.M-ﬂ'&el&ﬂg 5%)

,J..ﬁ

15
f‘"‘“

RE

'
o T e

B
A -

EN CIENGIA DE
COMPUTACION

Auspician:
Wanco de Clhile o
Secico e
A. F P Santa Maria e
Leniz y Silva, e
Ingenieros Consultores
004.06 Cientec
C748a Cecinas Winter e
‘Revista Informativa e

PONTIFICIA UNIVERSIDAD

CATOLICA DE CHILE

e

NS

UNIVERSIDAD DE CHILE

PRIMERA CONFERENCIA INTERNACIONAL

EN CIENCIA DE LA COMPUTACION

FECHA

LUGAR

.
L]

24 - 27 AGOSTO

CASA CENTRAL
PONTIFICIA UNIVERSIDAD
CATOLICA DE CHILE

EsPecIFICACION METODICA DE T1Pos ABSTRACTOS DE DATOS A
TrRAVES DE REGLAS DE REESCRITURA

EspeciFicagho Merépica De Tipos DE DADOS ABSTRATOS
ATRAVES DE REGRAS DE REESCRITA

METHODICAL SPECIFICATION OF ABSTRACT DATA TYPES
ViA REWRITE RULES

Paulo A, S. Veloso

Departamento de Informidtica
Pontificia Universidad Cat8lica
“do Rio de Janeiro

Brasil

INTRODUCTION

Abstraction has been widely recognized as a
powerful programming tool [Liskov '75, Guttag '77] and
several representation-independent approaches to its |
semantical specification have been proposed [Liskov. ,
Zilles '75]. In particular, abstract data types (ADT's)
specified by (conditional) equations have been frequently
employed [Goguen et al. '77 ; Guttag et al. '78; Gaudel

'791.

But, whoever has tried to provide a formal
' specification for a model has probably faced some
difficulties in this error-prone task [Kapur '79]; The

problems amount basically to.

(i) what axioms to write ?
(ii) are they correct ?

(iii) are they enough ?

Here a methodology to alleviate these difficulties
is presented. It is based on the concepts of canonical
term algebra [Goguen et al. '77] and of term-rewriting

systems [Huet, Oppen '8017.

The presentation will include an example, which is
simple enough to allow the detailed application of the
method. The latter will also be justified in general and

its wide applicability will be apparent.

251

MODEL

The problem of specification can be posed as
follows: given a model find, if possible, a specification
(in a fixed formalism) for it. In the initial algebra ap-
proach, we are given as model a (many-sorted) algebra M ,
every element of which is reachable, i.e. denoted by a
variable-free term. We want a (finite) set of (conditional)
equations E such that M is (isomorphic to) the initial

algebra of the class of similar algebras satisfying E

[Goguen et al. *'771].

As our running example we consider the simple case
of strings of elements from some non-empty set, assumed

specified (cf, Fig. 0).

We have an: informal description of the model M . to
be specified. It frequently happens that one receives
informal - sometimes even vague or ambiguous - descriptions

to start with.

As a first step towards a more precise presentation
of the model, we can give a formal description of the
syntax of the language: sorts and operation symbols. We

employ underlined words for the syntax (cf. Fig. 1l).

Now we can give a precise and unambiguous desérip—
- tion of the model M, generally couched in a mathematical
notation, which may introduce extraneous concepts in order
to achieve the goal of formalizing the presentation. We
shall use the corresponding non-underlined italic words

for the denotations in M of the syntactic symbols

252

Model (informal)

Sorts

. Alph : some given non-empty set of letters ;
. Bool : the set of logical values : +, - ;

. Str : finite sequences of elements of Alph.

Operations

. true = +

.. false = -
. same tesﬁs equality of letters;
. if-then-else - : conditional;

. null

empty sequence, of length zero ;

. make creates a unit-length sequence out of a letter;

. cons : adds a letter in front of a sequence;
. append : concatenation of sequences ;

. equal : tests equality of sequences.

Figure 0

253

Syntax (formal)

Ssorts : Str , Alph , Bool

Ogerations

> Bool : true ; false
(Bool, Bool, Bool) - Bool : if-then-else-

(Alph, Alph) > Bool : same

> Str s null

(Alph) > Str : make
(Alph, Str) -+ Str : cons
(Str , Str) > Str : append
(str , Str) > Bool : equal
Figure 1

254

(cf. Fig. 2).

It often happens that an informal presentation
gives a better intuitive feeling of the model. Accordingly,
it may be used as a starting point in the "creative" part
of obtaining a férmal specification. But of course, one
cannot prove the equivalence of a formal description with
an informal one. It is mainly for the purpose of checking
the correctness and completeness of the formal especifi-
cations obtained that we use a formal description of

the model.

