ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 45

[Buck79] F. Buckley, "A Standard for Software Quality Assurance Plans,” Computer, Vol. 12, No. 8, August 1979.

[Cain75] S.H. Caine and E. K. Gordon, "PDL: A Too! for Software Design", Proceedings of -the Hational Computer Conference,
1975.

[Denn81] P. J. Denning, "Eating Our Seed Corn”, Communicalions of the ACM, Vol. 24 No. 6, June 1981.

\
(Dolo76] T.A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Workbench", Proceedings of the Second
International Conlerence on Soltware Enginecring, October 1976,

[Habe80] A. N. Habermann, "An Overview of the Gandalf Project", Carnegie-Mellon University, Computer Science Research Review
1978-1379, 1980.

[Kern81] Brian W. Kernigan and John Mashey, "The UNIX Programming Environment”, Computer, April, 1981

[Moha81] S.N. Mohanty, "On Software Verification & Validation", Software Verification and Validation Symposium, Defense
Communication Agency and Mitre, June 9-10, 1981,

[Phis79] M. Phister, Jr., Data Processing Technology and Economics, 2nd Ed., Digital Press, 1979
[Step80] D. Stephan, et al., DoD Digital Data Processing Study: A Ten-Year Forecast, Electronic Industries Association, 1980.

[Teic77] D. Teichroew and E. Hershey 1ll, "PSL/PSA. A Computer-Aided Technique for Structured Documentation of Information
Processing Systems", [EEE Transactions on Software £ngineering, Vol. SE-3, No. 1, 1977.

[Teit81] Warren Teitelman and Larry Masinter, "The Interlisp Programming Environment”, Computer, April 1981.

EVALUATION OF SOFTWARE DEVELOPMENT LIFE CYCLE

METHODOLOGY IMPLEMENTATION

Prepared by:
Fred van den Bosch
John R. Ellis
Peter Freeman
Len Johnson
Carma L. McClure
Dick Robinson
Walt Scacchi
Ben Scheff
Arndt von Staa
Leonard L. Tripp {editor)

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY
2.0 PROJECT DEFINITION

2.1 INTRODUCTION

2.2 BACKGROUND

2.3 PROJECT OBJECTIVE

2.4 PROJECT BENEFITS AND IMPACTS
3.0 TECHNICAL APPROACH

3.1 APPROACH ELEMENTS
3.2 RATIONALE FOR APPROACH AND REJECTED ALTERNATIVES

4.0 STATEMENT OF WORK

ACMSIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 46

4.1 TASK 1 - CASE STUDY PREPARATION

4.2 TASK 2 - CASE/SITE SELECTION

4.3 TASK 3 - CASE STUDY AND ANALYSIS

4.4 TASK 4 - IDENTIFICATION OF FUTURE WORK
4.5 TASK 5 - PUBLICATION OF FINDINGS

5.0 PLANS

51 CWBS
5.2 PROGRAM SCHEDULES
5.3 RESOURCES

1.0 Executive Summary

The cost of developing, maintaining and enhancing software is a major cast factor in many projects. The inability to understand, on a
quantitative basis, what factors affect this process severely limits the ability of an organization to make changes that will have a
predictable affect on improving quality and productivity of software products.

In the past decade most software organizations have developed a life cycle approach for their organization. The approaches which
describe the actions and decisions of the life cycie phases have been formalized as a methodology. Litlle has been done, however, to
define a basis tor comparison of these methodologies or even portions of these methodologies. Therefore, there is little data to guide
management to direct its organization on what methodologies should be used in the life cycle phases in order lo enhance
performance in terms of cost, schedule, and technical quality.

This is a proposal for a project to develop a basis for a standard quantitative and qualitative analysis of a software life cycle
methodology. The goals of this project are to define a process by which an organization can monitor its life cycle and develop this
process to produce better quality software product at a cheaper and more competitive price. In addition. this project will provide a
means by which methodologies can be compared across organizations or phases of the software development life cycle. This would
be invaluable to large corporations that have many different software development organizations and large agencies who have their
own internal software development agencies as well as funding other organizations for large software development projects. This
project would provide data that would enable these corporations to specify methodologies to the suborganizations in order to have a
positive control on the quality and price of the software product produced.

This project consists of two phases. Both phases will be discussed by this proposal but the actual funding request will only cover the
pilot phase. The pilot phase is a one-year $100,000 project to validate the case study approach to this problem and to redefine the
type of questions anrl methods by which to conduct the interviews and the case study analysis. This pilot project will be followed by a

three year project that will begin by studying approximately seven projects and will be the start of establishing the data base to
compare methodologies across organizations and phases of a software life cycle.

2.0 Project Definition
This section contains an overview of the problem this project is to address including terminology, significance, focus and benefits.
The sections consists of the following subsections:

@ Introduction

@ Background

8 Project Objective

@ Project Benefits and Impacts
2.1 INTRODUCTION
Software Life Cycle Methodology is a collection of tools, techniques, and methods which provide rcles and guidelines for ordering
and controlling the actions and decisions of project participants during the software life ¢ycle. The Software Life Cycle is the time
required to define, develop, test, deliver, operate and maintain a (software) system. It comimences at requirements analysis and

includes design, coding and checkout, test and integration, instaliation, and operation and support. It is completed when the
(software) systemis retired, replaced, or legitimately consumed (e.g., during warfare).

