
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

Specification and Verification of Communication
Protocols in AFFIRM Using State Transition Models

CARL A. SUNSHINE, DAVID H. THOMPSON, RODDY W. ERICKSON, SUSAN L. GERHART, AND DANIEL SCHWABE

Abstract-It is becoming increasingly important that communication
protocols be formally specified and verified. This paper describes a
particular approach-the state transition model-using a collection of
mechanically supported specification and verification tools incorpo-
rated in a running system called AFFIRM. Although developed for
the specification of abstract data types and the verification of their
properties, the formalism embodied in AFFIRM can also express the
concepts underlying state transition machines. Such models easily
express most of the events occurring in protocol systems, including
those of the users, their agent processes, and the communication
channels. The paper reviews the basic concepts of state transition
models and the AFFIRM formalism and methodology and describes
their union. A detailed example, the alternating bit protocol, illustrates
varous properties of interest for specification and verification. Other
examples explored using this formalism are briefly described and the
accumulated experience is discussed.

Index Terms-Abstract data types, algebraic axiomatic specifications,
alternating bit protocol, natural-deduction theorem-proving, protocols,
specification, state transition models, verification.

I. INTRODUCTION
W rHEN we send electronic mail, funds, or programs to

another site, we expect many things to happen: the
message should be delivered to a particular site and not to
others; only one copy of the message should be delivered; the
delivery should be timely; the receipt should be acknowledged;
etc. In computer-science terms, these properties are often
called safety (correct delivery), liveness (effective work being
done), and perfonnance (work being done fast enough). The
social importance of guaranteeing these properties for elec-
tronic media cannot be overvalued: our dependence on such
systems increases daily.
Over the past few years, the Internet Concepts Project at

Manuscript received February 13, 1981; revised February 12, 1982.
This work was supported by the Defense Advanced Research Projects
Agency under Contract DAHC15-72-C-0308. The views and conclu-
sions contained in this paper are the authors'.
C. A. Sunshine is with the Information Sciences Institute, University

of Southern California, Marina del Rey, CA 90291.
D. H. Thompson was with the Informatioh Sciences Institute, tJni-

versity of Southern California, Marina del Rey, CA 90291. He is now
with WSAW-TV, Wausau, WI 54401.
R. W. Erickson and S. L. Gerhart were with the Information Sciences

Institute, University of Southern California, Mariha del Rey, CA 90291.
They are now with Software Research Associates, San Francisco, CA
94-104.
D. Schwabe was with the Information Sciences Institute, University

of Southern California, Marina del Rey, CA 90291. He is now with the
Department of Computer Science, Pontificia Universidade Catolica,
Rio de Janeiro, Brazil.

ISI has been studying the overall problem of protocol verifica-
tion, as well as the design of correct protocols. Simulta-
neously, the ISI Program Verification Project was developing
a general-purpose specification and verification system called
AFFIRM. This paper reports on joint research between these
projects over a year's time. Specific accomplishments include
increased understanding of an underlying formalism (state
transition models), rendering of such models in the specifica-
tion language of AFFIRM, experimenting with various ways of
expressing the three kinds of properties mentioned above so
that they can be proved for state transition specifications,
study of several levels of specification (all the way from the
user services down to the programming language implementa-
tion), an in-depth study of a particular protocol (the Alter-
nating Bit protocol), and a survey of a number of other proto-
cols. Our overall accomplishment is a general method of
specifying and verifying certain aspects of protocols, sup-
ported by mechanical assistance. Most of our work has
focused on safety properties, rather than liveness and per-
formance properties.
Because we expect at least one of the areas of communica-

tion protocols, state transition machines, and abstract data
types to be new to most readers, we have included a fairly
lengthy introduction to each of these topics in this section.
The main part of 'the paper presents a rather simple example
of the integration of these concepts. Thus the emphasis is on
methodology rather than the results obtained for a particular
protocol. Later work [1] presents extensive concrete results
on protocols of more practical interest.
Our general method of protocol specification and verifica-

tion is summarized in Section II. Details of the specification
method are i3lustrated in Section III. Verification issues are
considered in Section IV. The method is applied to the
Alternating Bit protocol in Section V. Section VI summarizes
some of the results obtained with more complex protocols.
Extensions and problems are analyzed in Section VII. Our
conclusions are presented in Section VIII.

A. State Transition Models
A variety of methods for modeling the behavior of systems

in terms of state transitions has been developed, including
finite state automata (FSA)-and abstract machines. The key
components of these models are as follows.

1) A set of commands (also called inputs or events).
2) One or more state variables, collectively called the state.

0098-5589/82/0900-0460$00.75 0 1982 IEEE

460

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

3) A transition function

(command X state) -+ state.

4) An initial state (assigning initial values to all the state
variables).

Intuitively, each command can be thought of as a single
state transition function mapping the current state into a new
state. Typically, one distinguished state variable is used to
represent the major or control status of the machine, and it
features prominently in determining the effects of each
command. Generally, commands are considered atomic opera-
tions that are processed sequentially; no concurrent commands
are allowed. However, the effect of concurrent events may be
approximated as discussed in Section VII-B.
A state transition machine operates by starting in its initial

state. At unspecified times, the state is transformed by one
of the state transition functions (or an input "appears," and
is used by the overall transition function to effect a state
change). The machine may be designed to operate forever,
or may have a specified set of final states. When one of these
states is reached the machine is considered to have halted.
Within these basic guidelines, there are a number of possible

variations. State variables may be defined as value-returning
functions. The commands may have parameters. The effects
of commands may be made visible to the outside world (i.e.,
the users of the machine) by defining some of the state vari-
ables to be visible, or by producing explicit outputs as addi-
tional effects of an operation. Exceptional conditions may be
specified where a given command has no effect on the state
of the system except to produce an error indication or output
to the invoking user. If the data types of the state variables
are unbounded (e.g., a queue), the model may not have a
finite number of states.
State transition models are often written graphically, with

circles or boxes representing states and arcs representing transi-
tions. Each arc is labeled with the command causing the transi-
tion. Outputs produced are also written on the arcs if needed.
Fig. 1 gives an example of a state transition model for a very
simple message system allowing only a single message in
transit from sender to receiver. (This example is explained
further in Section III.)

B. Specification and Verification in AFFIRM

AFFIRM [2] -[4] is an experimental system for the alge-
braic specification and verification of user-defined abstract
data types. The heart of the system is a natural deduction
theorem prover for the interactive proof of data type proper-

ties. (These properties are stated in the predicate calculus
extended with data types.) Programs, written in a variant of
Pascal extended with these abstract data types, may be veri-

fied using the inductive assertion method [5]. Additional
features include tools for the analysis of algebraic specifica-
tions, a library of useful data types, and user interface facilities.
Experience includes extensive experimentation with data type
specifications, verification of small programs, the specification
and partial proof of a large file updating module, and the
proof of high-level properties of protocols and security kernels.

InitializeService

ReadyToSend

ReceiveComplete SUserSend (MSG)
BUFFER
e

Empty BUFFER 4-Empty ° MSG
SENT 4- SENT o MSG

Ackng Seding

UserReceive SendComplete
RECEIVED - RECEIVED ° MSG

ReadyToReceive

Fig. 1. A simple message system.

The specification and theorem-proving portions ofAFFIRM
are relevant to the current discussion.
1) Data Abstraction: Following Guttag [61-[8] a data

type is specified by first defining three sets of functions.
a) Constructors: These functions create values of the type.

Their range is the data type being specified. All values of the
type can be described in terms of some functional composition
of these functions.
b) Extenders (or Modifiers): These functions also have the

data type being specified as their range, but in contrast to the
constructors, they are not needed to express values of the
data type. (These functions can be expressed in terms of the
constructors.)

c) Selectors (or Predicates): These functions yield values
of types other than the one being specified. The general term
is selector, but functions yielding values of type Boolean are
often termed predicates.
For example, the constructors of a queue are NewQueue

(the empty queue) and Add (appends an element to a queue).
Example extender functions are Remove (deletes the first
element from a queue) andAppend (concatenates two queues).
Example selector functions are Front and Length; example
predicates are in and nodups (asks whether there are any
duplicate elements).

declare q, ql, q2: QueueOfInteger;
declare i: integer;

interfaces NewQueueOfInteger, q Add i, Remove(q),
Append(ql, q2): QueueOflnteger;

interfaces Front(q), Length(q): Integer;

interface i in q: Boolean;

The effect of such a specification is to view values of the
type in terms of the constructors which build them. Hence,
all selectors and extenders are defined in terms of these
constructors. For example, the queue of integers

<1,2,3>

is represented (in infix form) as

((NewQueueOfInteger Add 1) Add 2) Add 3

Thus, the first part of a specification gives the names of all

461

462 IEEE TRANSACTIONS C

operations, their domains, and their ranges (e.g., the syntax
of the type).
The second part of a data type specification provides seman-

tics for the operations. Extenders and selectors are defined by
equational axioms relating how each function behaves when
applied to each of the constructors. (Constructor functions
are treated as primitive, unspecified operations.) These axioms
look like equations but are treated by AFFIRM as left-to-right
rewriting rules. Various methods are used to check the consis-
tency and completeness of the axioms and to check the con-
sistency of the equational theory [2], [9]. For example,
some axioms from the type QueueOfInteger are

axioms
Remove(NewQueueOfInteger) = NewQueueOflnteger,
Remove(q Add i) = = if q = NewQueueOflnteger

then q
else Remove(q) Add i,

Length(NewQueueOfInteger) = = 0,
Length(q Add i) = = Length(q) + 1;

Append(q, NewQueueOflnteger) = = q,
Append(ql, q2 Add i) = = Append(ql, q2) Add i,

An important use of these data type specifications is to ob-
tain levels of abstraction, in particular to avoid low-level
implementation details. For example, in our specification of a
queue we do not care whether it is implemented with an array
or via pointers and a linked list. Of course, implementation
details do constrain the abstraction, e.g., by space limitations,
but this is a separate problem. A standard method for relating
implementations to their abstractions is the representation (or
abstraction) function rep mapping from implementation to
abstraction [10], [11]. For example, we might define a
function

rep(a, lb, ub) = if lb > ub
then NewQueue
else rep(a, lb, ub-1) Add a[ub]

to map from an array a over the sequence of (integer) indexes
lb to ub into queues.
The proof of correctness for an implementation involves

showing that all abstract operations of interest have code that
computes, via the rep function, the proper function. For
example, we might have a procedure

procedure Removelmplementation(var a: Array; var lb, ub:
Integer);

pre wf(a, lb, ub);
post wf(a, lb, ub) and rep(a, lb, ub)

= Remove (rep(a', lb', ub'))
... body of procedure ...

where the primed notation x' denotes the initial value of x at
the start of the procedure. The expression "wf(a, lb, ub)"
is the implementation (or concrete) invariant well-formed, a

predicate that shows the variables of the implementation will
always map into some abstract object. In the inductive asser-

)N SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

tion method, the interpretation of the pre- and postconditions
is as follows. If the precondition holds for the variables at
entry to the procedure, then' the postcondition will hold for
the variables at procedure exit. Note that there is no state-
ment that the procedure terminates.
We will use these concepts in mapping between levels of a

specification and from axioms down to programs.
2) Theorem Proving. Typical data type properties might

include "the length of the concatenation of two queues is
the sum of their lengths," stated as

Length(ql Append q2) = Length(ql) + Length(q2)

and "the length ofany queue is always nonnegative":

Length(q) >0
Such properties are proved by induction based on the con-
structors of the data type, that is, using structural induction.
For our queue example, the induction schema uses the in-
ference rule

P(NewQueueOflnteger), (all q, i (P(q) D P(q Add i)))

(all q (P(q)))
In other words, we prove that property P for NewQueueOf-
Integer and then, assuming it for some queue q, prove P for
q with any element i appended to it (q Add i). These two
proofs suffice to prove P for all q. An appropriate induction
schema must be included in the specification of each data
type.
AFFIRM's style of theorem-proving is interactive. The user

develops the proof; the system's role is to follow the user's
commands and provide various kinds of necessary information
and checking. It does not attempt to search for a proof.-
AFFIRM simplifies propositions using the data type axioms
(as rewrite rules), with built-in simplification procedures for
the predicate calculus. The user can ask the system to employ
induction, split into subgoals, substitute equalities, and apply
lemmas; experimentation with various strategies is often neces-
sary before finding a proof. This experimentation and back-
tracking is supported with a model of the proof as a forest of
proof trees, and with numerous display and query features.
The overall effect is that the user follows the usual mathe-

matical proof methods, but AFFIRM carries out the mechanics
of the proof (down to the axioms or assumptions). Of course,
proofs are not iron-clad: there might be a bug (in either our
code or the underlying INTERLISP system)' or the user
might make an invalid assumption. AFFIRM is used to pro-
duce better, not guaranteed perfect, proofs. Such proofs
should also be readable (when properly structured in terms of
lemmas) and read to be believed.
A more serious problem is that of ascertaining that we have

1To our knowledge, AFFIRM has never generated an invalid proof;
we consider it unlikely that an error would produce just the right
behavior to validate an incorrect theorem, particularly since the user
would probably note associated strange behavior. The usual result of a
bug is to prevent a valid proof from proceeding. However, soundness
cannot be guaranteed.

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

proved (or are trying to prove) what we really want proven.
Experience has shown repeatedly that propositions we thought
were theorems were not; this quickly led us to the conclusion
that "the purpose of proving (with AFFIRM) is to turn a
conjecture into a theorem."

C. Protocols
In order to apply state transition models and abstract data

types to communication protocols, we must first understand
specification and verification problems in the protocol domain.
The meaning of protocol specification and verification will be
described in terms of a model first introduced in [12].

1) Protocol Specification: A user's interest in a protocol
lies in what kind of services it provides. Usually this involves
interactions with other entities (such as users or programs)
in order to get certain functions performed. For example,
one user may wish to interact with another (remote) user by
performing various functions such as SendMessage. How these
functions are actually performed by the protocol is not really
of concern; only the end result matters.

Users, then, can regard the protocol as a black box, to which
one gives a series of commands in order to get certain services
performed. The description of this machine is termed the
service specification. One theorem we may wish to prove
about a service specification is that the messages received
constitute an initial subsequence of the messages sent (i.e.,
messages are not delivered in the wrong order, or garbled, nor
are messages spontaneously delivered if they were not sent).
In general, the components used to provide the service can

also be regarded as black boxes in their own right. In the case
of protocols there is always more than one entity interacting
(because we are dealing with distributed systems). In order
to provide a given service, it is necessary to have several
stations (at least one for each physical site) interacting with
each other via some transmission machine (see Fig. 2). The
pattern of their interactions constitutes the protocol.
This transmission machine is just another level of protocol.

