
Inclusion dependencies and their interaction with functional dependencies
(Extended abstract)

Marco A. Casanova*
Pontificia Universidade Catolica do Rio de Janeiro

22453 Rio de Janeiro RJ
Brazil

Ronald Fagin**
IBM Research Laboratory

San Jose, California 95193

Cbristos H. Papadimitriou
Lab. for Computer Science, M.I.T.
Cambridge, Massachusetts 02139

ABSTRACT: Inclusion dependencies, or INDs (which can say, for
example, that every manager is an employee) are studied, including
their interaction with functional dependencies, or FDs. A simple
complete axiomatization for INDs is presented, and the decision
problem for INDs is shown to be PSPACE-complete. (The deci-
sion problem for INDs is the problem of determining whether or
not Z logically implies c, given a set Z of INDs and a single IND
(T). It is shown that finite implication (implication over databases
with a finite number of tuples) is the same as unrestricted implica-
tions for INDs, although finite implication and unrestricted impli-
cation are distinct for FDs and 1NDs taken together. It is shown
that, although there are simple complete axiomatizations for FDs
alone and for INDs alone, there is no complete axiomatization for
FDs and INDs taken together, in which every rule is k-ary for
some fixed k (and in particular, there is no finite complete axioma-
tization.) This is true whether we consider finite implication or
unrestricted implication, and is true even if no relation scheme has
more than three attributes. The nonexistence of a k-ary complete
axiomatization for FDs and INDs taken together is proven by
giving a condition which is necessary and sufficient in general for
the existence of a k-ary complete axiomatization.
Key words and phrases: inclusion dependency, functional depen-
dency, relational database, complete axiomatization, PSPACE-
complete.
CR categories: 3.13, 4.33, 5.21, 5.21.

*This research was supported by FINEP and by CNPq
Grant 402090/80.

“This’ research was conducted while this author was a. Visiting
Research Fellow at Pontificia Universidade Catolica do Rio de
Janeiro and was supported in part by a grant from IBM Brazil.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1982 ACM 0-89791-070-2/82/003/0171 $00.75

1. INTRODUCTION

Functional dependencies, or FDs [Cal] are certainly the most
important and widely-studied integrity constraints for relational
databases. Another important integrity constraint is the inclusion
dependency, or IND [Fa3]. As an example, an inclusion depen-
dency can say that every MANAGER entry of the R relation
appears as an EMPLOYEE entry of the S relation. More general-
ly, an inclusion dependency can say that the projection onto a
given m columns of the R relation are a subset of the projection
onto a given m columns of the S relation. Hence, INDs are valua-
ble for database design, since they permit us to selectively define
what data must be duplicated in what relations.

INDs, together with FDs, form the basis of the structural model
of Wiederhold and El-Masri [WM]. They also appear when an
entity-relationship schema is mapped to the relational model ([Ch],
[Kl]). Yet in another perspective, INDs can be viewed as a relaxa-
tion of the controversial universal relation assumption ([BG],
[Ke]), which requires that all relations in a database be projections
of a single (universal) relation. Inclusion dependencies are com-
monly known in Artificial Intelligence applications as ISA relation-
ships (cf. Beeri and Korth [BK]).

We note that INDs differ from other commonly studied data-
base dependencies in two important respects. First, INDs may be
interrelational, whereas the others deal with a single relation at a
time. Second, INDs are not typed [Fa4]. INDs are special cases
of extended embedded implicational dependencies [Fa4], for which
the existence of “Armstrong-like databases” have been proven.
For details, see [Fa4].

Although INDs have been utilized extensively for databases
([BK]. [Ch], [COG], [Fa3], [Kl], [SS], [WM], [Za]), there has been
very little analysis of their properties, with only a few recent ex-
ceptions ([FV], [JK], [Li]). The purpose of this paper is to help
remedy this neglect.

In Section 2, we present basic definitions. In Section 3, we
present a simple complete axiomatization for INDs. Since the
axiomatization is complete even if we restrict Our attention to
finite databases, it follows that finite implication (implication over
finite databases) is the same as unrestricted implication for INDs.
However, we give a simple example that shows that finite implica-
tion is distinct from unrestricted implication, for FDs and INDs
taken together. A similar result has been proven for template

171

dependencies [FMUY]. We also show that the decision prob-
lem for INDs is PSPACE-complete. .In Section 4, we give a
general necessary and sufficient condition for the existence of
a k-ary complete axiomatization. We show how the result can
be used to explain Sagiv and Walecka’s [SW] result on the
nonexistence of a k-ary complete axiomatization for embed-
ded multivalued dependencies, for arbitrary k. In Section 5,
we show that for no k is there a k-ary complete axiomatiza-
tion for finite implication of FDs and INDs. In fact, our
proof shows that this result holds, even if no relation scheme
has more than two attributes. The same result holds (where
no relation scheme has more than three attributes) for unres-
tricted implication, but the proof is more complex, and is
omitted. (However, the proof appears in the full paper
[CFPI.)