A software life cycle provides a basis for categorizing and controlling project activities. A software life cycle consists of different, but
not necessarily distinct activities. Although the activities are continuous and not mutually exclusive, each results in visible and

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 47

accepted products. These activities are usually defined in terms of:

o resulting products

o required resources

¢ required accepted products from previous phases
o development methodologies used

These products include documents such as:

standards to he used in the project

specifications (requirements, design)

internal documentation {(e.g.. data dictionaries)

experimental results from simulations, prototypes, etc.

test data and/or reports

verification and validation data/results

acceptance criteria, test results, etc.

external documents (e.g., user manuals, reference manuals, etc.)
program/module listings

©C 00000 0CO0O0

Typical Software Life Cycle phases. as identified in Figure 2.1-1, are preceded by an initial planning phase during which the
technical. military (if appropriate). and economic basis for the project are established through comprehensive studies, experimental
developments, and formal concept formulation.

The software life cycle actually hegins with customer acceptance of the system specifications{s). During analysis, the functional
performance requirements for the software configuration items are defined. This phase terminates with the successtul completion of
the Preliminary Design Review (PDR). Further allocation of requirements {o soltware components occurs during design and
culminates with the successful completion of the Critical Design Review (CDR). Coding and checkout addresses the reducticn of the
design to code. Limited checkout of units (modules) of code and corresponding logic and data structures are also done during this
phase.

integration of units (modules) occurs during test and integration, with major emphasis on veritying that overall system requirements
have been metl and includes the successful integration of hardware and software components.

Installation activity includes the instaliation of the system, including software, at the customer site with all steps necessary to verify
that system (and software)} performance has not regressed and that the system operates within a required or specified level ot
confidence in the operational environment.

Operation and support requires that the system's software operate properly on all input data used in the operational environment.
The support aspect of this phase incluaes all resources and activities required to ensure that the system software continues to meet
(or exceed) all required operational capabilities. Incorporation of new software (functions) and/or modifications to an existing
system normally requires repeating the previous activities in the software life cycle. For example, integration of previously checcked
out modules may be in progress while coding of revised units is taking place {a library or similar mechanism would be used to provide
the necessary separation and control of these activities). Hence, the software life cycle is a continuous process throughout the tolal
system acquisition life cycle.

Another key aspect of the software life cycle is the change control method, including the phased levels of control. This is an integral
part of configuration management 1o ensure the integrity of different versions of the software.

Figure 2.1-1 illustrates the software life cycle, identifying key milestones during the cycle: Preliminary Design Review (PDR), Critical
Design Review (CDR), and Preliminary Configuration Audit (PCA)/Formal Configuration Audit (FCA).

2.2 BACKGROUND

Since the origin of “software engineering”. numerous tools, techniques, and methodologies have been developed in the name of
improving software engineering. Specifically, these tools, etc. have claimed lo improve productivity (i.e., making the cost and
schedule for software development more predictable and more competitive), to improve reliability (i.e., to reduce the number of
"bugs" and speed their discovery), and to increase maintainability {i.e., to reduce the ratio of maintenance costs to the total life cycle
costs).

With the criticality of software in virtually all future systems of any reasonable complexity, it is imperative to have tools and
methodologies which actually meet these claims. Several recent studies have shown that our universities can supply less than half of
the million software engineers that will be required by the end of the decade. The difference must be made-up by improved
etfectiveness in the tools and methodologies.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 48

Figure 2.1-1
TIME >
CDR
—_ ¢
ANALYSIS . !
] }
— !
J
' DESIGN ' FCA/PCA
]]
I CODE AND 1
CHECKOUT 1
TEST AND |
POR INTEGRATION
INSTALLATION
OPERATING AND SUPPORT
FEEDBACK
y y

A major unanswered question then is, "How effective are these tools/ methodologies?" Ben Shneiderman, in his book on Software
Psychology, advocates the use of controlled experiments to evaluate various methodologies. Some of his examples show that their
effectiveness does not approach the initial intuitive estimate.

Other contidlied experiments (e.g., Basili and Reiter's complete writing experiment) do not appear to be representative of the
problems inherent in large complex systems. There is no valid reason to assume that the conclusions from small {several thousand
lines of cede) projects developed in a laboratory environment can be generalized to large (over 100,000 lines of code), complex,
state-c. .ne-art software systems. The cost of applying such experimental approaches to the large system environment are
prohibitive. These problems may be circumvented by collecting and analyzing meaningful data from large programs and providing
analysis of such data. A major effort in this area has been undertaken by the Data Analysis Center for Software (DACS) at RADC.
The analysis of the DACS. and other previous data acquisition efforts, has been difficult because of the lack of characterization of key
parameters necessary to evaluate the methodologies used. A basic question is:

What methodologies/tools were used and to what extent were they applied?

There is no established framework for the collection of all necessary data to evaluate software development methodologies to
determine whether the required efficiences can be realized.

2.3 PROJECT OBJECTIVE

In addition to providing the tools, enforcing the standards and controlling the transition of software through its concept, design,
development, operation and maintenance phases, a software methodology must provide accurate predictions of project schedule,
cost and quality throughout the software life cycle. The objective of this proposal is to develop the basis for a standard quantitative
analysis of software life cycle methodology and will be accomplished through identifying and evaluating, by qualitative analysis, a
software lite cycle methodology with respect to applicahility, value, and obsolescence.