Thus we can see a hierarchy of abstract machines developing.
In this uses hierarchy (following Parnas [13]), each protocol
level makes use of the services provided by the lower level.
Within each level, there is an implementation hierarchy where
the service is logically implemented by the abstract protocol
specification. The protocol is implemented in turn by an
actual program. Thus for each protocol level N, the following
information must be provided:

1) a service specification, describing the services provided
by the level to the users above, at levelN + 1;
2) a protocol specification, describing the interaction of

the objects in this level in a precise way (assuming services
provided by the level below, levelN- 1); and

3) a program implementing each station in the level (of
course, the program may vary from station to station).
This characterization follows closely the model for open

system interconnection being proposed by the International
Organization for Standardization [14].
2) Protocol Verification: In the context of the model

USER USER

..... ,..........

Service
Machine

station station

Transmission
Machine

Fig. 2. The internal structure of the service machine.

introduced in the previous subsection, we say that protocol
verification is a formal demonstration that the logical design
of the protocol (the interaction of the stations within one
layer) satisfies the service specification of that layer.
Note that this will depend on the assumed properties (the

service specification) of the layer below.
The ultimate task in protocol verification is to demonstrate

that an actual program is a valid implementation of the proto-
col specification. That is, when one has reached a low-enough
level of abstraction in the specification, it is possible to take an
actual program that purportedly implements the protocol,
and show it is correct with respect to the specification. This is
no different than traditional program verification.
In order to gain greater confidence that specifications are

suitable for their intended use, it is useful to prove properties
of a single specification. For example, we might want to show
that the sequence of messages delivered is equal to the se-
quence of messages sent. Liveness properties such as eventual
termination are also often proved for a single specification.
We will discuss these issues at greater length in Section III-F.
Thus we have three major types of protocol verification

problems in each layer of a system:
1) verification of the protocol against its service;
2) verification of an implementation against the protocol;

and
3) verification of desired properties of the service, protocol,

and program independently.

D. Related Work
To our knowledge, this work is the first combination of state

transition machine, protocol, and axiomatic specification
notions. However, a large body of work exists in each of these
areas individually, and to a-lesser extent to each pair.
A variety of methods have been used to specify communica-

tion protocols, including Petri nets (and related graph models),
formal languages, sequencing expressions, I/O histories, and
programming languages. However, the variations on state
transition machine methods discussed in Section I-A seem to
be most popular. Much of this work is either limited in
expressive power (e.g., finite state automata) or lacking a
solid theory and automated tools for verification. Sunshine
[151 provides a survey and comparison of this work.
In the area of abstract data types, a large body of work also

exists [6], [7], [16]-[18]. Usually state transition machine

463

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

(or abstract machine) model approaches and axiomatic ap-
proaches are viewed as mutually exclusive alternatives [19]-
[21]. A number of state transition machine models have been
proposed [20], [22]-[26]. Several variations of axiomatic
methods have also been developed [8], [27], [28]. The no-
tion of specifying state transition machines axiomatically
seems relatively unexplored, although Flon and Misra [29]
hint at it.
We have drawn heavily on the following concepts:
1) hierarchical layering and cooperating remote stations

within a layer from the protocol domain [12], [14];
2) verification of the properties of a specification [7], [19],

[25], [30] - [34] ; and
3) verification that a lower level system properly imple-

ments a higher level one [24], [35]-[37]; or that the two
systems are "behaviorally equivalent" [20], [38].
Of course, we have had to adapt these concepts to the new

environment resulting from the merger of protocol, state
transition machine, and axiomatic specification concerns.

II. AN OVERVIEW OF OUR METHOD OF PROTOCOL
SPECIFICATION AND VERIFICATION

Our method of specifying and verifying protocols can be
summarized as follows.

1) Produce a service specification. If a state transition
machine description of the service already exists, translate it
into an AFFIRM representation. Otherwise, directly state the
service specification as a state transition specification in
AFFIRM.
2) Validate that the service specification at least partially

meets the requirements of the user (either the ultimate user or
another layer). Typically this involves proving some invariant
properties of the specification, e.g., what gets sent by the user
at one station gets delivered to the user at the other station in
the same order it was sent.
3) Produce the protocol specification. Again, if a state

transition machine representation exists, simply translate it
into an AFFIRM representation.
4) Verify that the protocol specification implements the

service specification. This is a two-step process.
a) First, define a correspondence (a rep function) between

the state variables and events of the two specifications.
b) Then show that the axioms of the service specification,

when reformulated using the corresponding data structures of
the protocol specification, are theorems provable from the
axioms of the protocol specification.
A further validation involves independently stating the

service requirements in terms of the state variables of the
protocol specification, and then proving that the protocol
specification satisfies these requirements.
5) Specify an algorithm implementing the protocol

specification.
6) Verify that the algorithm implements the protocol.
Sections Ill-V discuss these steps in some detail. Fig. 3

displays the relationship of the elements involved in protocol
specification and verification.

(Ill-C, IV-A)
Service * DataTransfer Property
(III-A--E) (III-F)

(IV.B, V-D)

Protocol -.-Transformed Data Transfer Property
(V-A.-C) (V E}

(IV-C)

Program
-- ~~~~(VF)

Fig. 3. The steps in protocol verification. The references "(III-A)"
ate to relevant sections of this paper. Vertical lines mean imple-
mented by; horizontal lines mean invariant of

III. A SERVICE SPECIFICATION FOR A SIMPLE
MESSAGE SYSTEM

Perhaps the simplest data transfer service provides for trans-
mission of one message at a time from a fixed sender to a
fixed receiver. The sender must wait until the previous mes-
sage is received before sending the next one. There is no
possibility of message loss, duplication, or corruption.
The system is shown graphically in Fig. 1. The next section

provides, an informal English description of the state transition
machine. We will show how it can be represented in AFFIRM
in the following sections.

A. State Variables
There are only a few state variables, each performing a sim-

ple function. (Each state variable has an associated data type,
as shown.)
State-ControlState: The current status of the service. This

state variable simply cycles through the four values of the
enumerated type ControlState. The four values of the type
are ReadyToSend, Sending, ReadyToRecieve, and Acking
(Acknowledging). The state variable State is tested by most
state transition functions as a general applicability test: the
transition function will not change the state unless this vari-
able has the appropriate value.
Sent-QueueOfMessage: The queue of messages that have

been sent to the receiver. One of the properties to prove
about this service is that the queue of messages sent equals
the queue of messages received (except for possibly the very
last message of the Sent queue, which may not have been
received yet).
Received-QueueO.fMessage: The queue of messages that

have been received by the receiver.
Buffer-QueueOfMessage: The queue of messages that have

been sent by the sender but not yet received by the receiver.
This state variable represents the channel of a real protocol.
In the current protocol, this queue is either empty, or has
exactly one message in it, the one just sent (but, of course,
we have to prove it, not just say it!).
The types of the state variables are assumed to be explicitly

defined (e.g. type ControlState), or are assumed to have a
standard definition (as is the case with type QueueOfMessage).
Both Sent and Received may be viewed as "ghost" variables
used for specification purposes. Their unbounded size causes
no problems for AFFIRM due to the axiomatic nature of its
specifications.

464

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

B. State Transitions
A few of the state transition functions would be requested

by a user, while others would appear to the user to occur
spontaneously. For example, the user would explicitly request
the UserSend operation, but the SendComplete operation,
intuitively corresponding to the event "message pops out of
the channel at the receiver's end," would appear to be spon-
taneous to the user. These spontaneous transitions are in-
cluded to explicitly model the delay involved in sending a
message. We consider this to be an important aspect of the
service.
InitializeService: Initializes the state variables. Sent,

Received, and Buffer are all initialized to the empty queue,
and State is initialized to ReadyToSend.

UserSend(message): Only applicable if State is ReadyTo-
Send; otherwise, this operation is a no-op. Adds message to
the Sent queue, adds message to Buffer, and sets State to
Sending.
SendComplete: A spontaneous event (the user can not

directly request it). Applicable only if State is Sending, i.e.,
there is an outstanding Send operation to be completed. Sets
State to ReadyToReceive.
UserReceive: Applicable only. if State is ReadyToReceive.

The message at the front of the Buffer queue is added to
Received, indicating passage of the message to the user.
State is then updated to Acking-an abstraction of the process
of sending an acknowledgment to the sender, telling of the
receipt of the message.
ReceiveComplete: A spontaneous event, corresponding to

the event "sender receives acknowledgment ofmessage receipt."
Applicable only if State is Acking. A message is removed
from Buffer, and State is updated to ReadyToSend, indicating
the cycle is complete.

C. Behavior of the Simple Message System
The state machine starts by performing the InitializeService

command. The system then repeatedly cycles through the
four states ReadyToSend, Sending, ReadyToReceive, and
Acking. Each of these four states has only two successor
states: itself (when a command that is not applicable is issued,
in which case there's no change), and the next in the cycle.
(Of course, at any time the InitializeService command can be
reissued, in which case the machine is reset to its initial state.)
As the system cycles through the four states, it maintains an

invariant: the sequence of messages sent equals the concatena-
tion of the sequence of messages received and the single
message currently being sent (if there is one).2 This and simi-
lar properties are called service requirements. If the state
transition machine is specified correctly, these properties
should be straightforward to verify.

D. Converting State Transition Specifications to AFFIRM
The AFFIRM representation of a state transition machine is

2Almost. We will discuss the correct formulation of this property
later.

basically just a representation of the state vector of the state
machine. Each state variable comprising one part of the
machine's state vector becomes a selector function. Each state
transition function (command) becomes a constructor. There
are usually no extender functions in this scheme. The axioms
simply state how each state variable is modified by each state
transition function.
1) State Transition Function -* Constructor: Each state

transition function (command) of the state transition machine
becomes a constructor of an AFFIRM type:

state machine SimpleMessageSystem;

declare s: SimpleMessageSystem;
declare m: Message;

constructors
InitializeService, UserSend(s, m), SendComplete(s),
UserReceive(s), ReceiveComplete(s):
SimpleMessageSystem;

Each constructor has as its range the type being defined. And
each of the constructors (except the initialization function) is
given a parameter of the type being defined. Intuitively, this
parameter represents the entire state of the system. Thus
state or event histories can be easily represented as composi-
tions of the constructor functions. For example, the sequence
of commands

InitializeService; UserSend(m); SendComplete;
UserReceive; ReceiveComplete

would simply be

ReceiveComplete(UserReceive(SendComplete(UserSend
(InitializeService, m))))

This particular sequence of state transitions represents one
complete cycle of the machine.
2) State Variable -+ Selector: Each state variable of the

state transition machine becomes a selector function in the
AFFIRM specification. In the AFFIRM specification, each
function will take a parameter of the type being defined. Thus
each state variable is simply an extraction function of the
state vector.

selector State(s): ControlState;

selectors
Buffer(s), Sent(s), Received(s): QueueOfMessage;

Note that we have chosen to name one of the state variables
"State" since it represents the major or control status of the
machine (see Section I-A).

3. Transition Definition -+ Set of Axioms: The preceding
subsections paved the way by defining the domain and range
information of the constructors and selectors. Now we must
define their semantics. It will become quite clear why each
function carries along the "state" parameter: it provides a
natural way of describing a transition. We will demonstrate
the method by writing the axioms for the state variable Sent.
From Section III-B, we know that the state variable Sent is

465

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

modified by the InitalizeService operation, possibly modified
by the UserSend operation, and not modified by the remaining
operations SendComplete, UserReceive, andReceiveComplete.

axioms
1. Sent(UserSend(state, message))

= - if State(state) = ReadyToSend
then Sent(state) Add m
else Sent(state),

2. Sent(SendComplete(state)) = = Sent(state),
3. Sent(UserReceive(state)) = = Sent(state),
4. Sent(ReceiveComplete(state)) = = Sent(state),
5. Sent(InitializeService) = = NewQueueOfMessage;

Axioms 2, 3, and 4 simply state that the operations have no
effect on the state variable. For example, axiom 2 says "the
value.of the state variable Sent after the SendComplete event
is equal to its value before the event." Similarly, axiom 1
says "if the major state is ReadyToSend, then the operation
UserSend will have an effect on the state variable Sent; other-
wise it will not." This method of constructing a specification
ensures that the specification will be complete-the effects
of each command on each state variable are detailed.

E. The AFFIRMRepresentation
The following is a stylized representation of AFFIRM in-

put, for the sake of readability. State transition functions that
leave a state variable unchanged are not explicitly specified;
the convention is "not specified, not modified." The actual
AFFIRM input is displayed in Appendix I.
state machine SimpleMessageSystem;

declare s: SimpleMessageSystem;
declare m: Message;

constructors
InitializeService, UserSend(s, m), SendComplete(s),

UserReceive(s), ReceiveComplete(s);

selectors
Buffer(s), Sent(s), Received(s): QueueOfMessage;

selector State(s): ControlState;

axioms {InitializeService}
State(InitializeService) = ReadyToSend,
Buffer(InitializeService) = = NewQueueOfMessage,
Sent(InitializeService) = = NewQueueOfMessage,
Received(InitializeService) = = NewQueueOfMessage;

axioms {UserSend}
State(UserSend(s, m)) = = if State(s) = ReadyToSend

then Sending
else State(s),

Buffer(UserSend(s, m)) = = if State(s) = ReadyToSend
then Buffer(s) Add m
else Buffer(s),

Sent(UserSend(s, m)) = = if State(s) = ReadyToSend
then Sent(s) Add m
else Sent(s);

axioms {SendComplete}
State(SendComplete(s)) = = if State(s) = Sending

then ReadyToReceive
else State(s);

axioms {UserReceive}
State(UserReceive(s)) = = if State(s) = ReadyToReceive

then Acking
else State(s),

Received(UserReceive(s)) = if State(s) =
ReadyToReceive

then Received(s) Add
Front(Buffer(s))

else Received(s);

axioms {ReceiveComplete}
State(ReceiveComplete(s)) = = if State(s) = Acking

then ReadyToSend
else State(s),

Buffer(ReceiveComplete(s)) = = if State(s) = Acking
then Remove(Buffer(s))
else Buffer(s);

end {SimpleMessageSystem};

F. Properties ofa Specification
To increase dur confidence that the state transition machine

we have specified is a reasonable one, we can formulate certain
properties we expect to hold during the machine's operation.
These service requirements may be proved using structural
induction as described in Section I-B2). We present an exam-
ple of such service requirements for the simple data transfer
service.
A useful safety property for this service might be

Sent = Received join Transit

stating that the messages received are equal to the messages
sent except for any still in transit. We must be a little careful
in our definition of Transit to take into account the state
Acking when the message is still in Buffer, but has beern
received.
The exact theorem in AFFIRM would be

theorem DataTransferService, all s (Sent(s) = Received(s)
join Transits(s));

define Transit(s) = = if State(s) = Acking
then, NewQueueOfMessage
else Buffer(s);