255

Domains

ALph

n

[}

Bool
Stn

Operations

thue =+
palse = =
B if o = +
L o then B else vy =
Y if o = =
+ if a=>D
same (a,b) =
- if a # b
null = < >
. make(a) = <a>
. conéd (a,..<a1,...,am >) = <a, Byreessap”
append (< Qyreeesd >y <bl,...,bn>) =
=<al,...,am, bl,...,bn>
-
+ dif m=n and.
a;= by, i=
equal (<al,,..,am> <bl,...,bn>) = _ 1 o
seeey
- otherwise
%
Figure 2

Model (formal)

A (some given non-empty set)

{ -, +1

*
A

(with - # +)

= {< ayreoersa, > / 8jreevsa € Ay m e N}

256

CANONICAL TERM MODEL

A major step towards axiomatically specifying the
model (described formally or not) consists of replacing
it by another one with syntactic domains and precisely

defined operations on these syntactic objects.

Here, the crucial part is the choice of a canoni -
cal form for the elements of M. For, even a short sequen-

ce as <a,b> can be obtained in various ways

cons (a,make(b)), append(makela), make(b)),...,

among which we choose one ‘[consd (a,cons (b,nutl)) 1 to

represent <a,b>

Letting T denote the set of all variable-free terms
of the language and T be the corresponding term algebra
(Herbrand algebra) the situation is a follows. As T is ini-
tial in the class of all algebras-similar to it, giving an
algebra M ammﬁﬂs to»giving a (unique and surjective)
homomorphism.h:'T + M so that M = T/=[h].

We want a set R ¢ T (i.e. R, c T for each sort s € S)

such that

(a) the restricition g of h to R is a bijection;
(b) for each operation symbol f and terms tl,...,tne T,

whenever the term f tl,...,tn is in R then so are

tl’.--,tn‘

Notice that condition (a) says that each element of
M has a unique term in R representing it. In fact, this

amounts to selecting a uniform method for constructing all

257

elements of the model (cf. Fig. 3).

Now we use the bijection g: R =+ M to induce

operations on R, as follows.

(c) for each 0peration symbol £ and all terms
rl,,.,,rn e R, set

-1
F(rl,...,rn) = g (5[g(rl),...,g(rn)])

As a result we obtain an algebra R = M (cf. Fig. 4).

Notice that R obtained above to satisfy (a), (b)
and (c) is indeed a canonical term algebra (cta) in the
sense of [Goguen et ai. '771 as it is easily seen that

whenever £ tl"°°tn € R then F(tl,...,tn) = f tl,...,tn.

Now as R and M are isomorphic, it can be more
convenient and reliable to work with R instead of M, in
order to exploit the syntactical nature of the elements
of R. We may regard R as a special subset of T, the
elements of which have their meaniﬂg specified (via-g).
Our task then consists of relating the rest of T to R.
Also, notice that R is not a subalgebra of T. Indeed, our
next step will consist of, so to speak, providing ways to
bring back into R the results of operations that have

escaped from it.

258

Canonical Terms

RAl n = Cc A (assumed given)
Rpool = { true, false }

Rser = { EEEE(Gnr---rggﬁifcj,-..,cons(cl;null)...)...)

Cl,..s, cj,n’ou, cnec,n€ N}

[Convention : case n = 0 is nulll

Alternative (recursive) definition of Ry

Rstr is the least subset of TStr such that
. null ¢ R

Str

. Whenever ceC and reRStr then cons(c,r) € RStr

Figure 3

259

/

Canonical Term Algebra R

Domains :

?

ALPH = RAl n - C
BOOL = RBool
STR = RStr

Qperations :

=3

y

TRUE = true

FALSE = false

U if A = true
IF A THEN y ELSE v =
v if X = false
true if ¢c=4d

SAME [c,d] =
false if ¢ # 4

NULL = null

MAKE [c] = cons (c,null)

CONS[c,cons(cm,...,cons(cl,null);.T)] =

= cons(c,cons(qn,...,cons(cl,null)...))

APPEND[cons(qp,...,cons(cl,null)...),

cons(dn,...,cons(dl,null)...)]A=

= cons(cny...,cons(cl,cons(dn,...,cons(dl,null)...))...)

EQUA14[oons(qﬁ,...,cons(cl,null)..J ,cons(dn,.:.,cons(dl,null)...)]=
true if m = n and cj = dj for j=1,l..,n
false otherwise

Figure 4

260

TRANSFORMATION RULES

We now search for a (finite) set I' of term-

rewriting rules with the following properties

(I) Completeness: for each operation symbols f and all

r > F(r

cesT € R £ rl,...rn l,...,rn)

1"

*
(IT) Consistency: whenever t > €' then h(t) = h(t').