2.4 PROJECT BENEFITS AND IMPACTS

This projects will confirm intuitions on life cycle practices and will reveal new insights into the forces present in the software life cycle
process. Benefits can be identified in at least the following three areas:

1. A basis for standard quantitative analysis of software life cycle methodology will provide:

ACMSIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 49

o Anincreasingly more accurate predictions of cost, schedule, quality.
o Aninformation source for future studies.

2. The identification through comparative analysis,_of the tundamental principles for developing software life cycle methodology to
provide:

o Aframework for studying methodologies.
o A point of departure for future life cycle system methodologies.

3. To establish the criteria for studying methodologies which will be:

o Adaptable to many different kinds of projects across organization and method.
o Utilized 1o study specific development phases e.g., requirements assessment, design methodology.

The process used to achieve these henefits includes the following impacts and side-effects:

1. The use of the case study as an educational tool providing:

o A permanent record (history) of methodology use of project.
o Alternative hypothesis analysis in retrospect.
o Evaluation capability by different types of teams including both on going and in retrospect.

2. Anunderstanding of how an organization does business providing:

o A basis for individual company self analysis including the identification of weaknesses
in existing approach(s) and providing better predictability of resource needs for projects.

o Discussions with "proposal team™ to allow private feedback.

o A vehicle for company to improve image and marketability.

3.0 Technical Approach

This section contains an overview of our technical approach to the problem, emphasizing those aspects of the proposal plan which
are particularly important and which reflect a distinct approach to the issues raised in this project.

This section contains an overview of:

o Approach Elements
o Rational for Approach and Rejected Alternatives

3.1 APPROACH ELEMENTS

The basic strategy of our approach is to conduct comparative case studies. The case studies are performed when an interesting yet
poorly understood phenomenon is under investigation. Clearly, this is situation for the implementation of system life cycle
methodologies in complex conditions. Usually, case studies are a one-shot affair rich with descriptive analysis though lacking in
generalizability. Multiple case studies as part of the same investigation are much tess common and generally not controlled for
comparative analysis. We propose an extensible research design based on comparative case studies and intend to systematically
collect q1ualitative data in a way that supports comparative analysis and quantitative examination in producing generalizable
findings.

There are four elements to case study research: the mode of analysis, the terms of analysis, the unit of analysis, and the levels of
analysis. These are used to establish and synchronize the analysis of cases chosen for comparison.

The mode of our analysis is to develop theoretical accounts of the phenomena under investigation. We use a set of motivating
questions as the guiding framecwork for organizing these accounts. The questions are then answered for each case study. A
representative set of questions includes (1) why do people in an organization choose to adopt a particular methodology, (2) how do
people actually use the implemented methodology in developing software, (3) what does an analyst need to examine to understand
how the implemented methodology is being used, and (4) what are the consequences resulting from the use of the methodology as
implemented and practiced?

The terms of our analysis reflect a common perspective and vocabulary for evaluating the efficacy of a software life cycle
methodology. These terms direct the collection of case data and organize accounts of what transpired. We initially choose "costs,"

1This research design 1s derived from one used lo examine ning cases of mnovalion in computing. See Walt Scacchi, The Process of Innovation in Computing, Pn.D.
dissertation, Dept. of Information and Computer Science, University of Caifornia, Irvineg, CA (1881).

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vo! 7 No 1, January 1982 Page 50

“"organizational impacts,” and "benefits” as these terms.? We see these terms respectively represent resource commitments or
expenditures, shifts in resource aliocation or distribution, and new supplies of resources. Clearly, our interest is directed at the
ensecmbie of resources used in implementing and praclicing a system life cycle methodology: hardware, software, documentation,
personnel, time, money, skills, sentiments, influence, procedures, policies, and so forth. Since the use of most of these resources is
interdependent, we are ultimately directing our interest to the infrastructure of computing resources attendant to a methodology, how
it fits into the organization, and how resources move from one to the other.

The unit of analysis is the central elemeni in an individual case study. It is the focal item to be examined, analyzed, and contrasted
across comparable cases. In studying the implementation of software life cycle methodologies in complex organizations, we focus
on two units of analysis: (1) a single phrase or activity in a system life cycle methodology in an organization. and (2) aspects of system
guality assurance throughout its life cycle.” The unit of analysis also reflects the dimensions of the problem space under
investigation. The dimensions we use in this study are "organizations," "phases of the system life cycle," and "methodologies.”
Figure 3.1-1 portrays the dimensions of our problem space and locates a unit of analysis as a cell within it.

Finally. the levels of analysis characterizes the dimensions across which the unit of analysis is examined. Case studies performed
across a single level of analysis are comparable and generalizable only to those at the same level. Yet it is logical to consider
comparing case analyses across levels when appropriately chosen. The choice is appropriate when the levels are bound to the unit
of analysis, that is, when the unit can be analyzed at each level. We choose four levels of analysis for examining each of our units of
analysis: the individual case (a cell), cases within an organization (a row), cases across organizations (a column), and cases within
and across organizations (a matrix). Other choices are possible.