This theorem has been proved in AFFIRM.
Another form of the service requirement might be

(State(s) - ReadyToSend) D (Sent(s) = Received(s))

stating that input exactly equals output whenever the system
returns to its "idle" state. This turns out to be a special case
of the more general theorem above.
Liveness properties for this simple machine are relatively

trivial. It is farily obvious that the allowed progression of

466

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

states involves a single fixed cycle (ignoring rejected operations we could have represented it explicitly, by defining one con-
having no effects), where a single message is transferred on structor, say Const. Const takes a number of parameters (one
each cycle. First, formalize the meaning of "ignore rejected per individual state variable), and creates one state vector out
operations," as follows: of them:

interface StripNoOps(s): SimpleMessageSystem;

axioms
StripNoOps(InitializeService) = = InitializeService,
StripNoOps(UserSend(s, m)) = = if State(s) = ReadyToSend

then UserSend(StripNoOps(s), m)
else StripNoOps(s),

StripNoOps(SendComplete(s)) = if State(s) = Sending
then SendComplete(StripNoOps(s))
else StripNoOps(s),

StripNoOps(UserReceive(s)) = = if State(s) = ReadyToReceive
then UserReceive(StripNoOps(s))
else StripNoOps(s),

StripNoOps(ReceiveComplete(s)) = = if State(s) = Acking
then ReceiveComplete(StripNoOps(s))
else StripNoOps(s);

theorem StatesMatch, all s (State(s) = State(StripNoOps(s))
and Sent(s) = Sent(StripNoOps(s))
and Received(s) = Received(StripNoOps(s))
and Buffer(s) = Buffer(StripNoOps(s)));

The definition of StripNoOps simply formalizes our intuition
about events having no effect because they occur at an inap-
propriate time. For example, a SendComplete event after a
UserReceive event can have no effect. The theorem States-
Match says that the effects of a sequence of events is the same
as the effects of a new sequence that has had the no-effect
operations filtered out. This theorem was proved in AFFIRM.
In the context of the above definitions, then, the following

theorem says that the four operations, in the right order, add a
message (and the correct one) to those received, no matter
how many additional "rejected" operations may have been
interleaved:

theorem Service Progress,
all sl, s2, m (StripNoOps(s2)

ReceiveComplete(UserReceive
(SendComplete(UserSend
(StripNoOps(sl), mi))

and State(sl) = ReadyToSend
imp State(s2) = ReadyToSend

and Sent(s2) = Sent(sl) Add m
and Received(s2) = Received(sl) Add m);

This theorem has also been proved using AFFIRM.
Finally we note that the system will progress around this

cycle so long as each operation completes in finite time. This
is an assumption at the service level but, of course, must be
proved when we see how the protocol implements each
operation.

G. AlternativeNotations
Instead of implicitly representing the machine's state vector,

constructor Const(state, sent, received, buffer):
SimpleMessageSystem;

The individual state variables are then defined as vector-
extractors:

State(Const(state, sent, received, buffer)) = = state;
Sent(Const(state, sent, received, buffer)) = = sent,
Received(Const(state, sent, received, buffer)) = received,
Buffer(Const(state, sent, received, buffer)) = = buffer;

and the state transition functions, nominally constructors,
would become extenders:

UserSend(Const(state, sent, received, buffer), message)
= = if state = ReadyToSend

then Const(Sending, sent Add message, received,
buffer Add message)

else {no change} Const(state, sent, received,
buffer),

SendComplete(Const(state, sent, received, buffer))
= = if state = Sending

then Const(ReadyToReceive, sent, received,
buffer)

else {no change} Const(state, sent, received,
buffer),

UserReceive(Const(state, sent, received, buffer))
= = if state = ReadyToReceive

then Const(Acking, sent, received Add Front
(buffer), buffer)

else {no change} Const(state, sent, received,
buffer),

467

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

ReceiveComplete(Const(state, sent, received, buffer))
= = if state = Acking

then Const(ReadyToSend, sent, received, Remove
(buffer))

else {no change} Const(state, sent, received,
buffer),

InitializeService = = Const(ReadyToSend,
NewQueueOfMessage, NewQueueOfMessage,
NewQueueOfMessage);

This notation often results in fewer axioms overall, but each
axiom is usually much more complex than those of the nota-
tion we described above. This is especially true when one

state has a large set of successor states. We have chosen the
first notational method for expressing state vectors in
AFFIRM because of its convenience. The axioms, with a bit
of practice, are generally more understandable because each is
relatively simple.

IV. VERIFICATION ISSUES
As mentioned in Section I, ideally we would like to verify

three kinds of properties of a specification: safety (only cor-

rect things happen), liveness (eventually something happens),
and performance (things happen promptly).
Safety properties are typically proved by structural induc-

tion, as was described in Section I-B2). Most of our work has
focused on this concern.

Liveness properties may be handled by showing the system
terminates:

1) some operation is always enabled, or the system has
reached one of its final states; and
2) each operation decreases some bounded measure func-

tion, which at some point (nominally, when it evaluates to
zero) disables all operations (for example, by setting a special
state variable to false; presumably all the operations are

applicable only if the variable is true).
This issue is discussed at length in [39]. Temporal logic

also provides convenient techniques for stating and proving
liveness properties [32], [40]. We deal only briefly with
liveness properties in this paper.

Performance properties have traditionally been dealt with
by other methods (e.g., queueing theory); we have not ad-
dressed this issue.

A. Verifying Properties ofa Specification
As noted in Section I-B, one of the main capabilities of

AFFIRM is the ability to verify that a data type has certain
desired properties. These properties are specified as theorems
and are then proved using the interactive theorem prover of
AFFIRM.
Typically these theorems are invariants in the state transition

model. That is, they are predicates on the state that are true
in the initial state, and are preserved across all state transitions.
In AFFIRM, these theorems are proved from the axioms of
the type being specified (and other predefined types) by
structural induction. In the context of the simple message
system of the preceding chapter, to prove a theoremn P(s)
for all states s, first prove the theorem P(InitializeService);
then, assuming P(s) for some state s, prove P(fcn(s)) for each

constructor fen in the type. This suffices to show P(s) for
all s.

It is also overkill. What is proved is that any order of occur-
rence of the events of the state transition machine is accept-
able; the invariant still holds. Carrying out such a proof re-
quires a "ruggedized" machine that has extra tests to make
sure that operations invoked at inappropriate times can do no
harm: no state change occurs. Real protocols have assump-
tions about which operations can happen when. It is unlikely,
for example, that a time-out can occur if there are no messages
that have been sent but not yet acknowledged. Hence proving
properties of a program that uses an abstract machine in a
certain way may be easier (and allow a simplier machine
specification) than proving properties of the machine for
arbitrary programs.

B. Verifying the ProtocolAgainst the Service Specification
We must show that the detailed system made of stations

interacting according to the protocol "does the same thing"
as the abstract system specified by the service (see Section
I-).
This brings us to the problem of what it means for one

abstract machine (or set of machines) to implement another.
There are two aspects of this relationship:

1) a static correspondence between each state of the higher
level and the state(s) implementing it at the lower level, show-
ing that every higher level state is in fact implemented; and
2) a dynamic correspondence between the transitions of the

two levels, showing that the sequence of states reachable in
the two levels are the same.
Point 1 is typically handled by giving a representation

function rep from the state variables of the lower level to the
state variables of the higher level. The function is specifically
defined in this direction because there may be several lower
level states that all represent the same higher level state (so the
function has no inverse). Also, some lower level states may be
intermediate states that do not represent any higher level
state. As noted above, it must be shown that there is some
lower level state to represent every higher level state.
To address point 2, the conventional approach involves

specifying a fixed sequence of lower level operations imple-
menting each higher level operation. Then it must be proved
that if the two systems start in corresponding states, they will
end up in corresponding states after corresponding operations.
Let S and s be higher and lower level states, respectively.

Let OP be a higher level operation and op be its lower level
implementation, and let rep be a representation function
(from s to S). Then this method attempts to show that for
each OP

VS, s (S = rep(s) D OP(S) = rep(op (s))).

The difficulty of this approach in the protocol domain is
that a higher level operation such as sending a message may be
accomplished by a nondeterministic sequence of lower level
operations, including transmission, loss, time-outs, retrans-
missions, and receptions. Typically there will be a single
low-level operation that starts the accomplishment of the
higher level operation by "posting" some work to be done.
This will then be followed by a nondeterministic series of

468

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

lower level operations, invisible at the top level, that complete
the results of the higher level operation in the unreliable low-
level environment. These latter effects may be viewed as one
or more spontaneous transitions of the higher level machine.
Section V gives an example of this sort.
In this type of lower level specification, there are two sorts

of operations: one set invoked directly by the users of the sys-
tem (corresponding to the higher level operations), and a
second set of internal operations.
Verification of this type of lower level specification is similar

to the conventional situation discussed above, but must be
augmented by a proof that the spontaneous higher level transi-
tions (and only such transitions) are accomplished by the
internal operations in a "ruggedized" fashion that includes
tests in their definitions to force them to produce no changes
if invoked at inappropriate times. The additional theorems to
be proved take the following form: from any low-level state
corresponding to a higher level state with spontaneous transi-
tions, the next lower level state that "maps up" and can be
reached by any sequence of internal lower level operations
must correspond to the correct higher level state. We can
define this recursively as follows:

V S such that S has one or more spontaneous transitions
(V s such that S = rep(s)

(SpontSucc(S) = rep(UpSuccessors(s, S))))

where rep is extended in the natural manner to sets

SpontSucc(S) is the set of states reached from
S by spontaneous transitions

UpSuccessors(s, S) =
{s2: Successor(s, s2) and MapsUp(s2) andS 0 rep(s2)}
U UpSuccessors(s3, S)
V s3: Successor(s, s3) and -MapsUp(s3)

Sucessor(sl, s2) = 3 internalOp such that (s2
= internalOp(sl))

MapsUp(s) = true if s represents some high-level state

This general formulation often simplifies considerably, as
shown in the example in Section V.

C. Verifying a Program Against the Protocol Specification
If we followed the pattern of the lower level (protocol)

and higher level (service) specifications discussed above, each
operation of the protocol specification would be implemented
by a separate Pascal procedure. However, an actual imple-
mentation of a protocol is somewhat more constrained.
A state transition machine defines a global state and specifies

how transitions change the state variables. Since the purpose
of protocols is to provide for communication between disjoint
processes, an actual implementation will be divided into co-
operating stations (as described in Section I-C); only the state
variables describing the communications medium will be
shared between stations.

acknowledgments.) Hence, the programs typically exhibit
only a subset of the allowable behavior (hopefully only
inefficient event sequences having been omitted).
Of course, many properties of states proved at higher levels

may be transferred down to programs. However, the con-
straints introduced by the program may require additional
proofs for liveness, e.g., the constraints do not introduce
deadlock.

V. DETAILED EXAMPLE: THE ALTERNATING
BIT PROTOCOL

We will continue the exposition of our methodology, using
the Alternating Bit protocol as an example. First we will
specify a protocol providing the simple data transfer service
described earlier. We will then perform the various verifica-
tion tasks.

A. A BriefDescription of the Protocol
The Alternating Bit protocol [31], [32], [41]-[43] is

intended to provide a simple but reliable message transfer
service over an unreliable transmission medium. It attaches a
one bit sequence number to each message sent, and waits for
an acknowledgment of the receipt of the message by the
destination. The sequence number is complemented on each
new message sent-hence the name of the protocol. If the
acknowledgment is not received within a time-out period,
the message is retransmitted (with the sequence number un-
changed). The protocol guarantees correctly sequenced de-
livery of messages even if the medium loses messages and
acknowledgments, but the medium cannot reorder messages.
To accomplish these functions, the sender and receiver

stations maintain local sequence number counters. The sender
uses its counter to remember the sequence number to attach
to the next transmission. The receiver uses its counter to
remember to sequence number of the next message it expects
to receive, thus allowing for the removal of duplicate messages
(which will be sent if an acknowledgment is lost).
The Alternating Bit protocol is a simple instance of a general

class of data transfer protocols using positive acknowledgments
and retransmission on errors [44] -[46]. This simple example
allows only one unacknowledged message to be transmitted
at a time. More complex protocols in this class use larger
sequence numbers and allow multiple outstanding messages.

In Section V-B we provide an informal defmition of a state
transition machine for the Alternating Bit protocol, and in
Section V-C this specification is translated into an AFFIRM
representation. We then discuss the major verification step,
showing that the protocol implements its service correctly.
We will then discuss an important invariant of the protocol
specification (independent of the service). Finally we give
algorithms for the sender and receiver stations, and show that
these algorithms properly implement the protocol.

