S,i)

:QueueOfPackets;

interface
StateOf(S,i)

:SysState;

interface
Maxval(q).
Incarnation # In(S,i),
Incarnation # Out(S,i),
OIdUnack(S,i),
Seq # ToSend(S,i),
Seq # ToReceive(S,i)

:Integer;

interface Induction(S):Boolean;

{auxiliary functions to help in the readability of the axioms}

interface PreCond(S,pe),
IncomingAck # Valid(S,i),
IncomingSeq # Valid(S,i)

: Boolean;

define {auxiliary function definitions}

PreCond(S,ActiveOpen(i)) = = StateOf(S,i)=Closed,

PreCond(S,PassiveOpen(i)) = = StateOf(S,i)= Closed,

PreCond(S,Timeout(i)) = = TimeoutBuffer(S,i) ~ = NewQueueOfPackets,

PreCond(S,LoseMessage(i)) = = Medium(S,i) ~ = NewQueueOfPackets,

PreCond(S,RaceiveRst(i)) = =
(Medium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and
Control(Front(Medium(S,OppositeSide(i)))) = rst,

PreCond(S,ReceiveAck(i)) = =
(Medium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and

Control(Front(Medium(S,OppositeSide(i)))) = ack,

PreCond(S,ReceiveSyn(i)) = =
(Medium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and
Control(Front(Medium(S,OppositeSide(i)))) = syn,

PreCond(S,ReceiveSynAck(i)) = =
(Meclium(S,OppositeSide(i)) ~ = NewQueueOfPackets) and
Control(Front(Medium(S,OppositeSide(i)))) = synack,

IncomingAck#Valid(S,i) = =
(AckNumber(Front(Medium(S,OppositeSide(i)))) = 1 +OIdUnack(S,i)) and
Inc#Ack(Front(Medium(S,OppositeSide(i)))) = Incamation#Out(S,i),

IncomingSeq #Valid(S,i) = =
(Sec:lNurnber(Front(Medium(S,OppositeSide(i)))) = Seq #ToReceive(S,i))
and Inc # Seq(Front(Medium(S,OppositeSide(i)))) = incarnation # In(S,i);

axioms {ReceiveAck}

Incarnation #Out(S apt ReceiveAck(i),j) = = Incarnation#Out(S,j),

Incarnation#1n(S apr ReceiveAck(i),j) = = Incarnation#1n(S,j),

25

OIdUnack(S apr ReceiveAck(i),j) = =
if i = j and PreCond(S, ReceiveAck(i))
then if StateOf(S,i) = SynSent

then if IncomingAck#Val id(S, i)
then 1 + OIdUnack(S,i)
else OIdUnack(S,i)

else if StateOf(S,i) = SynReceived
then if IncomingAck # Valid(S,i) and IncomingSeq # Valid(S,i)

then 1 + OIdUnack(S,i)
else OIdUnack(S,i)

else OIdUnack(S,i)
else Old Unack(S,j),

Seq # ToSend(S apr ReceiveAck(i),j) = = Secl # ToSend(S,j),

Seq # ToReceive(S apr ReceiveAck(i),j) = = Seq # ToReceive(S,j),

StateOf(S apr ReceiveAck(i),j) = =
if i= j and PreCond(S,ReceiveAck(i))
then if StateOf(S,i) = SynReceived

then if IncomingAck # Valid(S,i) and IncomingSeq # Valid(S,i)
then Established
else SynReceived

else StateOf(S,i)
else StateOf(S,j),

TimeoutBuffer(S apr ReceiveAck(i),j) = =
if i= j and PreCond(S,ReceiveAck(i))

then if StateOf(S,i) = Closed or StateOf(S,i) = Listen
then NewQueueOfPackets
else if StateOf(S,i) = SynReceived

then if IncomingAck # Valid(S,i) and IncomingSecl # Valid(S,~
then DeletePacket(TimeoutBuffer(S,i),Seq #ToSend(S,i))
else TimeoutBuffer(S,i)

else if StateOf(S,i) = SynSent
then if AckNumber!Front(Medium(S,OppositeSide(i)))) =

1 + OldUnack(S.i} . i
then DeletePacket (TimeoutBuffer(S,0,Seq # ToSend(S,))
else TimeoutBuffer(S,i)

else TimeoutBuffer(S,i)
else TimeoutBuffer(S,j),

Medium(S apr ReceiveAck(i),j) = =
if PreCond(S,ReceiveAck(i)) then
i f i = j
then if StateOf(S,i) = Closed or StateOf(S,i) = Listen

or ((StateOf(S,i) = SynSent) and ~lncomingAck #Valid(S,i))
then Medium(S,i)