Figure 3.1-1

A UNIT OF

/ ANALYSIS

IZATIONS

-

"HUGE"

<3

"DESIGN"

WABCH ¢ *XYI™ . "HUGE"
L ABC I XYz % L

REQTS SPEC DESIGN

| | [

T T 1
ey PHASES OF SYSTEM LIFE CYCLE
& - >

—~—

Choosing to examine case studies in this way dovetails with our desire for comparable and generalizable findings. This is achieved in
a systematic and straightforward manner. The generalizability of case findings is limited to the level of analysis. Accordingly,
findings from an individual case are least general, while all cases simultaneously the most general. What we propose is to work from
the mode and terms of analysis for individual cases and progressively move to higher levels. Along the way, we compare our findings
for cases at each level then progressively abstract their coverage to account for preceding levels. What results is a set of findings or
claims empirically grounded in individual case studies that are compared and generalized in a cross-cutting manner. These findings

2
QOlher terms orented to different anaiytic perspectives of system life cycles are described elsewhere. See Rob King and Wall Scacchi, "Computing as Social Action," in
M. Yowits (ea.). Advances in Compulers, Yol. 13, Academic Press, New York, NY, pp. 249-327, (1980); and Scacchi (ibid).

An example of the first 1s the "Design Phase” of the CCC development project using "Bogus Design Technique” at the "Huge Carporation.” For lhe secand, “Configuration
Management” on Ine CCC Project at Huge Corporation.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 51

are then the final published products of this research.

This constitutes our approach to investigating the implementation of system life cycle methodologies in complex organizations
through comparative case studies.

3.2 RATIONALE FOR APPROACH AND REJECTED ALTERNATIVES

When we study the history of computing innovations in complex organizations, it becomes clear that neither the etfect on
interpersonal relationships nor the impact of particular innovations are understood befare they are installed.” The problems of
implementing an innovation such as a system life cycle methodology are for the most part nontechnical. The major problems are
fitling the elements of the methodology to the behavior of participants and embedding them within evolving organizational
arrangements. To understand these problems, we require a research method suited to exploring the nature of the methodology, its
implementation. the participants behavior, the organizational arrangements, and their interaction.

We propose a comparative qualitative study for our research. Complex organizations operate under the pressures of budge
limitations. project deadhines, personnel imitations, and increasingly diverse computing arrangements. Experimental methods that
require significant interventions into regular work routines or rigorous experimentat controls for reliable quantitative analyses are
impiactical in such seltings. Intuitive or retrospective analyses of such setlings are sometimes informing though often ad hoc,
noncomparable. and difficult to check. Instead, we propose a careful investigation intended to minimally disrupt the flow of work
while observing and collecting data that is focal to the study. Qurs is a naturalistic study and our inlerest is in understanding the flow
of work that emerges in settings as they exist. Our study thus stresses learning the patterns of organizational life and technological
development whose characteristics are not known or poorly understood when the research begins.

Our quaiitative research method is complementary to quantitative techniques. Qualitative and quantitative research methods are not
mutually exclusive. We direct our research method in a way where both are appropriate. The qualitative study is appropriate when
investigating poorly understood phenomena. It serves as a vehicle by which we can discover and develop theoretical accounts of
observed processes. The descriplive reporls generated from such a study are assessed for the coverage of observed phenomena,
the coherence of the accounts, the examination of alternative accounts which might substantiate or retute the findings, and
comparison across the case sample. Survey research methods and quantitalive analyses are then appropriate for ascertaining the
dimensions of cognitive. organizational. methodolegical, or technical structures appearing in these processes. Quantitative
techniques are also appropriate for measuring the frequency of the states or events that occur as the focal structures are processed.
Hence quantilalive lechniques can be used to test the veracily and degree of relationship among the theoretical accounts (or
hypotheses) developed in the qualitative study.

The basis of our research approach is thus to pursue and master the qualitative techniques described in this proposal in preparation
for the quantitative analyses which follow.

4.0 Statement of Work
The purpose of SOW is to define the set of tasks to establish the feasibility of using the case study method to evaluate the

implementation of a software life cycle methodology. It is anticipated that a similar set of tasks will be appropriate for phase 1. The
SOV consists of five tasks:

1. Case Study Preparation
2. Case/Site Selection
3. Case Study and Analysis
4. Identification of Future Work
5. Publication of Findings
An explanation of each task follows.

4.1 TASK 1 - CASE STUDY PREPARATION

The first task in applying the case study approach is the preparation activity. This is an important initialization step in performing a
case study since it sets the stage and the focus for all the tasks that follow. During the Preparation Task, we define what
results/observations are expecied from the case study, how the case study will be performed, and what will be the evaluation criteria

4 -
Sce Rob Kiing and Wall Scacch:. “Compuling as Scoial Action,” 10 M. Yovils (ed.), Advances n Computers, Vel 13, Academic Press. New York, NY, pp. 249-327 (1920); and
Walt Scacchy, The Process of Innovation in Computing. Ph.D. dissertation, Depl. of Informanon and Computer Science, University of Califormia, levine, GA (1981).

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 52

and the evaluation processes used for the case study.

The Preparation Task includes the following seven steps:

. Define Evaluation Criteria

Define Mode Framework

. Define Criteria for Identification of a Sub-standard Software Life Cycle Methodology Implementation
Define Analysis Dimensions

. Define Analysis Terms

. Preparation Case Study Analysis Plan

. Characterize Methodology

N O A WD -

An explanation of each of these steps follows.
4.1.1 Define Evaluation Criteria

How the effectiveness of the implementation of the software life cycle methodology will be evaluated should be defined before the
case study is performed. There are three points to consider when defining evaluation criteria:

1. Fit of the software life cycle methodology.
2. Impact of the software life cycle methodology.
3. Benefits expected from using the software life cycle methodology.