Since losses are a spontaneous behavior of the medium, they B. A State Transition Machine for the Alternating
are not implemented in either station. BitProtocol
While it was convenient for our specification to allow The protocol machine described in this section c:

operations to be invoked in any order, only certain sequences lels the service machine described in Section II
of operations are efficient. (For example, it makes little addition of details concerning the internal opera
sense for the sender to retransmit without first checking for protocol. The protocol is defined as a single mac

losely paral-
[I, with the
ition of the
chine rather

469

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

ProtocolSend

LoseAck

Fig. 4. The protocol state transition machine.

than as separate sender and receiver components (see Section
VII-A). Fig. 4 illustrates the main data structures and opera-

tions of the protocol.
1) Data Types Used in the Specification: The protocol

uses a few more data types than the service specification does.
Their informal descriptions are gathered here for convenience.
Message: As in the service specification, this type is a mini-

mally defined data type that represents abstract contents.
Bit: An enumerated type with two elements, arbitrarily

called on and off Functions include a "flip" operation that
flips the value (from on to off or vice versa), represented by
the unary not operator "-".
Packet: A record (or tuple) with two components: a value

of type Bit (i.e., a sequence number) and a value of type
Message.
Medium: Really a QueueOJPacket with the addition of

operations to "lose" packets. Further enhancements (e.g.,
to allow the reordering of packets) might be desired in a more

realistic medium. The channels of the protocol are of this
type. The Transmit operation takes a value of type Medium
and a value of type Packet and yields a value of type Medium.
Intuitively, it is equivalent to the Add operation of the Queue
type. Similarly, Receive corresponds to the Queue operation
Remove.
QueueOfPacket, QueueOfMessage, SequenceOfMessage:

Standard data types from the AFFIRM Type Library.
2) State Variables:
SenderToReceiver-Medium: The channel from the sender

to the receiver.
ReceiverToSender-Medium: The channel from the receiver

to the sender. For convenience, entire packets are returned as

acknowledgments, rather than just the sequence numbers.
Pending-QueueOfPacket: The packet currently being trans-

mitted, if any. Pending is either empty (i.e., NewQueueOf-
Packet), or contains exactly one packet. A queue type was

used instead of a simple packet in order to avoid notions of a

null packet, and to allow future extensions.
SSN-Bit: The sender's current sequence number (i.e., the

next acknowledgment of interest).
RSN-Bit: The receiver's current sequence number (i.e.,

the number of the next packet expected).
ReceiverBuffer-QueueOfPacket: The packet received but

not yet delivered to the user (if any). ReceiverBuffer is either

empty, or has exactly one element. A queue type was used for
convenience.
Sent-SequenceOfMessage: A sequence of all the messages

sent but not necessarily acknowledged yet. (This variable
would not be present in a real implementation; it is for specifi-
cation purposes.)
Received-SequenceOfMessage: A sequence of all the mes-

sages successfully received. (This variable would not be present
in a real implementation; it is for specification purposes.)
Of course, not all these data structures are visible or available

to both stations (sender and receiver).
3) State Transition Functions:
Initialize Protocol: Set the counters and the queues to their

initial values.
ProtocolSend(m): Given a message m, try to send the

message as a packet. If no message is waiting to be acknowl-
edged (Pending = NewQueueOfPacket) then accept the message
m (by appending it to Sent) and transmit it (by constructing a
packet with the current SSN and adding the packet to Sender-
ToReceiver). Also remember that the packet is waiting to be
acknowledged (by putting it in Pending).
ReceivePacket: Receive a packet, if one is available. If

SenderToReceiver is nonempty, remove and examine the first
packet. If it is the one expected (its sequence number matches
RSN), then place it in ReceiverBuffer and flip RSN. If the
packet has already been delivered, then send an acknowledg-
ment by copying the packet to ReceiverToSender.
Deliver: Deliver a new message (if there is one to be de-

livered) to the user. If a message is available in ReceiverBuffer,
append it to the Received queue, and acknowledge the message
(by copying it to ReceiverToSender). Clear ReceiverBuffer.
ReceiveAck: Receive an acknowledgment, if any exist to

be received. If ReceiverToSender is not empty, then remove
the first packet. If the packet's sequence number does not
match SSN, then just ignore the packet. Otherwise, flip SSN
and empty Pending (preparing for another Send operation).
Retransmit: Add the message in Pending, if any, to Sender-

ToReceiver, i.e., resend it.
LosePacket: Lose a packet by removing the front packet

from SenderToReceiver, if it is not empty.
LoseAck: Lose an acknowledgment by removing the front

ofReceiverToSender, if it is not empty.
As an example, a typical state of the system might be

ReceiveAck(Deliver(ReceivePacket(ProtocolSend(Initialize-
Protocol, m))))

which represents the sequence of operations (reversed from
their functional representation)

InitializeProtocol; ProtocolSend(m); ReceivePacket;
Deliver; ReceiveAck

C. The AFFIRMRepresentation
As was the case with the service specification, we simply

turn state variables into selector functions of a data type;
state transition functions (commands) become constructors.
The definitions of the state transition functions become
axioms. All the functions in the AFFIRM representation
carry along an explicit parameter of the type being defimed;
this is intuitively a characterization of the current state.

470

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

What is displayed here is a stylized version of the axioms, omitting all axioms stating that some selector is not modified by
some constructor. Appendix II contains the actual AFFIRM input.

state machine ABProtocol;

declare s: ABProtocol;
declare m: Message;

constructors
InitializeProtocol, ProtocolSend(s, m), ReceivePacket(s), Deliver(s), Receive Ack(s),
Retransmit(s), LoseAck(s), LosePacket(s);

selectors
InitialSequenceNumber, RSN(s), SSN(s): Bit;

selectors
ReceiverToSender(s), SenderToReceiver(s): Medium;

selectors
Received(s), Sent(s): QueueOfMessage;

selectors
Pending(s), ReceiverBuffer(s): QueueOflPacket;

axioms {InitializeProtocol:}
Pending(InitializeProtocol) = = NewQueueOfPacket,
Received(InitializeProtocol) = = NewQueueOfMessage,
ReceiverBuffer(InitializeProtocol) = = NewQueueOfPacket,
ReceiverToSender(InitializeProtocol) = = InitializeMedium,
RSN(InitializeProtocol) = = InitialSequenceNumber,
SenderToReceiver(InitializeProtocol) = = InitializeMedium,
Sent(InitializeProtocol) = = NewQueueOfMessage,
SSN(InitializeProtocol) = = InitialSequenceNumber;

axioms {ProtocolSend:}
Pending(ProtocolSend(s, m)) = = if Pending(s) = New QueueOfPacket

then NewQueueOfPacket Add MakePacket(m, SSN(s))
else Pending(s),

SenderToReceiver(ProtocolSend(s, m)) = = if Pending(s) = NewQueueOfPacket
then Transmit(SenderToReceiver(s), MakePacket(m, SSN(s)))
else SenderToReceiver(s),

Sent(ProtocolSend(s, m)) = = if Pending(s) = New QueueOfPacket
then Sent(s) Add m
else Sent(s);

axioms {ReceivePacket:}
ReceiverBuffer(ReceivePacket(s)) = = if Seq(Front(SenderToReceiver(s))) = RSN(s)

and SenderToReceiver(s) = InitializeMedium
then NewQueueOfPacket Add Front(SenderToReceiver(s))
else ReceiverBuffer(s),

ReceiverToSender(ReceivePacket(s)) = = if SenderToReceiver(s) - = InitializeMedium
and ReceiverBuffer(s) = NewQueueOfPacket
and RSN(s) = Seq(Front(SenderToReceiver(s)))

then Transmit(ReceiverToSender(s), Front(SenderToReceiver(s)))
else ReceiverToSender(s),

RSN(ReceivePacket(s)) = = if Seq(Front(SenderToReceiver(s))) = RSN(s) and SenderToReceiver(s) = InitializeMedium
then -RSN(s)
else RSN(s),

SenderToReceiver(ReceivePacket(s)) = = Receive(SenderToReceiver(s));
axioms {Deliver:}

Received(Deliver(s)) = = if ReceiverBuffer(s) = NewQueueOfPacket
then Received(s)
else Received(s) Add Text(Front(ReceiverBuffer(s))),

471

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

ReceiverBuffer(Deliver(s)) = = NewQueueOfPacket,
ReceiverToSender(Deliver(s)) = = if ReceiverBuffer(s) = newQueueOfPacket

then ReceiverToSender(s)
else Transmit(ReceiverToSender(s), Front(ReceiverBuffer(s)));

axioms {ReceiveAck:}
Pending(ReceiveAck(s)) = = if Seq(Front(ReceiverToSender(s))) = SSN(s) and ReceiverToSender(s) - = InitializeMedium

then NewQueueOfPacket
else Pending(s),

ReceiverToSender(ReceiveAck(s)) = = Receive(ReceiverToSender(s)),
SSN(ReceiveAck(s)) = = if Seq(Front(ReceiverToSender(s))) = SSN(s) and ReceiverToSender(s) = InitializeMedium

then -SSN(s)
else SSN(s);

axiom {Retransmit:}
SenderToReceiver(Retransmit(s)) = = if Pending(s) = NewQueueOfPacket

then SenderToReceiver(s)
else Transmit(SenderToReceiver(s), Front(Pending(s)));

axiom {LoseAck:}
ReceiverToSender(LoseAck(s)) = Receive(ReceiverToSender(s));

axiom {LosePacket:}
SenderToReceiver(LosePacket(s)) = = Receive(SenderToReceiver(s));

end {ABProtocol};

D. Verifying the ProtocolAgainst the Service Specification
This section presents a detailed example of how to verify

that a lower level state transition machine specification imple-
ments a higher level one. In this case the system in question
is the Alternating Bit protocol, and the two levels are the ser-
vice (higher) and protocol (lower) specifications.

1) Safety: The service specification (see Section III-E)
includes UserSend and UserReceive operations, and an
InitializeService operation to initialize the system, all meant to
be invoked by the users of the service. It also includes spon-
taneous transitions SendComplete and ReceiveComplete,
modeling the completion of the UserSend and UserReceive
operations within the distributed system providing the service.
Hence there are four control states at the service level, as
shown in Fig. 1, with the two intermediate states explicitly
displaying the delay between one user initiating an operation
and the other user becoming aware of it. The state variables
used at this level include a buffer Buffer for messages sent but
not yet received (at most one is allowed), and queues Sent
and Received that maintain histories of all messages sent and
received (these are only used for specification purposes).
There is also a control state variable State with four possible
values.
The protocol level (see Section V-C) has operations cor-

responding to each of the user operations at the service level:

Initialize Service - InitializeProtocol
UserSend ProtocolSend
UserReceive e Deliver.

There is also a second set of protocol operations that col-
lectively accomplish the spontaneous operations of the service
level. These are ReceivePacket, ReceiveAck, LosePacket,
LoseAck, and Retransmit. The service-level state variables

Sent and Received are implemented transparently, while
Buffer is implemented as the text of the first packet in the
queue of packets called Pending. The service-level control
states (ReadyToSend, Sending, ReadyToReceive, and Acking)
correspond to four defined state classes at the protocol level
(Sl, S2, S3, and S4). Fig. 5 summarizes these correspondences
informally.
Our method of proving that a protocol implements its ser-

vice specification is to convert each of the service-level axioms
into a theorem at the protocol level, and then to prove these
theorems using the protocol specification. This follows the
method of [36]. Appendix III-A shows the formal cor-
respondence between functions at the two levels using a
representation function rep, and Appendix III-B defines the
protocol-level state classes. The basic method is to replace
each occurrence of the service machine state in the axioms of
the service specification by the rep of its corresponding
protocol states, and then to use the other rewrite rules dis-
played in Appendix 111-A until the expression is reduced to
terms involving only protocol-level selectors and constructors.
This conversion is most conveniently discussed in three

portions. The easiest axioms to convert are those defining the
results of the user operations (UserSend, UserReceive, and
InitializeService) on the state variables. Since each service-
level operation is directly implemented by a single protocol-
level operation, and the state variables also have a simple
correspondence, the resulting theorems are easily obtained.
Appendix III-C shows how two service axioms are converted
in .detail, and Appendix III-D gives all of the resulting theo-
rems in this category.
The next group of theorems are those concerning the effects

of the spontaneous service operations on the state variables.
Here there is no fixed correspondence of one protocol opera-

472

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

Service Protocol

InitializeService InitializeProtocol

Sent Sent

Received Received

Buffer Text(Front(Pending))

State
ReadyToSend Si
Sending S2
ReadyToReceive S3
Acking S4

UserSend ProtocolSend

UserReceive Deliver

SendComplete any sequence of the operations
ReceiveComplete {ReceivePacket, ReceiveAck, Retransmit, LosePacket, LoseAck)

Fig. 5. The correspondence between service and protocol level state
variables.

tion for each service operation. Instead, we wish to show that
any sequence of the five spontaneous protocol operations
(ReceivePacket, ReceiveAck, LosePacket, LoseAck, and
Retransmit) will have the specified effect. For state variables
Sent and Received this is simple because the spontaneous
operations are specified to have no effect on these variables.
The first two theorems of Appendix III-E state that each
individual operation will have no effect, so we can also con-

clude that any sequence of these operations will have no effect.
This may be viewed as a special case of structural induction,
considering only the spontaneous operators, and attempting
to show Sent (or Received) is invariant.
The case for Buffer is more complex since there is a possible

effect from the spontaneous operations. We must show that
if the system is not in state S4 (corresponding to Acking in
the service specification), then there will be no effect, and if
it is in state S4, then Buffer will become empty (i.e., New-
QueueOfMessage). The first case is similar to the situation for
Sent and Received, with the additional constraint that the
system can never enter state S4 from another state by spon-

taneous operations. The third theorem of Appendix III-E
shows that no single action can modify Buffer in this case,
and hence no sequence can, as above. For the S4 case, the
final theorem of Appendix III-E states that the spontaneous
operations either leave the system in state S4 with Buffer
unchanged, or set Buffer to NewQueueOfMessage and enter
state Sl. Once in state Si, we know from the previous theo-
rem that there will be no further change to Buffer. Hence we

can conclude that if the protocol progresses (to state SI),
it behaves as specified in the service. This proves the safety
of the protocol. A separate argument is necessary to prove

liveness.
The final set of theorems, in Appendix III-F, covers the

effects of the operations on the service-level state. For the
user operations, we must show that the correct next state is
generated by the corresponding protocol operation for each
of the four states the system may be in. This is stated in the
first and fourth group of theorems (the initial state was

already covered). For the spontaneous operations, the situa-
tion is similar to Buffer above. We must show that any se-

quence of ReceivePacket, ReceiveAck, LosePacket, LoseAck,

and Retransmit can cause only the transitions specified for
SendComplete or ReceiveComplete (i.e., if the system pro-
gresses to a new state at all, it is the correct one). For the
most part these theorems say that no state change takes place
-only theorems SISuccl, S2Succ2, S4Succ3, and S3Succ4
show actual progress. Once again, only safety is covered here.
All the theorems in Appendix III have been proved, showing

that the protocol correctly implements the service. The proofs
require a number of definition invocations and substitutions
that are tedious. They also require several lemmas concerning
the relationship between SSN and the sequence numbers of
the packets in the mediums. We cite just two as examples:

theorem PktsOldRP,
all s, med (PktsOld(s, med) imp
PktsOld(ReceivePackets(s), med));

theorem PktsOldPS,
all s, m, med (Pending(s) - = NewQueueOfPacket

and PktsOld(s, med)
imp PktsOld(ProtocolSend(s, m), med));

Theorem PktsOldRP says that if the packets in the medium
med are old (i.e., with sequence number not equal to SSN(s)),
then they are still old after a ReceivePacket event-the event's
effects on the medium are limited to simply removing a
packet. All the remaining packets are unaffected. The other
theorems say much the same thing.
2) Liveness: In order to deal with liveness concerns, we

must show that the implementation for each service-level
operation terminates. This is trivial for the user operations,
since each is directly implemented by a single protocol opera-
tion assumed to terminate.
The difficulty comes with the so-called spontaneous opera-

tions. We must show that a finite sequence of internal
protocol operations serves to accomplish the desired effect.
Considering the SendComplete operation as an example, an
argument of the following sort is necessary.

1) In (protocol) state S2 (corresponding to service state
Sending), the Retransmit operation is enabled and may place
an arbitrary number of packets- in the SenderToReceiver
medium.

2) In state S2, if one of these packets reaches the receiver,
the ReceivePacket operation will achieve the desired effects of
SendComplete (i.e., change the state to S3, corresponding to
ReadyToReceive).