Completeness of I' means that its rules are powerful
enough to, according to (I), transform the result of operat
ing on canonical terms into the corresponding values .in :the

cta R (cf. Fig. 5).

The prqblem we face now is the creation of such
rules. Here, the very explicit (and often recursive) natu-
re of the canonical form helps in suggesting a strategy to
achieve this goal (frequently by reducing it to simpler
subgoals).

It we follow the method, carefully checking each
‘step, we obtain a system I' of term-rewriting rules, which

is both complete and consistent (cf. Fig. 6).

Consistency of'P means that its rgles are éound on
M (or R), in thaﬁ for each rule t(?) > t‘($) of T we have
the sentence ¥ v [t = £' (V)] satisfied in R. This gives
a good method to check the consistency of T, namely
’checkipg whether for all T in R T(Y) = T'(f), where T and
T', respectively are the denotations of t and t' in the
cta R.

The importance of checking the rules should not be
overlooked. . Firstly, this is what guarantees the goals of

completeness and consistency. Secondly, each rule can be

2

Transformations

(P) a —%—> ¢ (were c ¢ C, and h(c) = h(a))

*

(T) true > true

(F} false > false

M if X = true

(1) gg'm then - else -

/’ ' \ v if A = false
A U v
true if c¢c=4.
. *
(S) same >
/ \ false if c #4d
c d
. *
(N) null —> null
*
(M) make ——> cons
c é// null
(C) cons c - cons
\ ' |
A COTS - q, > c,” cTns
: '
| |
cons - Cy C1” STEE
null null

262

(a) append

¢ = cons cons - d
m o n
cl - co?s co?s - dl
null null
(E) equal
-cons ' cbns-dx1 true
3 » *
' : >
I
cl-cons cc'ms—d.l false
null null
Figure 5

263

I
Q
O
o R
()]

cq |
dn - cons

d, - cogs
1

3
e
e ——
H

if m=n and

c=ds 3= 1yeeeim

otherwise

tested separately for consistency, whereas for completeness
it is a set of rules that has to be checked powerful

enough to achieve a transformation, Thirdly, when some
candidate~rules fail to be sound or to achieve a desired
transformation generally the very test helps pinpointing

the trouble-spots and suggesting appropriate corrections.

264

Rules

(p) assumed given
{t} none necessary

(f) none necessary

(it) if - then - else\\- _— Y
true Yy e

(if) if - then] else - — ©
false ¥ (¢]

(s) assumed given

(n) none necessary

(m) make —_> cons

D’\

A null
(c) none necessary
(an) append > Y
null Y
{ac) append _— A - cons
cons Y aggend
A \ /\
X X Y

265

{enn) equal

/// \\ > true
null null
(enc) equal _
/// \\\\ o > false
null cons- B
Y
(ecn) equal
‘ ——> false
A - cons null
X

if - then - else -

./

(ecc)

\

A'- cons cons-B same = equal false
X Y A B X Y
Figure 6

266

EQUATIONS

Having checked the rewriting system I' to be
consistent and complete, in the sense of (I) and (II) of
the preceding section, we already have a formal specifi -
cation for M. But, each rule t+t' of T corresponds natural
‘ly to an equation t=t'. Thus it is straightforward to

transform T into a set A of equations (cf. Fig. 7).

This set A of equations obtained from T clearly has

the following properties

(1) for each operation symbol f and all rl,...,rneR

_f_rl’-o.’rn€R.,;A E_E_r ,..'.rnVE F(r-l'...'rn) [A]

1

(2) R satisfies every equation of A

(Here. = [A]: denotes the congruence on T generated by
Ay

These conditions are sufficient (and necessary)
for the cta R to be isomorphic to T/2[A]1 ', according to
‘theorem 9 of [Goguen et al '77]. Hence, A is a (correct
and complete) algebraic specification for M, in that
M ZT/20A] .

It should be clear that the above straightforward
obtention of A from ' is possible due to the context—free
nature of the rules. If a rule of T has some context
conditions then one has to try simulating its effects by

means of formulas more complex than equations.

1267

EVV)
evk)
ekv)

ekk)

Eguations

assumed given

if true then y, else 6 = Y

if false then y else 6 = 6

assumed given

make (a) = cons(a,null)

append (null,y) =y

append (cons (a,x),y) = cons(a, append (x,y))

equal (null,null) = true

equal (null,cons(b,y)) = false

equal (cons (a,x), null) = false

egual(cons(a,x), cons (b,y)) = if same(a,b)
then equal (x,y)

else false

Figure 7

268

CONCLUDING REMARKS

The methodology proposed here for the algebraic
specification of an ADT, given by means of a (formal or

informal) model M, proceeds via the folléwing steps

. canonical term algebra R;
. term rewriting system 'P;

. set of equations A .