Fit is evaluated in terms of the compatibility of the software life cycle methodology with existing organization {e.g., reporting periods,
financial procedures) and with {he existing organization infra structure. (See Figure 4.1-1.)

Figure 4.1-1

DEVELOPMENT

Some possible impact areas to consider include:

. Communication among the development staff and with the overall organization.
. QOrganizational structure.

. Software life cycle cost (in particular, development cost).
Development staff morale and turn-over rate.

. Quality of work environment.

. Visibility of the development project and software system.
Management control.

. Staff skill levels required and hiring practices.

. Staff training cost.

10. Quality of product.

11. Support services (e.g., software tools, workstations)

©CONDU N W

Some possible benefits to consider include:

1. Retention/hiring of staff.
2. Visibility with customer.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 53

3. Personnel evaluation.
4. Management control mechanisms.

4.1.2 Define Mode Framework

The case study framework can be defined in terms of questions that should be answered as a result ‘of performing the case study.
Examples of such questions are:

1. Why do people in an organization adopt a software lite cycle methodology?

2. How is the methodology actually used in practice?

3. What is needed to understand how the methodology is used?

4. What are the expected outcomes of using the methodology (i.e., hypotheses)?

4.1.3 Define Criteria for Identification of a Standard Software Life Cycle Methodology Implementation

As part of determining the validity of case study results/observations, an inadequate or substandard implementation of the software
lite cycle methodology must be recognizable. Some criteria for identifying this situation are:

1. Inadequate training {i.e.. insufficient training time, poor instructors, insufficient training materials).
2. Misapplication of the methodology {e.g., skipping steps).
3. Inappropriate type of application/target system.

4.1.4 Define Analysis Dimensions

The three basic dimensions for analyzing the effectiveness of the implementation of a software life cycle methodology are:

1. Software Life Cycle
2. Organization
3. Software Life Cycle Methodologies

The characteristics of the software life cycle that may be analyzed in the case study include:

1. Definition of phases/subphases in terms of resulting products, required resources, required accepted products from
previous activities and development methodologies to be used.

2. Definition of products in terms of confirmation documents, specifications, designs, standards, internal documentation
(e.g., data dictionaries). external documentation {(e.g.. user manuals), experimental resuits from simulation and
prototyping, module/program code, verification and validation data and results, and acceptance criteria.

3. Definition of schedules in terms of time and sequence when products are to be delivered, control points and milestones,
schedules of resource requirements and change control methods.

The characteristics of the organization that may be analyzed include:

. Industry type.
. Organization size.
. Project size (in terms of people, deliverables, schedulg, time).
. Resources available to the project.
onagement style.
Prior experience in similar projects and/or with methodology.
Project/application type (in terms of geographic separation, matrix approach, paralle! hardware development).
. Customer including procedures and relationships.

N U A WD

4.1.5 Define Analysis Terms

A potential list for terms of analysis using the basic unit of analysis defined in 4.1.4 includes:

1. Resources produced, consumed, and in contention (e.g., skills, software, hardware, policies, influences, time, budget,
procedures).

2. Kinds of operational problems encountered and kinds of expected and unexpected successes encountered in using the
methodology.

3. External influences of customers/funders, vendors (e.g., change in requirements of product, enhancements to
methodoiogy).

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 54
Figure 4.1-2

&
N4
@%Q

LIFE CYCLE PHASE /.
&

ORGANIZATION

4.1.6 Prepare Case Study Analysis Plan

The Case Study Analysis plan follows from the focus or scope of the case study, that is, the effects, problems, and benefits that are to
be observed during the case study. This plan is built around the basic unit of analysis and requires that decisions on each analysis
dimension be made. For example, is one methodology to be observed in several different size projects in one organization?

4.1.7 Characterize Methodology

As part of preparation. the characterization of the software life cycle methodology to be studied is defined. Possible terms for
characterizing a methodology include:

. Life cycle phases covered

. Sub-methodologies included

. Training requirements

. Skills needed

. Types of project/applications appropriate for
. Benefits to be achieved.

(o220 0) RN VI IS

4.2 TASK 2 - CASE/SITE SELECTION

Selection of subjects for study is a critically important aspect to the success of the prcject. It is important that each of selected
projects adhere to the criteria listed below to gain maximum benefit and accuracy from the data that is collected.

The Selection Task includes the following five tasks:

Define Selection Criteria
Develop Prospectus/Invitation
Identiiy Potential Sites

Select Sites

Negotiate Site Access and Cost

Q=

An explanation of each step follows.
4.2.1 Define Selection Criteria

The analysis plan will define the scope of the case study in the following terms:

1. hypotheses to he studied.
2. number of sites
3. duration of study

These determine the requirements for the selection criteria. There are three points to consider when defining selection criteria:

1. Are any aspects of the object of study (i.e., software life cycle methodology) present at the site?
2. Is the use of the object observable?
8. Is the site willing and able to participate?

Presence is determined by project personnel knowing that the organization has a defined development procedure within a phase
structure. The level of documentation could vary from informal project memaos to a formal methodology handbook.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 55

Some issues of concern in observing are;

1. Will the subject project progress through the desired phases in the study timeframe?
2. Are the constraints on the subject project such that interference from interviews can be tolerated?
3. Does the site collect and process the desired data?