3) If a large enough (but finite) number of packets are trans-
mitted by the sender, one will reach the receiver.
These three points taken together imply that a finite number

of protocol internal operations will accomplish the Send-
Complete service operation. A similar argument holds for the
ReceiveComplete operation. Points 1 and 2 follow directly
from the axioms for Retransmit and ReceivePacket. Point 3,
however, requires an additional constraint on the simple
medium: the number of packets that may be lost is bounded.
As yet, there is no convenient method for expressing such
eventual delivery constraints in AFFIRM. Our liveness argu-
ments must therefore remain informal. Berthomieu [39],
Hailpern [32], [33], and Schwartz [47] deal with these
concerns.

473

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

E. ProtocolPropertiesandInvariants
As stated in Section I-C2, the essential verification of a

protocol involves showing that it meets its service specification.
However, it is also possible to prove properties of the protocol
specification itself, independently of any service specification.
In particular, a state invariant similar to the service require-
ments discussed in Section 111-F is worth some discussion.
Proving the invariant gives added confidence that the protocol
specification is correct.
The system invariant for the Alternating Bit protocol is the

theorem

theorem MainSystemInvariant, all s (InSI(s) or InS2(s)
or InS3(s) or InS4(s));

This states that the protocol-level system is always in one of
the four valid state classes of the protocol.' We also note that
by the definition of protocol state Sl (in Appendix III-B),

InS 1(s) D (Sent(s) = Received(s))

which is a protocol-level version of the service requirement.
The system invariant has been proved. The proof makes use

of the theorems of Appendix III-F. Those theoremns essen-
tially detail how the state changes for each possible event.
Most say that no change occurs. As with most abstract data
types, much of the difficulty with this proof lies in develop-
ing a suitable invariant. We experimented with several versions
of the protocol axioms and state class definitions before de-
veloping the present form.

F. Implementation
Having specified the Alternating Bit protocol and proven

that it has some desired properties, we must provide an imple-
mentation which meets these specifications. (See Section
IV-C for a general discussion.) Our implementation (in Ap-
pendix IV) has two stations:

1) Sender contains -procedures ProtocolSend, SenderTime-
out, and InitSender; and
2) Receiver contains ReceivePacket, Deliver, and

InitReceiver.
They share the Medium variables SenderToReceiver and

ReceiverToSender. Since both stations have local variables,
we need two initialization routines. All other procedures
correspond to the similarly named events in the protocol
specification, except for SenderTimeout. It combines the
Retransmit and ReceiveAck events. Like the events of the
speciflcation, all procedures have no effect on the system if
they are called at an inappropriate time.
Program variables correspond to state variables of the speci-

fication. Each procedure has an assertion of the form

VariablesMatch(s, . .vars. .) imp VariablesMatch(event(s),
.new vars..)

In other words, for any state s that corresponds to the initial
values of the program variables, the state resulting from the
listed event will correspond to the variables after the routine
finishes (see Section IV-D). For example, the assertion DPost
(Appendix IV-C) says "given any state s whose selectors Sent,
ReceiverBuffer, and ReceiverToSender match the correspond-

ing receiver variables, the new state resulting from a Deliver(s)
event will have selectors that correspond to the values of the
variables after Deliver is executed." PSPost (the assertion for
ProtocolSend) adds one more stipulation: ProtocolSend sets
a bit to inform its caller of whether it had any effect.
The partial correctness of all these procedures has been

proven using AFFIRM. The proofs were quite straightforward,
using only one lemma about the data type definitions and one
lemma about the protocol specification:

theorem SeqMatch(med, bit) imp (-Seqmatch(med, -bit))
and med - NewQueueOfPacket;

theorem PendingInvariant, Remove(Pending(s))
= NewQueueOfPacket;

Theorem PendingInvariant states that Pending contains no
more than one packet. This was easily proven from the
axioms without reference to any other protocol invariants.
Since the implementation is in keeping with the specifica-

tion, its safety follows from the earlier proof (in Section
V-D). Liveness has not been formally proven for either level.
Any liveness proof must consider that the implementation
does not exercise the full range of event sequences possible
under the specification. (For example, Retransmit is always
preceded by ReceiveAck.) Informally, it may be seen that
only ineffective sequences have been excluded, so progress
will not be impeded.

VI. FURTHER APPLICATIONS

This jection briefly mentions some further work we have
accomplished in applying our methodology to several more
complex protocols.

A. Stenning's Data Transfer Protocol
The protocol described in [45] ignores the aspects involved

in connection establishment, and instead emphasizes the data
transfer aspects. It is designed to operate correctly even
though the channel mnay lose, duplicate, or reorder packets in
transit. It is a generalization of the Alternating Bit protocol
as discussed in Section V-A, since it allows several messages to
be in transit at once.
Stenning defined two processes: a transmitter and a receiver.

The transmitter sends messages from a given sequence of mes-
sages to the receiver, using a communicatiorl line. The receiver
in turn accepts messages from the line, stores them in an out-
put sequence, and acknowledges their receipt by sending a
message to the transmitter via another communication line.
The communication lines are unreliable; hence messages
traveling in either direction can be lost, reordered, corrupted,
or duplicated. Given such an environment, the protocol is
supposed to ensure correct delivery of the messages.
The protocol uses a conventional positive-acknowledgment,

retransmission-on-time-out technique, and the receiver and
transmitter both maintain windows of messages. The trans-
mitter's window contains messages sent but not yet acknowl-
edged. Similarly, the receiver can buffer-ahead messages
received out of order (up to some limit), awaiting receipt of
the next expected message.

474

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

The AFFIRM specification of the Data Transfer protocol,
as well as a proposed safety invariant and documentation of
its partial proof, are included in [48].

B. Transport Service
The transport service represents a protocol layer allowing

many users to exchange data. Users are identified by port
addresses. In order to exchange messages, users must first
establish a connection between themselves by appropriate
requests to the system; once this is done, users may exchange
data in both directions independently.
The exchange itself functions as in the data transfer protocol

above, but is controlled by the receiving end (in each direc-
tion), through the use of explicit credits, i.e.; permission to
send one or more messages. Once users are done communi-
cating, they ask the system to disconnect the established
connection.
We have specified a transport service (but not the protocol

implementing the service), and proved several properties
about the specification. The specification is done in two
levels. The lower level describes one half-duplex connection
that knows about the connection status at both ends. The
upper level uses two such half-duplex connections, one for
each direction, with a shared connection status, thus modeling
a full-duplex connection between each pair of users. This
division permits the separation of addressing properties from
the data transfer properties of the protocol.
Properties proved about this specification show that normal

sequences of connection setup and data transfer commands
will have their anticipated effects. An interesting detail
discovered during these proofs was that the specification
precluded a user from establishing a connection with itself.
Complete details of the specification and proven properties

may be found in [49].

C. Selective Repeat Transport Protocol
In [50] a transport protocol similar to Stenning's is specified.

It involves the transfer of messages between a sender and a
receiver over an unreliable medium (it may lose messages, but
not reorder them). The sender has a window of messages-that
have been sent but not yet acknowledged. If the acknowledg-
ment does not arrive within a certain (fixed but arbitrary)
time, the message is considered to have been lost and is re-
transmitted. This protocol is proven to be partially correct
with respect to the property of "correctly transferring data
across the medium."
In [39], progress properties and their characterization in

AFFIRM are examined. In particular, an extension of the
"well-founded set" method due to Floyd [5] is used to show
the termination of a data transfer protocol.

D. Connection Establishment Protocol
A protocol to provide the kind of connection establishment

service described in Section VI-B has been specified in [51].
The protocol modeled in that paper is the three-way hand-
shake used in the ARPANET TCP algorithm. Although the
protocol has not been verified against a complete service
specification, several interesting properties have been proved.

The proof attempt also revealed a very unlikely but severe bug
in the protocol which was subsequently corrected.

VII. PROBLEMS AND EXTENSIONS
While we feel that we have had considerable success in

handling protocols with AFFIRM, there are several areas
where further work is needed. In this section we briefly dis-
cuss problems encountered and possible extensions.

A. Composition ofSpecifications
Given that a protocol layer is composed of several inter-

acting stations, it is reasonable to specify the behavior of
each station separately, i.e.; by presenting its local view of the
rest of the system [1]. In a second step, these several local
views could be combined to specify the overall behavior of the
layer.
At present, the techniques described in the previous sections

do not allow the straightforward composition of such specifi-
cations; all specifications thus far have described systems from
a global reference point.

B. Concurrency
A protocol layer supports several users, and hence may

receive simultaneous requests for service from them (e.g.,
one side is sending a long message while the other acknowl-
edges a previous message). A fully adequate specification
method should allow for concurrent operations for both
service specifications and protocol specifications. Further-
more, since the stations comprising the layer operate inde-
pendently, the verification method must be able to analyze
systems with concurrently executing components.
A basic assumption of most state transition models is that

the transitions are atomic, serial operations. This assumption
is carried over to the AFFIRM specifications where the axioms
define the effects of each atomic operation (constructor
function). However, this limitation is not as serious as it
might at first appear, because by defining operations with a
small enough grain the assumption of atomicity is reasonable.
For systems with several independent components, the effect
of concurrency can be approximated by considering all pos-
sible interleavings of the operations of each component.
The Simple Message System described in Section III illus-

trates these notions. To model the possible concurrency of
sending and receiving operations, it was necessary to break
these operations into two finer grained events (e.g., sending
becomes UserSend followed by SendComplete). The pos-
sibility of a UserReceive operation occurring between the two
send events adequately models concurrency in this case. We
have used similar decompositions in analyzing the other
protocols mentioned in Section VI, and have found this ap-
proach to be adequate if somewhat cumbersome.

C. Exceptions
The main purpose of a protocol specification is to defhne

allowed or normal sequences of operations and their effects.
Unfortunately, it is a fact of life in the protocol world that
users occasionally issue invalid commands, and even protocol
stations send inappropriate messages to each other. Thus it is

475

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

inadequate to merely state that the protocol behavior is un-
defined for invalid inputs, or that some unspecified party is
responsible for guaranteeing that inputs are valid. A richer
vocabulary for specifying the handling of such exceptional
conditions should be supported, including:

1) ignore invalid inputs (i.e., they have no effect);
2) reject them (i.e., they have no effect, but an error indica-

tion is returned to the requesting party); and
3) enter an error-recovery portion of the protocol.
Axiomatic specification methods have difficulties with 2)

and 3), and the example protocol specifications prepared in
AFFIRM to date have been limited to ignoring invalid inputs,
or simply not defining the results. Several methods to extend
axiomatic techniques to handle exceptions have been pro-
posed [51], [52], but we have not yet determined the best
way to proceed in AFFIRM.

D. Specification and Verification ofSystems with More than
Two Interacting Entities

So far, we have considered only protocols that involve
essentially two interacting entities over a transmission medium.
This covers a large number of protocols being used in practice.
Nevertheless, there are protocols involving more than two inter-
acting entities (e.g., routing in packet switching networks).
It appears that the techniques discussed in this paper can be
applied to the specification of these protocols as well [1].
As one would expect, there is a combinatorial explosion on

the number of possible states of the system. It is at this point
that the ability to decompose the overall system description
into the description of its components becomes crucial, since
it allows the analysis of the behavior of the systemn through
the analysis of the behavior of its components. We are in-
vestigating extensions of our techniques to handle such
situations.

E. Higher Level Protocols

The main application of formal specification methods to
protocols has been at the data transfer level, where the first
concerns are overcoming message loss, damage, and reordering.
Much less work has been done on formally specifying higher
level protocols that focus more on translation into and out of
canonical forms (e.g., a virtual terminal or file). Furthermore,
the operations to be specified are more specialized to the area
of concern of the protocol (e.g., graphics, terminal handling,
speech compression) than to general data transfer. It remains
to'be seen whether the same methods are applicable at these
higher levels, or whether a new set of abstractions (e.g.,
involving canonical forms) will be more suitable.

VIII. CONCLUSION

We have chosen to combine the state transition model and
abstract data type approaches for several reasons. First of
all, we have a strong methodology and a rapidly evolving,
powerful supporting tool: AFFIRM. A natural question is

whether such a methodology can accommodate a diverse set
of formalisms and modeling methods.
This question first arose In conjunction with a toy Security

Kernel [521, where we were presented with a state transition
specification of an operating system kernel with operations
such as SwapProcesses, RaiseBlockLevel, etc. It was quite
natural to represent the specification as a data type and then
do an induction proof of an important invariant about rela-
tive block and process levels.
We then applied the same method to protocols and have, on

the whole, been quite satisfied. Its limitations are touched
upon in Section VII, but within these limits we have con-
ducted a broad exploration of several protocol issues.
All methods have limitations. Some of the limitations of

other methods are handled nicely in our approach. For exam-
ple, we have no problem with unbounded objects which cause
difficulties for finite-state modeling approaches. However, we
lack the decision ability of algorithms based on finite-state
exploration and hence, its ability to simply reveal errors.
Another advantage of our approach is the capability to

execute specifications: axioms have a natural rewriting rule
representation that we exploit. That is, we can take a. set of
axioms, plug in special values, and see where the rewriting
leads. The determinism and executability of axioms is an aid
in evaluating the accuracy of specifications, independent of
their ability to support proofs. This advantage has been
exploited in [54].
Our method also leads niaturally fromn specification to verifi-

cation, using the standard data type induction methods. No
further mechanisms were needed to adjust AFFIRM to state
transition specifications, although a "front-end" to handle our
stylized type specifications would be useful and some parts
have been implemented.
In conclusion, a basis has been laid for further steps toward

practical specification and verification of not just protocols,
but also ofany system expressible as a state transition machine.
Experience indicates that real protocols can be handled [1].
The major remaining task is to consolidate techniques, for
proving progress and liveness.