Another way to describe the methodology iszby
regarding it as the process of obtaining various inter -
mediate "consistent and complementary specifications”
[Donahue '76 ; Levy '77] for M, each one with its own
distinctive features.

The cta R has the advantage of being a precisely
described model with well-structured syntactic domains,
the operations of which éan be defined without resorting

to formal variables ranging over the sorts being specified.

The rewriting system I' can be viewed as a "genera-
tive-transformational specification”. Indeed by construc-
ting T to be a finitely terminating Church - Rosser system
[Huet, Oppen '80], R consists exactly of the irreducible
- elements of T and each teT reduces to a unique reR. In
addition, by making the application of the rules of T

~deterministic, we easily obtain a "procedural specifica -
tion", which amounts to an abstract implementation of the
ADT on the type of terms. Such procedural specifications
[Furtado, Veloso '81; Furtado, Veloso, Castilho '81] can
be simbly translated into executable programs in a

symbol-manipulating language, thereby providing the
269

opportunity for early usage and experimentation,'without
the need to resort to a specially designed system as in
[{Gannon et al '80; Guttag et al *78; Goguen et al, Jan '77]

Another application appears in [Remy, Velosoc '81].

This methodology is apparently very helpful . in
guiding the search for a formal specification. Of courée
the crucial step is the election of a "good" canonical
form. Even though an initial cta is known to exist
[Goguen et al '77], the very form of its terms heavily
influences the form of the resulting specification and
how easy it is to obtain it. In this choice a good in-~
tuitive understanding of the model plays an important
rale. Besides, a convenient description of the canonical
form may have to employ concepts (such as léxicographical

ordering of terms) not in the language.

Finally, it may be worth mentioning that the
methodology presented is not intended to decide whether a
finite (or effective, etc.) specification exists or not.

It just goes ahead trying to obtain one.

270

REFERENCES

. Donahue, J.E. - Complementary definitions of program-

ming language semantics. Springer-Verlag, 1976

. Furtado, A.L.; Veloso, P.A.S. - "Procedural specific-
. ations and implementations for abstract data types" .

SIGPLAN NOTICES, to appear, 1981.

-+ Furtado, A.L.; Veloso, P.A.S. ; Castilho, J.M.V. de =~
"Verification and testing of simple entity-relationship
representations". PUC/RJ, Dept. Informatica. Res. Rept.,

Apr. 1981.

. Gannon, J.; McMullin, P.; Hamlet, R.;Ardis, M. - "Test-

ing traversable stacks". SIGPLAN NOTICES, vol. 15 (n® 1),

Jan. 1980.

. Gaudel, M.C. - "Algebraic specification of abstract data

types". IRIA, Res.Rept. 360, 1979.

. Goguen, J:; Tardo, J.; Williamson, N.; Zamfir, M. - "A
practical method for testing algebraic specificatiohs".
The UCLA Comp. Sci. Dept. Quarterly, vol. 7 (n? 1), Jan.
1977

. Goguen, J.A.; Thatcher,J. W. ; Wagner, E.G. - "An
initial aigebra approach to the specification, cor-
rectness and implementation of abstract data types" in

R. T. Yeh (ed.) Current treends in programming methodo-

logy, vol IV, Prentice-Hall, 1977.

271

Guessarian, I. - "Algebraic semantics". Res. Rept. 80~13,

L.I.T.P., Paris, Mar. 1980

Guttag, J.V.; Horowitz, E.; Musser, D.R. - "Abstract data
types and software validation". Comm. ACM, vol. 21 (n® 12),

Dec. 1978

Huet, G.; Oppen, D.C. - "Equations and rewrite rules: a
survey". Stanford Univ., Comp. Sci. Dept.‘STAN-C§-80-785,

1980.

Kapur, D. =~ "Specifications of Majster's traversable

stack and Veloso's traversable stack". SIGPLAN NOTICES |,

vol. 14 (n?5), May 1979

Levy, M.R. - "Some remarks on abstract data types"

SIGPLAN NOTICES, vol. 12 (n? 7), Jul. 1977

Liskov, B. H. - "Data types and program correctness"

SIGPLAN NOTICES, July 1975

Liskov, B.;.Zilles, S. - "Specification techniques for

data abstractions" . IEEE Trans. Software Engin,,vol.SE-1

(ne 1), 1975

- Remy, J.L.; Veloso, P.A.S. - "Comparing abstract data
type specifications via their normal forms". PUC/RJ,

Dept. Informatica, MCC n? 1/81, March, 1981.

272