Add pkt(AckNumber(Front(Medium(S,OppositeSide(i)))),
Inc # Ack(Front(Mediu m(S,OppositeSid e(i)))),
AnyNat, AnyNat,
rst)

else if StateOf(S,i) = SynReceived
then if ~lncomingSeq # Valid(S,i)

then Medium(S,i)
Add pkt(Seq # ToSend(S,i),

Incarnation #Out(S,i),
Seq # ToReceive(S,i),
Incarnation # In(S,i),
ack)

else if ~ IncomingAck # Valid(S,i) then
Medium(S,i)

Add pkt(AckNumber(Front(Medium(S,OppositeSide(i)))),
Inc # Ack{Front(Medium(S,OppositeSide(i)))),
AnyNat,AnyNat,
rst)
else Medium(S,i)

else Medium(S,i)
else if j = OppositeSide(i)

then Remove(Medium(S,j))
else Medium(S,j)

else Medium(S,j);

axioms {LoseMessage}

Incarnation #Out (S apr LoseMessage(i),j) = = Incarnation #Out(S,j),

incarnation # In(S apr LoseMassege(i),j) = = Incarnation # In(Sj'),

OIdUnack(S apr LoseMessege(i),j) = = OIdUnack(S,j),

Seq # ToSend(S apr LoseMessage(i),j) = = Seq # ToSend(S,j),

Seq #ToReceive(S apr LoseMassege(i),j) = = Seq #ToReceive(S,j),

StateOf(S apr LoseMeesege(i),j) = = StateOf(S,j),

Medium(S apt LoseMeseage(i),j) = =
if i = j and PreCond(S,Lo6eMassage(i))
then Remove(Medium(S,i))
else Medium(S,j),

"rimeoutBuffer{S apr LoseMeasage(i),j) = = TimeoutBuffer(S,j);

Aux i l ia ry Data Type Def in i t ions

type Packet;

needs types Integer, ControlField;

declare dummy, pk: Packet;
declare s e q # , ack# , i nc#s , i nc#a : integer;
declare cf: ControlField;

interface pkt(seq # , i nc#s , a s k # , i n c # a, cf): Packet;

interfacee SeqNumber(10k), AckNumber(pk), Inc#Seq(pk), Inc #Ack(pk): Integer;

interface Control(pk): ControlField;

axiom dummy = pk
= = ((SeqNumber(dummy) = SeqNumber(pk)) and AckNumber(dummy

)
= AckNumber(pk)

and Control(dummy) = Control(pk)
and Inc#Ack(dummy) = Inc#Ack(pk)
and Inc#Seq(dummy) = Inc#Seq(pk));

axiom SeqNumber(pkt(se(:l#, i n c#s , a c k # , i nc#a , cf)) = = seq# ;

axiom AckNumber(pkt(seq # , i n c#s , a c k # , i nc#a , cf)) = = ack# ;

axiom Inc#Secl(pkt(seq#, i nc#s , a c k # , i nc#a , of)) = = inc#s ;

axiom Inc #Ack(pkt(seq # , i nc#s , a c k # , i nc#a , cf)) = = i nc#a ;

axiom Control(pkt(seq#, i nc#s , a c k # , i nc#a , cf)) = = cf;

end {Packet} ;
type QueueOfPacket;

needs type Packet;

declare dummy, q, q l , q2, qq: QueueOfPacket;
declare i, i l , i2, ii: Packet;

interfaces
NewQueueOfPacket, q Add i, Remove(q),
Append(q1, q2), que(i): QueueOfPacket;

infix Add;

interfaces
Front(q), Back(q): Packet;

interfaces
NormalForm(q), Induction(q), i in q: Boolean;

infix in;

axioms dummy=dummy = = TRUE,
q Add i = NewQueueOfPacket = = FALSE,
NewQueueOfPacket = q Add i = = FALSE,
q l Add i l = q2 Add i2 = = ((ql = q2) and (i1 = i2)),

Remove(NewQueueOfPacket) = = NewQueueOfPacket,
Remove(q Add i) = = if q = NewQueueOfPacket

then q
else Remove(q) Add i,

Append(q, NewQueueOfPacket) = = q,
Append(q, q l Add i l) = = Append(q, q l) Add i l ,

(:lue(i) = = NewQueueOfPacket Add i,

Front((] Add i) = = if q = NewQueueOfPacket
then i
else Front(q),

Back(q Add i) = = i,

i in NewQueueOfPacket = = FALSE,
i in (q Add i t) = = (i in q or (i = it));

rulelemma
Append(NewQueueOfPacket, q) = = q;

schemas NormalForm(q) = = cases(Prop(NewQueueOfPacket),
all qq, ii (Prop(qq Add ii))),

Induction(q) = = cases(Prop(NewQueu~OfPacket),
all qq, ii (IH(qq) imp Prop(qq Add ii)));

end {QueueOfPacket} ;

26