APPENDIX I
SIMPLE DATA TRANSFER SERVICE SPECIFICATION

The service specification uses three auxiliary data types:
ControlState, a simple enumerated type with four constants
(specified in this Appendix), Message, a type about which we
make no assumptions (except the standard one: there is an
equality operation on the type), and QueueOfMessage, an
instantiation of the generic QueueOfElemType type from the
AFFIRM type library [54, vol. III].
The following text is in exactly the form in which it would

be submitted to the system, except for the use of multiple
fonts. The "no change" axioms mentioned in Section III-E
are generated by the nochange command at the end of the
specification (a recent addition to AFFIRM based on our
experience with state transition models), and hence need not
be specified explicitly. Equality axioms for a type are simi-

476

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

larly generated by the distinct command (used in Control-
State, for example).

type SimpleMessageSystem;

needs types Message, QueueOfMessage, ControlState;

declare s: SimpleMessageSystem;
declare m: Message;

interface State(s): ControlState;
interfaces Sent(s), Received(s), Buffer(s): QueueOfMessage;
interfaces InitializeService, UserSend(s, m), SendComplete(s),

UserReceive(s), ReceiveComplete(s):
SimpleMessageSystem;

interface Induction(s): Boolean;

axioms
State(UserSend(s, in)) = = if State(s) = ReadyToSend

then Sending
else State(s),

State(SendComplete(s)) = = if State(s) = Sending
then ReadyToReceive
else State(s),

State(UserReceive(s)) = = if State(s) = ReadyToReceive
then Acking
else State(s),

State(ReceiveComplete(s)) = = if State(s) = Acking
then ReadyToSend
else State(s),

State(InitializeService) = = ReadyToSend;

axioms
Sent(UserSend(s, m)) = = if State(s) = ReadyToSend

then Sent(s) Add m
else Sent(s),

Sent(InitializeService) = = NewQueueOfMessage;

axioms
Received(UserReceive(s)) = = if State(s) = ReadyToReceive

then Received(s)

Add Front(Buffer(s))
else Received(s),

Received(InitializeService) - = NewQueueOfMessage;

axioms
Buffer(UserSend(s, m)) = = if State(s) = ReadyToSend

then Buffer(s) Add m
else Buffer(s),

Buffer(ReceiveComplete(s)) = = if State(s) = Acking
then Remove(Buffer(s))
else Buffer(s),

Buffer(InitializeService) = = NewQueueOfMessage;

schema Induction(s)
= = cases(Prop(InitializeService),

all s, m (IH(s) imp Prop(UserSend(s, m))),
all s (IH(s) imp Prop(SendComplete(s))),
all s (IH(s) imp Prop(UserReceive(s))),
all s (IH(s) imp Prop(ReceiveComplete(s))));

nochange State, Sent, Received, Buffer;

end {Simple.MessageSystem};

type ControlState;
{An enumerated type, with four distinct constants.}

interfaces ReadyToSend, Sending, ReadyToReceive,
Acking: ControlState;

distinct ReadyToSend, Sending, ReadyToReceive, Acking;

end {ControlState};

type Message; {A type about which we make the absolutely
minimal assumptions: there is an equality relation.}

declare m: Message;

axiom m=m = = TRUE;

end {Message};

APPENDIX II
ALTERNATING BIT AFFIRM PROTOCOL

REPRESENTATION
These axioms are in exactly the form in which they would be submitted to AFFIRM (except for the use of multiple fonts).

The auxiliary types Message, Packet, Medium, Bit, and QueueOfPacket are also listed here.

type ABProtocol;

needs types Message, Packet, QueueOfMessage, QueueOfPacket, Medium, Bit;

declare p, pp: ABProtocol;
declare m, mm: Message;
declare med: Medium;
declare packetq: QueueOfPacket;
declare pkt: Packet;
interfaces Sent(p), Received(p): QueueOfMessage;
interfaces SenderToReceiver(p), ReceiverToSender(p): Medium;
interfaces ReceiverBuffer(p), Pending(p): QueueOfPacket;

.477

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

interfaces InitialSequenceNumber, SSN(p), RSN(p): Bit;
interfaces InitializeProtocol, Deliver(p), ProtocolSend(p, m), ReceivePacket(p),

ReceiveAck(p), Retransmit(p), LosePacket(p), LoseAck(p): ABProtocol;
interfaces NormalForm(p), Induction(p): Boolean;

axioms
Sent(ProtocolSend(p, m)) = = if Pending(p) = NewQueueOfPacket

then Sent(p) Add m
else Sent(p),

Sent(InitializeProtocol) = NewQueueOfMessage;

axioms
Received(Deliver(p)) = = if ReceiverBuffer(p) = NewQueueOfPacket

then Received(p)
else Received(p) Add Text(Front(ReceiverBuffer(p))),

Received(InitializeProtocol) = = NewQueueOfMessage;

axioms
SenderToReceiver(ProtocolSend(p, m)) = = if Pending(p) = NewQueueOfPacket

then Transmit(SenderToReceiver(p), MakePacket(m, SSN(p)))
else SenderToReceiver(p),

SenderToReceiver(ReceivePacket(p)) = = Receive(SenderToReceiver(p)),
SenderToReceiver(Retransmit(p)) = = if Pending(p) = NewQueueOfPacket

then SenderToReceiver(p)
else Transmit(SenderToReceiver(p), Front(Pending(p))),

SenderToReceiver(LosePacket(p)) = = Receive(SenderToReceiver(p)),
SenderToReceiver(InitializeProtocol) = = InitializeMedium;

axioms
SSN(ReceiveAck(p)) = = if Seq(Front(ReceiverToSender(p))) = SSN(p) and ReceiverToSender(p) = InitializeMedium

then -SSN(p)
else SSN(p),

SSN(InitializeProtocol) = = InitialSequenceNumber;

axioms
ReceiverToSender(ReceivePacket(p)) = = if SenderToReceiver(p) - = InitializeMedium

and ReceiverBuffer(p) = NewQueueOfPacket
and RSN(p) = Seq(Front(SenderToReceiver(p)))

then Transmit(ReceiverToSender(p), Front(SenderToReceiver(p)))
else ReceiverToSender(p),

ReceiverToSender(ReceiveAck(p)) = = Receive(ReceiverToSender(p)),
ReceiverToSender(Deliver(p)) = = if ReceiverBuffer(p) = NewQueueOfPacket

then ReceiverToSender(p)
else Transmit(ReceiverToSender(p), Front(ReceiverBuffer(p))),

ReceiverToSender(LoseAck(p)) = = Receive(ReceiverToSender(p)),
ReceiverToSender(InitializeProtocol) == InitializeMedium;

axioms
RSN(ReceivePacket(p)) = = if Seq(Front(SenderToReceiver(p))) = RSN(p) and SenderToReceiver(p) = InitializeMedium

then -RSN(p)
else RSN(p),

RSN(InitializeProtocol) = InitialSequenceNumber;

axioms
ReceiverBuffer(ReceivePacket(p)) = = if Seq(Front(SenderToReceiver(p))) = RSN(p)

and SenderToReceiver(p) = InitializeMedium
then NewQueueOfPacket Add Front(SenderToReceiver(p))
else ReceiverBuffer(p),

ReceiverBuffer(Deliver(p)) = = NewQueueOfPacket,
ReceiverBuffer(InitializeProtocol) = = NewQueueOfPacket;

478

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

axioms
Pending(ProtocolSend(p, m)) = = if Pending(p) = NewQueueOfPacket

then NewQueueOfPacket Add MakePacket(m, SSN(p))
else Pending(p),

Pending(ReceiveAck(p)) = = if Seq(Front(ReceiverToSender(p))) = SSN(p) and ReceiverToSender(p) = InitializeMedium
then NewQueueOfPacket
eIse Pending(p),

Pending(InitializeProtocol) = = NewQueueOfPacket;

schema
NormalForm(p) = = cases (Prop(InitializeProtocol),

all pp, mm (Prop(ProtocolSend(pp, mm))),
all pp (Prop(ReceivePacket(pp))),
all pp (Prop(ReceiveAck(pp))),
all pp (Prop(Deliver(pp))),
all pp (Prop(Retransmit(pp))),
all pp (Prop(LosePacket(pp))),
all pp (Prop(LoseAck(pp)))),

Induction(p) = = cases(Prop(InitializeProtocol),
all pp, mm (IH(pp) imp Prop(ProtocolSend(pp, mm))),
all pp (IH(pp) imp Prop(ReceivePacket(pp))),
all pp (IH(pp) imp Prop(ReceiveAck(pp))),
all pp (IH(pp) imp Prop(Deliver(pp))),
all pp (IH(pp) imp Prop(Retransmit(pp))),
all pp (IH(pp) imp Prop(LosePacket(pp))),
all pp (IH(pp) imp Prop(LoseAck(pp))));

nochange Pending, Received, ReceiverBuffer, ReceiverToSender, RSN, SenderToReceiver, Sent, SSN;

end {ABProtocol};

type Medium;

needs type Packet;

declare m, ml, m2: Medium;
declare pkt, pktl, pkt2: Packet;
interfaces InitializeMedium, Transmit(m, pkt), Receive(m), Lose(m): Medium;
interface Front(m): Packet;
interfaces Empty(m), pkt in m, Induction(m): Boolean;
infix in;

axioms
Receive(InitializeMedium) = InitializeMedium,
Receive(Transmit(m, pkt)) = = ifm = InitializeMedium

then InitializeMedium
else Transmit(Receive(m), pkt);

axiom Lose(m)= = Receive(m);

axiom Front(Transmit(m, pkt)) = = ifm = InitializeMedium
then pkt
else Front(m);

axiom Empty(m) = = (m = InitializeMedium);
axioms

pkt in InitializeMedium = = FALSE,
pkt in Transmit(m, pktl) = = ((pkt = pktl) or pkt in m);

schema Induction(m)
= = cases(Prop(InitializeMedium),

all m, pkt (IH(m) imp Prop(Transmit(m, pkt))));

479

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

distinct InitializeMedium, Transmit;

end {Medium};

type Bit;

declare b, bI, b2: Bit;

interfaces on, off, -b1: Bit;
interface NormalForm(b): Boolean;

axiom --b = = b;

axioms
bl = -b2 = = b I = b2,
-bl -b2 ==bI -=b2;

schema NormalForm(b) = = cases(Prop(on), Prop(off));
distinct on, off;

end {Bit};

type Message; {A type about which we make the absolutely minimal assumptions: there is an equality relation.}
declare m: Message;

axiom m = m = = TRUE;

end {Message};

type Packet;

needs types Message, Bit;

declare pkt: Packet;
declare b, bl, b2: Bit;
declare m, ml, m2: Message;

interfaces MakePacket(m, b), NullPacket: Packet;
interface Seq(pkt): Bit;
interface Text(pkt): Message;

axiom Seq(MakePacket(m, b)) = =b;
axiom Text(MakePacket(m, b)) = =m;
distinct MakePacket, NullPacket;

end {Packet};

type QueueOJPacket;

needs type Packet;

declare q, ql, q2, qq: QueueOfPacket;
declare i, il, i2, ii: Packet;

interfaces NewQueueOfPacket, q Add i, Remove(q), Append(ql, q2), que(i): QueueOfPacket;
infix Add;
interfaces Front(q), Back(q): Packet;
interfaces NormalForm(q), Induction(q), i in q: Boolean;
infix in;
interface Text(q): QueueOfMessage;

axioms
Remove(NewQueueOfPacket) = = NewQueueOfPacket,
Remove(q Add i) = = if q = NewQueueOfPacket

then q
else Remove(q) Add i;

480

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

axioms
Append(q, NewQueueOfPacket) = =q,
Append(q, ql Add il) = = Append(q, ql) Add il;

axiom que(i) = = NewQueueOfPacket Add i;

axiom Front(q Add i) = = if q = NewQueueOfPacket
then i
else Front(q);

axiom Back(q Add i) = =i;
axioms

i in NewQueueOfPacket = = FALSE,
i in (q Add il) = = (i in q or (i=il));

axioms
Text(NewQueueOfPacket) = = NewQueueOfMessage,
Text(packetq Add pkt) = = Text(packetq) Add Text(pkt);

rulelemma Append(NewQueueOfPacket, q) = =q;
schema

NormalForm(q) = = cases(Prop(NewQueueOfPacket),
all qq, ii (Prop(qq Add ii))),

Induction(q) = = cases(Prop(NewQueueOfPacket),
all qq, ii (IH(qq) imp Prop(qq Add ii)));

distinct Add, NewQueueOfPacket;

end {QueueOfPacket};

APPENDIX III
SERVICE AXIOMS -* PROTOCOL THEOREMS

This Appendix contains the correspondence between the
service and protocol specifications of the Alternating Bit
protocol, and lists the theorems generated as part of the job
of proving that the protocol implements the service. These
theorems have been proved using AFFIRM.

A. The Correspondence between the Service and the Protocol

declare s: ABProtocol;
declare m: Message;

interface rep(s): ABProtService;

1. InitializeService = = rep(InitializeProtocol)
2. Sentservice(rep(s)) = Sentprotocol(s)
3. Receivedservice(rep(s)) = = Receivedprotocoi(s)
4. Buffer(rep(s)) = = Text(Front(Pending(s)))
5. State(rep(s)) = if InS 1(s)

then ReadyToSend
else if InS2(s)

then Sending
else if InS3(s)

then ReadyToReceive
else Acking

6. UserSend(rep(s), m)3 = rep(ProtocolSend(s, m))
7. Receive(rep(s)) = = rep(Deliver(s))

8. SendComplete(rep(s))
= = rep({LosePacket LoseAck Retransnit ReceivePacket

ReceiveAck}*(s))
9. ReceiveComplete(rep(s))

== rep({LosePacket LoseAck Retransmit ReceivePacket
ReceiveAck}*(s))

B. Correspondence ofStates Between Service and Protocol
The four states in the service specification, ReadyToSend,

Sending, ReadyToReceive, and Acking, correspond to four
state classes in the protocol specification, labeled Sl, S2, S3,
and S4. The predicates in the protocol specification defining
these states are defined in AFFIRM as follows.