2. DEFINITIONS

A relafion scheme is an object R[U], where R is the name
of the relation scheme and where U is a finite sequence
<A ,,...,A,> of atlributes. We usually write a sequence, such
as <Al ,..., A,>, as simply A, ,..., A,. For example, we shall
write simply R[A ,,..., A,] for R[<Al,..., A,>]. A ruple t over
U=<Al,..., A,> is a sequence <al ,..., au,>. A relation (over
R[U], or simply over R) is a set of tuples over U. Note that
our definition, which is convenient for use in this paper, is
distinct from other definitions ([ABU], [Ar]) in which a tuple
is a mapping, not a sequence. If X = <Ai,,...+,>, where
it is are distinct members of { l,..., n], and if t IS as above,
then t[X] is <ai,,..., aik>. If r is a set of tuples over U, then
r[X] = ft[X]: tar].

A database scheme D={R,[U,],...,R,[U,]] is a set of rela-
tion schemes. A database over D is a mapping that associates
each relation scheme Rl[Ui] with a relation ri over Ri. When
it can cause no confusion, we may refer to rl,...,ru as the
database.

A relation is finite if it has a finite set of tuples; a database
rt,...,r,, is finite if each ri is finite. If C is a set, then Kl is the
cardinality of C; if X=<at...,as> is a sequence, then W=k.

If R[A,,...,A,] is a relation scheme, and if X is a sequence
of distinct members of Al,...A,, as is Y, then we call the
object R:X+Y a functional dependency, or FD. Although X
and Y are usually taken to be sets, rather than sequences, it is
necessary for us to use sequences, so that we can interrelate
FDs and inclusion dependencies, defined soon. If r is a rela-
tion over R, then r obeys or satisfies the FD R:X+Y if, when-
ever tl and tz are tuples of r such that tt[X]=t2[X]. then
tt[Y]=tz[Y]. We also say then that the FD R:X+Y holds for
r, or is true about r. If the FD does not hold for r, then we
say that r violates the FD. A similar comment applies for
other dependencies, defined later.

If Ri[A*)...) A,] and R.[Bl,... B] are relation schemes (not
necessarily distinct), if X’is a seq!ence of k distinct members
of A,,...,A,, and if Y is a sequence of k distinct members of
Bt,...,BP, then we call the object Ri[X]sRj[Y] an inclusion
dependency, or IND. (Inclusion dependencies should not be
confused with the subset dependencies of Sagiv and Walecka
[SW], which are quite different). If rt....,ru is a database d
over D=IR,[U,],...,R,[U,]}, then d obeys the IND
Ri[X]cRj[Y] if ri[X]Erj[Y].

FDs and INDs are examples of dependencies, or sentences
about databases [Fa4]. Let L be a set of dependencies over
D, and let (I be a single dependency over D. When we say
that Z logical/y implies o (in the context D), or that e is a
logical consequence of Z, we mean that whenever d is.a data-
base over D that obeys every dependency in L, then d obeys
0. That is, there is no “counterexample database” d such that

d obeys every sentence in P, but such that d does not obey O.
We then write L DO, or, if D is understood, simply I: Fe. If
I: and T are each sets of dependencies, then by Z CT, we
mean that Z C r for each r e T. We write L C fine to mean that
whenever d is a finife database that obeys Z, then also d
obeys 0. Clearly, if I: kc, then Z l=finu. but, as we shall see,
the converse is false. Finally, we write L 6 (I to mean that is
false that L l= 0.

3. RESULTS ON INDS ALONE

We now exhibit a complete axiomatization for INDs. How-
ever, for reasons of brevity, we omit the completeness proof
(which appears in the full paper [CFP].) We note that Lin
[Li] presents a set of inference rules for INDs, and conjec-
tures their completeness. Since his rules imply ours below, his
axiomatization is indeed complete.

INDl (reflexivity): R[X]CR[X], if X is a sequence of
distinct attributes of R.