Some factors in participation include:

. Formal management support of the study

Establishment of clean lines of communication

Assigned project personnel to support study with data
Availability of support such as secretaries and interview rooms

HLn =

4.2.2 Develop the Prospectus/Invitation

A prospectus for participating in this case study will be written to provide prospective participants with the details of how the case
study will be conducted, and what an organization can expect to gain in utilizing the results of the case study to improve their life
cycle models. 11 will define the resources reguired in terms of labor resources by type. computing, and facilities. This prospectus will
be mailed to all polential sites as identified in the effort described in paragraph 4.2.3.

4.2.3 Identify Potential Sites

Institutions, corporations, and governmental organizations will be canvassed to identify suitable projects in terms of size, duration,
start time frame, and other criteria as defined in 4.2.1. Suggestions for candidates will be obtained from the sponsor and other
funding agencies. In making original contacts to identify potential projects to use. a reporting hamework will be established so that
other projects for that follow-on waork can be identified without redoing all the tront-end work that will be done in this phase of the
project.

4.2.4 Select Sites

The list of potential projects will be assessed according to the criteria as specified above and the desired number of projects
selected. 'n addition {o the desired number, an additional group will be selected as backup in case ihe final agreaments cannot be
reached. The selected sites will be notified at least two months prior to the start of the project such that they can begin the
preparations required in terms of informing their people and verifying the resources required to participate in this case study analysis.

4.2.5 Negotiate Site Access and Cost

For the selected sites a letter of agreement will be negotiated and signed by each participant organization and the funding agency.
This document will include the schedule of interviews, and a detailed description of required resources. Restrictions and
nondisclosure agreements will be specified.

4.3 TASK 3 - CASE STUDY AND ANALYSIS

Two concerns-dominate our attention in conducting case studies, data collection and analysis of the data. We are interested in
following a systematic procedure for determining what data to collect and how to analyze it. In particular, our goal is to follow a
procedure that incorporates built-in cross-checks and controls for data collection and analysis.

The Case Study Task consists of five steps:

. Collect Case Study Data
. Code Case Study Data
Analyze and Synthesize Case Study Data
. Prepare Case Report
. Prepare Composite Case Study Report

G > WN =

An explanation of each step follows.
4.3.1 Collect Case Study Data

There are three forms of data collection in case studies: structured interviews, participant observation, and collection of locally
produced artifacts. The principal of these is structured interviews with the parlicipants in the setling. The other two serve as
evidence for or against data collected through participant interview. Participant or nonparticipant observation is directed at
capturing a glimpse of day-to-day activities from the inside or nearby. Observing how a system designer works with a design

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1882 Page 56

methodology is an example. Locally produced artifacts such as project reports, software documentation, internal performance
measures, or administrative memaoranda serve as materials which participants reference in their accounts of what is produced and
how. Both direct observation and collected artifacts serve to cross-check the data collected during the interviews.

Structured interviews are the main form of data collection. The analyst begins by preparing an initial interview schedule to organize
the topics for investigation with the first interviewees. Initially interviews may be loosely structured so as 1o introduce the analyst to
the character of organizational arrangements, workflow, major participants in system development, and so forth. These interviews
(the average time is expected o be 40-6C minutes) serve to help the analyst determine which participants to subsequently interview.
the choice of data to coliect in succeeding interviews depends upon the participant being interviewed, what they do, and the analysis
of data previously collected. The interview data is therefore collected according to an interview schedule progressively developed to
record who is to be interviewed, when, what topics are to be probed, and why.

Once data collection has begun, the data is analyzed in an iterative and accumulative manner. Data collection and analysis must be
procedurally interspersed. Given that we are primarily dealing with qualitative data, we follow three stages for coding data for
analysis. The iterative stages are covered in the next three steps.

4.3.2 Code Case Study Data

The interviews are coded according to the interview schedule. That is, the answers provided to interview questions (the data) are
recorded either during or immediately after an interview. A fill-in-the-blands questionnaire derived from the interview schedule is a
sensible instrument for this purpose.

4.3.3 Analyze and Synthesize Case Study Data

The data is coded and aggregated according to analytic themes (e.g., current hypotheses). These themes emerge interactively from
the guiding framework and the data itself. These themes serve to anchor and contro! the analysis for comparative purposes. -Some
may change shape as data collection and analysis continue thus implying their iterative development. In addition, the narrative data
coded in this form is also amenable to basic quantitative analysis (e.g., frequency of events). The product at this stage an "analytic
memo,” a narrative theoretical account of the data relaled to a theme. The interview schedule may be revised to collect
supplementary data and insure sufficient analytic coverage. To ensure this coverage, we may bind their scope to the unit of analysis
(an individual case).

4.3.4 Prepare Case Report

Finally, after the data collection-analysis procedure has been repeated until saturation, a case report summarizing the experience
and the findings accumulated in analytic memos is then prepared. As multiple case studies may be investigated at a site, a case
report for each is produced. Data collected and analyzed for one case may directly bear on another. This is both expected and
desirable since the nature of the data or phenomena under study is likely to be continuous rather than discrete. Thus it may be
appropriate to reference coded data or analytic memos developed tor a prior case in the current one.

4.3.5 Prepare Composite Case Study Report

The case report, analytic memos, and coded interviews constitute the data base for an individual case study. In following our
approach for camparative multi-level analysis, these case data bases provide the basis for comparing the findings across cases. In
this way, we iterate through our comparative analysis across cases at more general levels progressively merging the data bases to
produce a more comprehensive final set. These are then the final set of coded data, analytic memos, and case reports which when
assembled into a composite report to complete the study.