InSl(s) {ReadyToSend}
== (Pending(s) = NewQueueOfPacket
and ReceiverBuffer(s) = NewQueueOfPacket
and Sent(s) = Received(s)
and PktsOld(s, SenderToReceiver(s))
and PktsOld(s, ReceiverToSender(s))
and RSN(s) = SSN(s))

InS2(s) {Sending}
= - (Pending(s) = NewQueueOfPacket

and ReceiverBuffer(s) = NewQueueOfPacket
and Sent(s) = Received(s) Add Text(Front(Pending(s)))
and PktsCurrentOrOld(s, SenderToReceiver(s))
and PktsOld(s, ReceiverToSender(s))
and RSN(s) = SSN(s))

481

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

InS3(s) {ReadyToReceive}
= = (Pending(s) - = NewQueueOfPacket

and ReceiverBuffer(s) = Pending(s)
and Sent(s) = Received(s) Add Text(Front(Pending(s)))
and PktsCurrent(s, SenderToReceiver(s))
and PktsOld(s, ReceiverToSender(s))
and RSN(s) = SSN(s))

InS4(s) {Acking}
= = (Pending(s) = NewQueueOfPacket

and ReceiverBuffer(s) = NewQueueOfPacket
and Sent(s) = Received(s)
and PktsCurrent(s, SenderToReceiver(s))
and PktsCurrentOrOld(s, ReceiverToSender(s))
and RSN(s) = SSN(s))

C. Example: Mapping Two ServiceAxioms into Protocol Theorems

Service axiom
Receivedservice(UserSend(S, n)) = = Receivedservice(S)

use S = rep(s)
Receivedservice(UserSend(rep(s), in)) = Receivedservice(rep(s))

use 6
Receivedservice(rep(ProtocolSend(s, m))) = Receivedservice(rep(s))

use 3
Receivedprotocoi(ProtocolSend(s, in)) = Receivedprotocoi(s)

Service axiom
Sentservice(UserSend(S, m)) = = if State(S) = ReadyToSend

then Sentservice(S) Add m
else Sentseice(s)

use S = rep(s)
Sentservice(UserSend(rep(s), in)) = = if State(rep(s)) = ReadyToSend

then Sentservice(rep(s)) Add m
else Sentservce(rep(s))

use 6
Sentsece(rep(ProtocolSend(s, in))) = = if State(rep(s)) = ReadyToSend

then Sentservice(rep(s)) Add m
else Sentservice(rep(s))

use 2
Sentprotocoi(ProtocolSend(s, in)) = = if State(rep(s)) = ReadyToSend

then Sentprotocol(s) Add m
else Sentprotocoi(s)

use 5
Sentprotocoi(protocolSend(s, m)) = = if InSI(s)

then Sentprotocoi(s) Add m
else Sentprotocoi(s)

D. Effects on State Variables by User Operations
{for the Send operation:}
theorem SS, Sent(ProtocolSend(s, m)) = if InSI(s)

then Sent(s) Add m
else Sent(s);

theorem RS, Received ProtocolSend(s, m)) = Received(s);

482

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

theorem BS, Text(Pending(ProtocolSend(s, m))) = if InS I(s)
then Text(Pending(s)) Add m
else Text(Pending(s));

{for the Receive operation:)
theorem SR, Sent(Deliver(s)) = Sent(s);

theorem RR, Received(Deliver(s)) = if InS3(s)
then Received(s) Add Front(text(Pending(s)))
else Received(s);

theorem BR, Text(Pending(Deliver(s))) = Text(Pending(s));

{for the InitializeProtocol operation:}
theorem SI, Sent(InitializeProtocol) = NewQueueOfMessage;
theorem RI, Received(InitializeProtocol) = NewQueueOfMessage;
theorem BI, Text(Pending(InitializeProtocol)) = NewQueueOfMessage;

theorem TI, InS 1(InitializeProtocol);

E. Effects on State Variables By Spontaneous Operations

{for the Sent state variable:}
theorem SentSpont,

Sent(ReceiveAck(s))= Sent(s)
and Sent(ReceivePacket(s)) = Sent(s)
and Sent(Retransmit(s)) = Sent(s)
and Sent(LosePacket(s)) = Sent(s)
and Sent(LoseAck(s)) = Sent(s);

{for the Received state variable:}
theorem ReceivedSpont,

Received(ReceiveAck(s)) = Received(s)
and Received(ReceivePacket(s)) = Received(s)
and Received(Retransmit(s))= Received(s)
and Received(LosePacket(s)) = Received(s)
and Received(LoseAck(s)) = Received(s);

{for the Buffer state variable:)
theorem BufferSpontl,

-InS4(s)
imp Pending(ReceiveAck(s)) = Pending(s) and -InS4(ReceiveAck(s))

and Pending(ReceivePacket(s)) = Pending(s) and -InS4(ReceivePacket(s))
and Pending(Retransmit(s)) = Pending(s) and MInS4(Retransmit(s))
and Pending(LosePacket(s)) = Pending(s) and InS4(LosePacket(s))
and Pending(LoseAck(s)) = Pending(s) and -InS4(LoseAck(s));

theorem BufferSpont2,
InS4(s)

imp (Pending(ReceiveAck(s)) = Pending(s) and InS4(ReceiveAck(s))
or InSl(ReceiveAck(s)))

and Pending(ReceivePacket(s)) = Pending(s) and InS4(ReceivePacket(s))
and Pending(Retransmit(s)) = Pending(s) and InS4(Retransmit(s))
and Pending(LosePacket(s)) = Pending(s) and InS4(LosePacket(s))
and Pending(LoseAck(s)) = Pending(s) and InS4(LoseAck(s));

F. The Next-State Transitions for all Operations

{for the ProtocolSend operation:)
theorem SlSuccl, {Move from state SI to state S2}

InS I(s) imp InS2(ProtocolSend(s, m));

483

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

theorem S2Succl, {No change} InS2(s) imp InS2(ProtocolSend(s, m));
theorem S3SuccI, {No change} InS3(s) imp InS3(ProtocolSend(s, m));
theorem S4Succl, {No change} InS4(s) imp InS4(ProtocolSend(s, m));

{for the ReceivePacket operation:}
theorem SISucc2, {No change} InSI(s) imp InS 1(ReceivePacket(s));

theorem S2Succ2, {No -change, or move from state S2 to state S3}
InS2(s) imp InS2(ReceivePacket(s)) or InS3(ReceivePacket(s));

theorem S3Succ2, {No change} InS3(s) imp InS3(ReceivePacket(s));
theorem S4Succ2, {No change} InS4(s) imp InS4(ReceivePacket(s));

{for the ReceiveAck operation:}
theorem SlSucc3, {No change} InS I (s) imp InS 1(ReceiveAck(s));
theorem S2Succ3, {No change} InS2(s) imp InS2(ReceiveAck(s));
theorem S3Succ3, {No change} InS3(s) imp InS3(ReceiveAck(s));

theorem S4Succ3, {No change, or move from state S4 to state SI }
InS4(s) imp InS4(ReceiveAck(s)) or InSl(ReceiveAck(s));

{for the Deliver operation:}
theorem SlSucc4, {No change} InS I(s) imp InS 1(Deliver(s));
theorem S2Succ4, {No change} InS2(s) imp InS2(Deliver(s));
theorem S3Succ4, {Move from state S3 to state S4} InS3(s) imp InS4(Deliver(s));
theorem S4Succ4, {No change} InS4(s) imp InS4(Deliver(s));

{for the Retransmit operation:}
theorem SlSuccS, {No change} InSI(s) imp InSI(Retransmit(s));
theorem S2SuccS, {No change} InS2(s) imp InS2(Retransmit(s));
theorem S3SuccS, {No change} InS3(s) imp InS3(Retransmit(s));
theorem S4Succ5, {No change} InS4(s) imp InS4(Retransmit(s));

{for the LoseAck operation:}
theorem SISucc6, {No change} InSI(s) imp InS 1(LoseAck(s));
theorem S2Succ6, {No change} InS2(s) imp InS2(LoseAck(s));
theorem S3Succ6, {No change} InS3(s) imp InS3(LoseAck(s));
theorem S4Succ6, {No change} InS4(s) imp InS4(LoseAck(s));

{for the LosePacket operation:}
theorem SISucc7, {No change} InS I(s) imp InSl(LosePacket(s));
theorem S2Succ7, {No change} InS2(s) imp InS2(LosePacket(s));
theorem S3Succ7, {No changel InS3(s) imp InS3(LosePacket(s));
theorem S4Succ7, {No change} InS4(s) imp InS4(LosePacket(s));

APPENDIX IV
IMPLEMENTING PROCEDURES AND ASSERTIONS

A. AssertedProceduresfortheSender
procedure Sender(var SenderToReceiver, ReceiverToSender: Medium);
{This is an environment for the send operations ProtocolSend and SenderTimeout. It has no body and no assertions.}

var Pending: QueueOfPacket; var Sent:QueueOfMessage; var SSN:Bit;

procedure ProtocolSend(m :Message; var success:Boolean)
imports(var Sent:QueueOfMessage; var SenderToReceiver: Medium; var Pending: QueueOfPacket; SSN: Bit);
post PSPost(m, success, Sent, Sent', SenderToReceiver, SenderToR eceiver', Pending, Pending', SSN);

{does a ProtocolSend(p, m); sets success bit if we did something. Note that ReceiverToSender is not imported.}
begin {ProtocolSend}
if Empty(Pending) then

begin;
Pending:= que(MakePacket(m, SSN));

484

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

SenderToReceiver:= Transmit(SenderToReceiver,Front(Pending));
success:= TRUE;
Sent:= Add(Sent, m);
end

else success:= FALSE;
end {ProtocolSend};

procedure SenderTimeout
imports(var SenderToReceiver,ReceiverToSender: Medium;

var Pending: QueueOfPacket; var SSN: Bit);
post STPost(SenderToReceiver, SenderToReceiver', ReceiverToSender,

ReceiverToSender', Pending, Pending', SSN, SSN');

{Performs a Retransmit(ReceiveAck(p))}
begin {SenderTimeout}

if SeqMatch(ReceiverToSender,SSN) {includes test for Empty}
then {get a valid Ack}

begin;
Pending:=Remove(Pending);
SSN:= -SSN;
end;

ReceiverToSender := Receive(ReceiverToSender);
If -Empty(Pending) then

SenderToReceiver Transmit(SenderToReceiver,Front(Pending));
end {SenderTimeout};

procedure InitSender
imports(var Pending: QueueOfPacket; var SSN:Bit);
post ISPost(Sent,Pending,SSN);
begin

Sent:= NewQueueOfMessage;
Pending:= NewQueueOfPacket;
SSN:= InitialSequenceNumber;

end {InitSender};

begin {Sender has no body}; end;

B. AssertedProceduresfortheReceiver

procedure Receiver(var SenderToReceiver, ReceiverToSender: Medium);

var Out: QueueOfMessage;
var RSN:Bit;
var ReceiverBuffer: QueueOfPacket;

procedure ReceivePacket
imports(var SenderToReceiver,ReceiverToSender: Medium; var RSN: Bit; var ReceiverBuffer:QueueOfPacket);
post RPPost(ReceiverBuffer, ReceiverBuffer', SenderToReceiver, SenderToReceiver',

ReceiverToSender, ReceiverToSender', RSN, RSN');

{Doesn't deliver, just places in ReceiverBuffer. Only Acks after delivery}
begin
if SeqMatch(SenderToReceiver,RSN) then

begin
{Something we were waiting for. Accept, prepare to deliver.
Won't Ack until delivered}
RSN := RSN;
ReceiverBuffer := que(Front(SenderToReceiver));

485

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

end
else if SeqMatch(SenderToReceiver,-RSN) and Empty(ReceiverBuffer) then

{Having delivered, we ACK when requested for the last packet}
ReceiverToSender := Transmit(ReceiverToSender,

Front(SenderToReceiver))
end; {that's all for ReceivePacket}

procedure Deliver
imports(var Out: QueueO.fMessage; var ReceiverToSender: Medium;

var ReceiverBuffer: QueueOfPacket);
post DPost(Out, Out', ReceiverBuffer, ReceiverBuffer', ReceiverToSender,

ReceiverToSender');
begin
if -Empty(ReceiverBuffer) then

begin
Out Out Add Text(Front(ReceiverBuffer));
ReceiverToSender:= Transmit(ReceiverToSender, Front(ReceiverBuffer));
ReceiverBuffer:= New QueueOfPacket;
end;

end; {end of Deliver}

procedure InitReceiver
imports(varRSN:Bit; var ReceiverBuffer: QueueOfPacket);
post IRPost(Out,ReceiverBuffer,RSN);
begin

Out:= NewQueueOfMessage;
RSN:= InitialSequenceNumber;
ReceiverBuffer:= NewQueueOfPacket;

end {InitReceiver};

begin; {Receiver has no body} end;

C. Definitions for theAssertions

define DPost(sent', sent, rbuf', rbuf, rs', rs) ==
all s(ReceiverVarsMatch(s, sent, rbuf, SenderToReceiver(s), rs, RSN(s))

imp
ReceiverVarsMatch(Deliver(s), sent', rbuf', SenderToReceiver(s),

rs', RSN(s)));

defime RPPost(rbuf', rbuf, sr', sr, rs', rs, rsn', rsn)
all s(ReceiverVarsMatch(s, Received(s), rbuf,

sr, rs, rsn)
imp
ReceiverVarsMatch(ReceivePacket(s), Received(s), rbuf',

sr', rs', rsn'));

define IRPost(out, rbuf, rsn)
some sr, rs(ReceiverVarsMatch(InitializeProtocol,

out, rbuf, sr, rs, rsn));

define STPost(sr', sr, rs', rs, pend', pend, ssn', ssn) ==
all s(SenderVarsMatch(s, Sent(s), pend, sr, rs, ssn)

imp
SenderVarsMatch(Retransmit(ReceiveAck(s)),

Sent(s), pend', sr', rs', ssn'));
define PSPost(msg, succ, sent', sent, sr', sr, pend', pend, ssn) -=

all s(SenderVarsMatch(s, sent, pend, sr, ReceiverToSender(s), ssn)

486

SUNSHINE et al.: COMMUNICATION PROTOCOLS IN AFFIRM

imp
SenderVarsMatch(ProtocolSend(s, msg),

sent', pend', sr', ReceiverToSender(s), ssn))
and succ = Empty(pend);

defime ISPost(sent, pend, ssn) =
some sr, rs(

SenderVarsMatch(InitializeProtocol, sent, pend, sr, rs, ssn));

D. Context in Which the Assertions are Defined
type ABContext;

declare s, s', sl, s2
declare msg
declare sent, sent', out, out'
declare qp, pend, pend', rbuf, rbuf'
declare sr, sr', rs, rs',s2r,r2s
declare rsn, ssn, rsn', ssn'
declare b, succ, succ'

ABProtS;
:Message;
:QueueOfMessage;
:QueueOfPacket;
:Medium;
:Bit;
:Boolean;

interface SenderVarsMatch(s, sent, pend, sr, rs, ssn).
ReceiverVarsMatch(s, out, rbuf, sr, rs, rsn),
SelectorsMatch(s, sent, out, pend, rbuf, sr, rs, ssn, rsn),
SeqMatch(sr, bit),
Empty(qp): Boolean;

define SenderVarsMatch(s, sent, pend, sr, rs, ssn) ==
SelectorsMatch(s, sent, Received(s), pend, ReceiverBuffer(s), sr, rs, ssn, RSN(s)),

ReceiverVarsMatch(s, out, rbuf, sr, rs, rsn) ==
SelectorsMatch(s, Sent(s), out, Pending(s), rbuf, sr, rs, SSN(s), rsn);

define SelectorsMatch(s, sent, out, pend, rbuf, s2r, r2s, ssn, rsn) ==
sent = Sent(s) and
out Received(s) and
pend Pending(s) and
rbuf = ReceiverBuffer(s) and
s2r = SenderToReceiver(s) and
r2s = ReceiverToSender(s) and
ssn = SSN(s) and
rsn = RSN(s);

axiom SeqMatch(pktbuf, i)
not Empty(pktbuf) and Seq(Front(pktbuf)) i;

define Empty(qp) == qp=NewQueueOfPacket;

interface PSPost(msg, succ, sent', sent, sr', sr, pend', pend, ssn),
STPost(sr', sr, rs', rs, pend', pend, ssn', ssn).
ISPost(sent, pend, ssn),
RPPost(rbuf', rbuf, sr', sr, rs', rs, rsn', rsn),
DPost(sent', sent, rbuf', rbuf, rs', rs),
IRPost(out, rbuf, rsn) :Boolean;

note the assertion definitions go here;

end {ABContext};

ACKNOWLEDGMENT
Many colleagues at ISI provided valuable comments on

various versions of this paper, including S. Lee, J. Postel,
S. Sluizer, and D. Wile. The attendees at an informal protocol
workshop held at ISI in July 1980 were especially helpful
when our ideas were first being applied.