IND2 (projection and permutation): if
R[A, ,..., A,]ES[B ,,..., B,], then
for each sequence i

R[Ai ,,..., AiJESIBil ,..., Bi,],
l,..., is of distinct integers from {l,..., m]

IND3 (transitivity): if R[X]ES[Y] and S[Y]sT[Z], then
R[X]ET[Z].

Our proof of completeness shows that the same axiomati-
zation is complete for INDs over finite databases. Therefore,
finite and unrestricted implication (Flu, and C) are the same
for INDs. However, finite and unrestricted implication are
distinct for FDs and INDs taken together. Thus, let P be
{R:A+B, R[A]sR[B]], and let c be R[B]s;R[A]. It is easy to
verify [CFP] that X kfina; however, X#e (just consider the
relation r = ((i+l,i): i>O].)

Our proof of completeness also leads to a decision proce-
dure for the decision problem for INDs (that is, for determin-
ing if P Co, where I: is a set of INDs, and where (r is a single
IND). Say (r is the IND R,[A,,...,A,]sRu[B, ,..., B,].

(1) Initialize set Z by letting it contain the single expres-
sion R,[Al,...,A,].

(2) If Z contains an exoression SIXI, and if an IND , ,
S[X]ET[Y] can be obtained from a member of Z by
IND2 (projection and permutation), then add T[Y] to
the set Z, unless it is already in Z.

(3) Apply step 2 repeatedly, until it is no longer possible
to add expression to Z by using step 2.

(4) Z l=e if and only if R,[Bl,...,B,] is in the resulting set
Z.

This decision procedure is quite similar to a decision proce-
dure for FDs [BB], where Z is a set of attributes, and where
attributes are added to Z on the basis of FDs. However,
there is a major difference. The FD decision procedure can
be implemented (with the appropriate data structure) to run in
linear time. Unfortunately, however, in the case of INDs, the
set Z can grow to exponential size. An example can be given
[CFP] that is based on the fact that the (exponential number
of) permutations over n letters are all generated by the
(polynomial number of) transpositions.

We shall soon show that the decision problem for INDs is
PSPACE-complete. Hence, there is no polynomial-time algor-
ithm for this problem (unless P=PSPACE) [GJ]. However, it
is easy to see that in certain special cases, our decision proce-
dure can be implemented to run in polynomial time. For
example, there is a polynomial time algorithm if we restrict
our attention to INDs that are at most k-ary for some fixed k
(that is, INDs R[A, ,..., Ar]ES[B, ,..., B,], where r<k). As
another example, there is a polynomial-time algorithm if we

172

restrict our attention to INDs of the form R[X]cS[X]. As an
example of this latter type of IND, it is possible to say that
every manager is an employee of the department that he, man-
ages by the IND MGR[NAME,DEPT]rEMP[NAME,DEPT],
where, say (Hilbert, Math) is a tuple of the MGR relation if
Hilbert manages the Math Department, etc.

We close this section by showing that the decision problem
for INDs is PSPACE-complete.

Theorem 3.1: The decision problem for INDs is PSPACE-
complete.

Proof: We first show that the decision problem for INDs is in
PSPACE. We now describe a nondeterministic polynomial-
space algorithm for deciding if X ko, where Z is a set of INDs
and where (I is a single IND. Assume that o is
R&At ,..., A,]ERh[Bt ,..., Bm]. Let St[X,] be R,[At ,..., A&
Given S&l, the nondeterministic algorithm simply “guesses”
an IND r in I: to apply IND2 (projection and permutation) to,
in order to obtain an IND Si[Xl]“Si+t[Xi+r]. and then over-
writes Si[Xi] with Si+,[Xi+,]. The algorithm halts and rejects
if the IND 7 that it guesses cannot yield an IND with left-
hand side Si[Xi] when DID2 is applied. The algorithm accepts
if it ever prints Rh[Bl,...,B,] as an S,[X,]. Since the nondeter-
ministic algorithm operates in linear space, it follows by
Savitch’s Theorem [Sal that there is a deterministic quadratic
space algorithm. Thus, the decision problem for INDs is in
PSPACE.

We now show that the decision problem for INDs is
PSPACE-complete. To show this, we shall reduce the follow-
ing known PSPACE-complete problem to ours:

LINEAR BOUNDED AUTOMATON ACCEPTANCE [GJ]
Instance: A nondeterministic Turing machine M and

an input xe I*.
Question: Is there a halting computation of M on

input x using no more than w tape cells?