4.4 TASK 4 - IDENTIFICATION OF FUTURE WORK

Qut of the qualitative study of software life cycle methodology implementation will emerge theoretical accounts of the observed
process. Then survey research methods and quantitative analyses might be appropriate for determining the dimensions of cognitive,
organizational, methodological, or technical structures present in the processes. The purpose of this task is to identity the
requirements for further analyses of software life cycle methodology implementation.

The Ildentification Task includes the following five steps:

1. Determine voids in Existing Life Cycle Implementation Evaluation Technology.

2. Develop Framework for Removing Voids.

3. Define Requirements for Enhanced Life Cycle Implementation Evaluation Technology.
4. Determine Risk and cost for Correcting Voids.

5. Prepare Plan for Next Phase.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 57

An explanation of each step follows.
4.4.1 Determine voids in Existing Life Cycle Implementation Evaluation Technology

This will be accomplished by evaluating the effectiveness of the case study results obtained in Task 3. This will involve comparing the
study results against expectations and rationalizing the differences. Sources of differences might include:

1. Inadequate use of existing technology.
2. Application of existing technology to inappropriate situations.
3: Deficiencies in exisling technology.

4 4.2 Develop Framework for Removing Voids

It is envisaged that the framework will be a combination of qualitative. survey research, and quantitative techniques. The framework
will address the voids identitied in 4.4.1. Also the framework will handle the capabilities to analyze the relationships of the theoretical
accounts resulting from Task 3. The capabilities will be determined by identifying the both existing and desired quantitative
techniques for testing the relationships.

4.4.3 Define Requirements for Enhanced Life Cycle Implementation Evaluation Technology

The requirements will cover needs for changes in methodology for new technique and for technique revisions. The framework from
4.4.2 will provide the structure for defining the requirements. The statement of a requirement will consist of a need statement,
development constraint(s) and acceptance criteria.

4.4.4 Determine the Risk and Cost for Carrecting the Voids

This will be done by mapping an assessment of State-of-lhe-Art against the requirements. Then the requirements will be analyzed to
determine the points and degree of innovation needed. From this a risk factor will be assigned to the requirements, both individually
and collectively. Finally, by requirement using the risk analysis, a cost will be determined.

4.4.5 Prepare Plan for Next Phase

This will result in detailed plan and schedule for conducting a comprehensive qualitative evaluation of several software development
life cycle methodology implementations.

4.5 TASK 5 - PUBLICATION OF FINDINGS

The results of this project could seriously impact the productivity of current software development. This potential demands that a
deliberate strategy is needed to publish the results.

It is expected that this project will have three classes of results:

1. Description and assessment of ulility of evaluation technology.
2. Idenlification of areas for improvement in life cycle methodology.
3. Description of strengths and weaknesses in the implementation of life cycle methodologies.

The results will be of interest to at least the foliowing four groups.

1. those who participated in the case study

3. Conferences and journals in the areas of: computer science, human 2. users of life cycle methodology
3. crealors of life cycte methodology
4. evaluators of life cycle methodolagy implementation

The Publication Task includes the following four steps:

1. Select Publication Format(s)

2. Identity Publication Sources

3. Prepare Publication(s)

4. Disseminate Publication{s) with Procuring Agency Approval

An explanation of each step follows.

4.5.1 Select Publication Format(s)

ACM SIGSOFT SOFTWARE ENGIMNEERING NOTES, Vol 7 No 1, January 1982 Page 58

The different classes of results and the various audiences will require different publication tformats. Some points to consider in
choosing formats are:

1. Level of detail to be reported
2. Publication time-frame
3. Durability of publication

4.5.2 Identify Publication Sources

Some considerations in choice of sources would include the use of:

1. Trade newspapers and journals
2. Agency and government publication vehicle (e.g., NTIS)
3. Conferences and journals in the areas of computer science, human factors, and management science.

4.5.3 Prepare Publication(s)

The key bere is to produce the results in a timely fashion and assure that the proper agency approvals have been obtained.
4.5.4 Disseminate Publication(s) With Procuring Agency Approval

5.0 Plans

The project is proposed to be done in four phases. Phase | will be a pilot study to validate the use of case study approach on the
problem of life cycle evaluation. Phase Il will be a broad application of the case study approach to produce generalizable results and
a basis for the investigation of a refined analysis of life cycle methodology implementation. Further phases may be needed if the
refined analysis looks promising.