REFERENCES
[1] D. Schwabe, "Formal techniques for specification and verifica-

tion of protocols," Ph.D. dissertation, Univ. California, Los
Angeles, Apr. 1981.

[2] D. R. Musser, "Abstract data type specification in the AFFIRM
system," IEEE Trans. Software Eng., vol. SE-6, pp. 24-32,
Jan. 1980.

487

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 5, SEPTEMBER 1982

(3] S. L. Gerhart et al., "An overview of AFFIRM: A specifilcation
and verification system," in Proc IFIP Congr., Australia, Oct
1980, pp. 343-348.

(41 D. H. Thompson, S. L. Gerhart, R. W. Erickson, S. Lee, and
R. L. Bates, Eds., The AFFIRM Reference Library, S vols.
(Reference Manual, User's Guide, Type Library, Annotated
Transcripts, and Collected Papers). USC Inform. Sci. Inst.,
1981,500 pp.

(5] R. W. Floyd, "Assigning meanings to programs," in Proc. Sym-
posia in Applied Math., J. T. Schwartz, Ed. Amer. Math. Soc.,
1967, pp. 19-32.

[61 J. V. Guttag, "The specification and application to programming
of abstract data types," Ph.D. dissertation, Dep. Comput. Sci.,
Univ. Toronto, Oct. 1975.

[71 J. V. Guttag and J. J. Horning, "The algebraic specification of
abstract data types," Acta Informatica, vol. 10, pp. 27-52, 1978.

[8] J. V. Guttag, E. Horowitz, and D. R. Musser, "The design of data
type specifications," in Current Trends in Programming Meth-
odology, R. T. Yeh, Ed. Englewood Cliffs, NJ: Prentice-Hall,
1978, pp. 60-79 (an expanded version of a paper which ap-
peared in Proc. 2nd Int. Conf. Software Eng., Oct. 1976).

(9] D. R. Musser, "A data type verification system based on rewrite
rules," in Proc. 6th Texas Conf. Comput. Syst., Austin, TX,
Nov. 1977.

[101 C.A.R. Hoare, "Proof of correctness of data representations,"
Acta Informatica, vol. 1, no. 4, pp. 271-281, 1972.

[111 W. A. Wulf, R. L. London, and M. Shaw, "An introduction to the
construction and verification of ALPHARD programs," IEEE
Trans. Software Eng., vol. SE-2, pp. 253-265, Dec. 1976.

(121 C. A. Sunshine, "Formal methods for protocol speciflcation and
verification," Computer, vol. 12, pp. 20-27, Sept. 1979.

(131 D. Parnas, "Designing software for ease of extension and contrac-
tion," in Proc. 3rd Int. Conf. Software Eng., IEEE-ACM, May
1978, pp. 264-277.

[141 H. Zimmermann, "OSI reference model-The ISO model of
architecture for open systems interconnection," IEEE Trans.
Commun., voL COM-28, pp. 425-432, Apr. 1980.

(15] C. A. Sunshine, "Formal modelling of communication proto-
cols," in Computer Networks and Simulation, S. Shoemaker, Ed.
North-Holland, 1982 (also USC/ISI Tech. Rep. RR-81-89, Mar.
1981).

[161 J. A. Goguen, J. W. Thatcher, and E. G. Wagner, "An initial alge-
bra approach to the specification, correctness, and implementa-
tion of abstract data types," in Current Trends in Programming
Methodology, R. T. Yeh, Ed. Englewood Cliffs, NJ: Prentice-
Hall, 1978, pp. 80-149.

[17] -, "Abstract data types as initial algebras and the correctness
of data representations," in Current Trends in Programming
Methodology, vol. IV, R. T. Yeh, Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1978.

[181 J. Loeckx, "Algorithmic speciftcations of abstract data types,"
Univ. Sasrlandes, Saarbriicken, Tech. Rep., 1980.

(19] J. V. Guttag, "Notes on type abstraction," IEEE Trans. Software
Eng., vol. SE-6, pp. 13-23, Jan. 1980.

[20] V. A. Berzins, "Abstract model specifications for data abstrac-
tions," Massachusetts Inst. Technol., Tech. Rep. MIT/LCS/TR-
221, July 1979.

(21] B. Liskov and V. Berzins, "An appraisal of program specifica-
tions," in Research Directions in Software Technology, P. Wegner,
Ed. Cambridge, MA: M.I.T. Press, 1979.

[22] D. L. Parnas, "A technique for software module specification
with examples," Commun. Ass. Comput. Mach., vol. 15, pp.
330-336, May 1972.

(23] L. Robinson and 0. Roubine, "SPECIAL-A specification and
assertion language," Stanford Res. Inst., Tech. Rep. CSL-46,
1977.

[241 R. N. Principato, Jr., "'A formalization of the state machine
specification technique," Massachusetts Inst. Technol., Tech.
Rep. MIT/LCS/TR-202, May 1978.

[25] R. R. Razouk and G. Estrin, "Validation of the X.21 interface
specification using SARA," in Proc. 1980 Trends and Applica-
tions Symp. Comput. Network Protocols, Nat. Bureau of Stan-
dards, Gaithersburg, MD, May 1980, pp. 155-167.

(26] R. Locasso, J. Scheid, D. V. Schorre, and P. Eggert, "The Ina Jo
specification language reference manual;" Syst. Develop. Corp.,
Tech. Rep. TM-(L)-6021/001/00, June 1980.

[271 B. H. Liskov and S. N. Zilles, "Specification techniques for data
abstractions," IEEE Trans. Software Eng., vol. SE-1, pp. 7-19,
Jan. 1975.

[28] J. A. Goguen and J. J. Tardo, "An introduction to OBJ: A
language for writing and testing algebraic program specifications,"
in Proc. Specifications ofReliable Software Conf., IEEE Comput.
Soc., Apr. 1979, pp. 170-189.

[29] L. Flon and J. Misra, "A unified approach to the specification
and verification of abstract data types," in Proc. Specifications
of Reliable Software Conf., IEEE Comput Soc., Apr. 1979, pp.
162-169.

(30] W. T. Overman, "Formal veriflcation of GMBs," Dep. Comput.
Sci., Univ. California, Los Angeles, Internal Memo. 176, July
1977.

[311 D. Brand and W. H. Joyner, Jr., "Verification of protocols using
symbolic execution," Comput. Networks, vol. 2, Sept./Oct.
1978.

[32] B. Hailpern and S. Owicki, "Verifying network protocols using
temporal logic," in Proc. 1980 Trends and Applications Symp.
Comput. Network Protocols, Nat. Bureau of Standards, Gaithers-
burg, MD, May 1980, pp. 18-28.

[331 B. T. Hailpern, "Verifying concurrent processes using temporal
logic," Ph.D. dissertation, Comput. Syst. Lab., Stanford Univ.,
Tech. Rep. 195, Aug. 1980.

(34] D. Parnas, "The use of precise specifications in the development
of software," in Proc. IFIP Congr. Toronto, Canada, Aug. 1977,
pp. 861-868.

[35] L. Robinson and K. Levitt, "Proof techniques for hierarchically
structured programs," Commun. Ass. Comput. Mach., vol. 20,
pp. 271-283, Apr. 1977.

[36] J. V. Guttag, E. Horowitz, and D. R. Musser, "Abstract data
types and software validation," Commun. Ass. Comput. Mach.,
vol. 21, pp. 1048-1064, Dec. 1978; also USC Inform. Sci. Inst
Rep. RR-76/48, Aug. 1976.

[37] D. I. Good, R. M. Cohen, and J. Keeton-Williams, "Principles of
proving concurrent programs in GYPSY," in Proc. 6th ACM
Symp. Principles of Programming Languages, ACM SIGPLAN,
1979,pp.42-52.

[38] P. A. Subrahmanyan, "On proving the correctness of data type
implementations," Dep. Comput. Sci., Univ. Utah, Tech. Rep.,
Sept. 1979.

[39] B. Berthomieu, "Algebraic specification of communication
protocols," USC/Inform. Sci. Inst., Rep. RR-81-98. Dec. 1981.

[40] S. Owicki and L. Lamport, "Proving liveness properties of con-

current programs," Stanford Univ., Tech. Rep S&L 1 (Op. 57),
Oct. 1980.

[41] K. A. Bartlett, R. A. Scantlebury, and P.T.A. Wilkinson, "Note
on reliable full duplex transmission over half duplex links,"
Commun. Ass. Comput. Mach., vol. 12, pp. 260-261, May
1969.

[42] G. V. Bochmann and J. Gecsei, "A unified method for the speci-
fication and verification of protocols," in Proc. IFIP Cong.,
Toronto, Canada, Aug. 1977, pp. 229-234.

(431 J. Hajek, "Automatically verified data transfer protocols," in
Proc. Int. Conf. Comput. Commun., Int. Council for Comput.
Commun., 1978, pp. 749-756.

[44] C. A. Sunshine, "Interprocess communication protocols for
computer networks," Ph.D. dissertation, Stanford Univ., 1975.

(451 N. V. Stenning, "A data transfer protocol," Comput. Networks,
vol. 1, pp. 99-110, 1976.

[461 S. Krogdahl, "Verification of a class of link-level protocols,"
BIT, vol. 18, pp. 436-448, 1978.

[47] R. L. Schwartz and P. M. Melliar-Smith, "Temporal logic specifl-
cation of distributed systems," in Proc 2nd Int. Conf. Distrib-
uted Comput. Syst., Paris, Apr. 1981, pp. 446-454.

[48] D. H. Thompson, "A behavioral axiomatization of the Stenning
data transfer protocol," USC/Inform. Sci. Inst., Program Verifi-
cation Project, Affirm Memo. 16, June 1980.

[49] D. Schwabe, "Transport protocol specification in AFFIRM,"
USC/Inform. Sci. Inst., Program Verification Project, Affirm
Memo. 19, Mar. 1980.

[50] B. Berthomieu, "Selective repeat protocol: Axiomatization and
proofs," USC/Inform. Sci. Inst., Program Verification Project,
Affirm Memo. 36, Sept. 1980.

[51] J. A. Goguen, "Abstract errors for abstract data types," in
Formal Descriptions of Programming Concepts, E. J. Neuhold,
Ed. North-Holland, 1978, pp. 491-525.

[521 F. Cristian, "Robust data types," Acta Informatica, 1982, to
be published.

[53] J. K. Millen, "Operating system security verification," MITRE
Corp., Tech. Rep. M79-223, Sept. 1979.

[54] D. Schwabe, "Formal specification and verification of a connec-

488

SUNSHINE etal.: COMMUNICATION PROTOCOLS IN AFFIRM

tion establishment protocol," in Proc. 7th Data Commun. Symp.,
Mexico City, ACM/IEEE, Oct. 1981, pp. 11-26. [p. 571

Carl A. Sunshine received the Ph.D. degree in
computer science in 1975 from Stanford Uni-
versity, Stanford, CA, where he worked on the
frst major network interconnection projects
within the ARPA and IFIP communities.
From 1975 to 1979 he worked at the Rand

Corporation on various protocol design and
network planning projects. He is currently
with the University of Southern California

_ Information Sciences Institute, Marina del Rey,
where he is engaged in research on computer

networks and their protocols. He is particularly interested in protocol
design, modeling, and analysis, and network interconnection.
Dr. Sunshine is active in IFIP, ISO, and ANSI network groups and is

Vice Chairman of the ACM Special Interest Group on Data Com-
munication. He serves on the Editorial Board of Computer Networks,
and is Associate Editor for Protocols of the IEEE TRANSACTIONS ON
COMMUNIcATIONs. He has lectured and published widely.

David H. Thompson received the B.A. degree in mathematics from the
University of Colorado, Boulder, in 1974, and the M.Sc. degree in
computer science from the University of Toronto, Toronto, Ont.,
Canada, in 1975.
He is presently a Reporter, Producer, and Anchor for WSAW-TV,

Wausau, WI. Before leaving computer science, he spent two years at
USC/Information Sciences Institute as a Research Scientist working
on program verification. There he was a member of the team that
developed AFFIRM, an interactive specification and verification sys-
tem. From 1977 through mid-1978, he worked as a Research Scientist
for the System Development Corporation. His research interests
included user interface design issues and specification methodologies.

Roddy W. Erickson received the B.A. degree in computer science and
biochemistry from Rice University, Houston, TX, in 1977.
He is currently working on the M.S. degree in computer science at

the University of California, Los Angeles. From 1978 to 1981, he was
with the Program Verification Project at USC/Information Sciences
Institute, where he was involved in the design and implementation of
the AFFIRM system, focusing on AFFIRM's interactive theorem prover.
Since late 1981, he has been on the technical staff at Software Research
Associates, where development of AFFIRM is continuing, His areas
of interest include theorem proving, interactive development of com-
plex structures, and computer-mediated sharing of textual information.

Susan L Gerhart received the B.A. degree from Ohio Wesleyan Univer-
sity, Delaware, the M.S. degree from the University of Michigan, Ann
Arbor, and the Ph.D. degree from Carnegie-Mellon University, Pitts-
burgh, PA.
After serving on the Computer Science Faculties of the University of

Toronto in 1972-1973 and Duke University from 1973 to 1977, she
joined the Program Verification Project at USC/Information Sciences
Institute. There she participated in the development of the AFFIRM
Specification and Verification System, serving as Project Leader in
1980-1981. Since late 1981 she has been with Software Research
Associates where she is Technical Director of the Los Angeles Office.
Her research centers on verification methodology and technology, and
ranges over combining proving and testing methods, development of
reusable theories for application areas, and design of user interfaces.

Daniel Schwabe was born in Rio de Janeiro, Brazil, in 1954. He re-
ceived the Bachelor's degree in mathematics in 1975 and the M.Sc.
degree in computer science in 1976, both from the Pontificia Universi-
dade Catolica, Rio de Janeiro (PUC/RJ), and the Ph.D. degree in com-
puter science in 1981 from the University of California, Los Angeles.
Throughout 1975 he held a Research Assistantship in the Department

of Computer Science at PUC/RJ. He was a member of the Synthesis of
Concurrent Systems Research Group at UCLA during 1978, and a
research assistant at the USC/Information Sciences Institute from 1979
to 1981, working on specification and verification of protocols. He is
now Assistant Professor in the Department of Computer Science,
PUC/RJ.

489