5.1 CWBS (CONTRACT WORK BREAKDOWN STRUCTURE)

Element Number Element Title

1.0 Evaluation of Software Development Life Cycle Methodology Implementation
1.1 Phase [: Establish Case Study Analysis Approach
1.1.1 Establish Project Master Plan and Schedule
1.1.1.1 Establish Project Master Plan
1.1.1.2 Establish Project Master Schedule
1.1.2 Prepare for Case Study
1.1.2.1 Define Evaluation Criteria
1.1.2.2 Define Mode Framework
1.1.2.3 Define Criteria for Identification of Standard
Life Cycle Methodology Implementation
Define Analysis Dimensions
Define Analysis Terms
Prepare Case Study Analysis Plan
Characterize Subject Methodology
Submit Results for Review
t Casc Study Site
1 Define Selection Criteria
Develop Prospectus/Invitation
Identify Potential Sites
Select Sites
Negotiate Site Access and Cost
.6 Submit Results for Review
rin Case Study and Analysis
.1 Collect Case Study Data
2 Code Case Study Data
3 Analyze and Synthesize Case Study Data
4 Prepare Case Report '
.5 Prepare Composite Case Study Report
6
f
1

[eoBEN B IS NN

o -

e

Ly B L S B

e+ Db, W WwWwWwWwWwD NN NN

e

Submit Results for Review
[y Future Work
Determine voids in Existing lLife Cycle
Implementation Evalualion Technology
1.1.6.2 Develop Framework for Removing Voids

[
> D o bk b e e e M e b e b b e o e e b e

1.1.5

T e e e e B O S 2 Rl N N

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 1, January 1982 Page 59

1.1.5.3 Define Requirements for tnhanced Evaluation
Technology

1.1.5.4 Determine Risk and Cost for Correcting Voids
1.1.5.5 Prepare Phase II Plans
1.1.6 Publish Findings

1.1.6.1 Select Publication Format(s)

1.1.6.2 TIdentify Publication Sources

1.1.6.3 Prepare Publication(s)

1.1.6.4 Obtain Agency Review of Publication(s)

1.1.7 Data

1.1.7.1 Contract Work Breakdown Schedule

1.1.7.2 Program Schedule

1.1.7.3 Interim Technical Reports

1.1.7.4 Final Report

Figure 5.2-1
=T RIITS.
SUBSYSTEN TYPE
PROGRAM SCHEDULE llf”““ I Phase | I P IASOF Jung 1081
L PRIOR FISCAL YEAR FISCAL YEAR FISCAL YEAR FY | COMpPL
1} prosra uesTONES SCHED 1982 19 19 s | DaTE
E MO 1YR JajHiD|J |rIm Al [AjsgoN[D]) FIdTATR]S TS [A OINID])FF{MAIMITI[A]s | IIQTR] FY
1f 1.1.1 Establish Project Master Plan and Schedule =1
2] 1.1.2 Prepare for Case Study 1=
o] 1.1.3 Select Case Study Site T
4] 1.1.4.1 Collect Case Study Data
¥] 1.1.4.2 Code Case Study Data
8§ 1.1.4.3 Analyse and Synthesize Case Study Dats
Tl L.1.4.4 Prepare Case Reports
s] 1.1.4.5 Prepare Composite Case Study Report e
#1 1.1.4.6 Submit Results for Review v v
sof 1.1.5 Identify Future Work
"1 1.1.6 Publish Results
1] 1.1.7.3 Interim Technical Reports 7 4 v
f 1.1.7.4 Final Report v
"
(1]
16
1?
3
19
AFSC rofd “’ PREVICUE EDITIOHS ARE OBSOLE TR, LA Tl RPN
tr

5.3 RESOURCES

The major resources required for Phase | subtasks appear in this section
5.3.1 Labor Resource Requirements

CWBS Activity

1.1.1 Establish Project Master Plan

and Schedule 80 20
1.1.2 Prepare for Case Study 200 100 40

ACM SIGSOFT SOFTWARE ENGINEERING MNOTES, Vol 7 No 1, January 1982 Page 60

1.1.3 Select Case Study Site 80 40
1.1.4 Perform Case Study and Analysis 600 250 80
1.1.5 Identify Future Work 100 50 50
1.1.6 Publish Finding 100 50 50
1.1.7 Data 40 50 100

Phase I Total 1200 500 380

5.3.2 Travel Resource Requirements

2 500 mile 3-day trips
2 1500 mile 1-day trips

5.3.3 Support and Machine Requirement

1560 hours of word processor time.
$3,000 of computer resources to support database.

EVALUATION OF DESIGN METHODOLOGIES

A Proposal:

Makoto Arisawa - Yamanashi University
G. David Bergland - Bell Laboratories
Earle C. Bowers - Structured Methods, Inc.
John N. Buxton - University of Warwick
Robert A. Kelley - Honeywell, Inc.
Norman L. Kerth - Tektronix Laboratories
Sabina H. Saib - General Research Corp.
Peter D. Ting - Bell Laboratories
Douglas A. Troy - Bell Laboratories (editor)
Stuart H. Zweben - Ohio State University

Abstract

This proposal seeks to evaluate the effects of various design methodologies on the development and maintenance of computer
systems. More specifically, an experiment is proposed to test the hypothesis that the cost of making changes to computer systems is
intluenced by the application area of the system and by the design methodology employed in its development. Proponents of various
design methodologies will develop, from user requirements, solutions to selected problems in each of four application areas. After
acceptance of the solutions by an independent contractor, requests for changes will be given 1o each design methodology group.
Careful records of the costs of initial development and subsequent modifications will e kept, These costs, other measures taken on
the resulting products, and a post activity conference will form the basis for evaluation the experiment and the participating
methodologies.

Table of Contents

I Project Definition

1. Topic

2. Hypothesis

3. Importance

4. Overview
It Gontext Information

1. Characteristics of the Software

2. Characteristics of the Development Group
i1l Experimental Plan

1. Environments

2. Definition of the Experiment

3. Post Experimental Evaluation
IV Discussion of the Experiment

1. Alternatives

2. Response to Difficulties

3. Secondary Issues

Economics