Given an instance M;x of LINEAR BOUNDED AUTO-
MATON ACCEPTANCE, we shall construct a set Z of INDs
and a single IND o such that Z Co if and only if M halts on x
in space bJ. M=(K,I,A,s,h) is a nondeterministic l-tape
Turing machine with state set K, alphabet I’, start state scK,
halt state hr K, and transition relation A (see [LP] for Turing
machine notation). A configuration of such a machine on
input x, with w=n, shall be denoted by a string in PKr+ of
length n+l. The n symbols in P are the tape contents, and
the symbol in K denotes the current state and the head posi-
tion (it is placed immediately to the left of the symbol scan-
ned). The initial configuration is sx, and the final configura-
tion hB”, where BEI is the blank.

Our INDs are defined on a single relation scheme R with
set of attributes U=(KuP)x {1,2,...,n+l]. The intuition is
that the attribute (r,j)eU corresponds to the jth symbol in a
configuration being r (this will become clearer later.) The IND
0 is R[(s,l).(xl,2),...,(x,,n + 1)1 E
R[(h,l),(B,2) ,..., (B,n + I)] . The INDs in I: encode the legal
moves of M. These moves can be thought of as rewriting
rules of the form abc-a’b’c’ where a,b,c,a’,b’,c’eKur, ap-
plied on configurations. For each such move m, and each
jc(l,2 ,..., n-l], we have in Z the following IND:
Wp(a,j),(bi + 1Mc.j + 2)l E
R[Pj,(a’,j),(b’,j + l),(c’,j + 2)], where Pj is one arbitrarily
selected ordering of the attributes in
rx{l,2 ,..., j-l,j+3 ,..., n+l]. This completes the construction.
We can show [CFP] that I: ko if and only if M accepts x in
space n. 0

4. CHARACTERIZATION OF THE EXISTENCE OF A
k-ARY COMPLETE AXIOMATIZATION

In this section, we present necessary and sufficient condi-
tions for the existence of a k-ary complete axiomatization for
a set S of sentences over a database scheme D. In Section 5,
we use our characterization to show that for each k, there is a
database scheme D such that the set of FDs and MDs over D
have no k-ary complete axiomatization. In this section, we
use our characterization to explain Sagiv and Walecka’s simi-
lar result for embedded multivalued dependencies.

Let D={R i....,R,,] be a database scheme, that is, each Ri
has associated with it a set of attributes (l<i<n). Let 8 be
a set of dependencies, that is, sentences over R,,...&. In our
case of primary interest, 9 is the set of all FDs and INDs
over R ,,...,R,. By a rule (over 8). we mean a statement of
the form “if T then T”, where T is a finite set of sentences in
9 (each called an ontecedenr of the rule) and where 7 is a
single sentence in 9 (called the conseqirence of the rule). If T
contains exactly k distinct members, then we call this rule
k-ary. A 0-ary rule (one for which T=@) is sometimes called
an axiom. The rule “if T then 7” is sound if T br,7; that is, if
every database over D that obeys T also obeys 7. A set &? of
rules is said to be sound if every member of @ is sound.

Let 8? be a set of rules over 8. Let P be a set of sen-
tences in 8, and let a be a single sentence in 8. A proof of o
from L via &? is a finite sequence <T,,....T,> of sentences in
8 where 7,, the last sentence in the sequence, is o, and
where for each i (l<i<m), either (a) T~EZ, or (b) there is a
subset T of {T ,,...,~~-l] such that “if T then TV” is a rule in 1.
If there is a proof of o from P via a, then we write I: t 89 (r
(or, if # is understood, simply B l-0). It is easy to see that a
set @? of rules is sound under our definition if and only if
whenever I: 1 (Io (I, then I: too.

A set 6% of rules over 9 and D is complete if whenever
ZG&~’ and u&, then L Cr,o if and only if Z k 1(9 o. We
note that some authors weaken this definition by requiring
only that if X l=nn, then Z l- ap o. Thus, for these authors,
completeness does not imply soundness, whereas for us, it
does (that is, for us, every complete set of rules is sound.) We
sometimes call a complete set of rules a complete
axiomatirarion. A set a of rules is k-ary if each rule p in @?
is at most k-ary; in other words, if p is r-ary, then rlk.

As an example, consider our complete axiomatization for
INDs in Section 3. For a given database scheme D, each of
INDl, IND2 and INDJ is really a rule scheme that represents
a set of rules. For example, INDl (reflexivity), R[X]ER[X],
represents a set of 0-ary rules, one for every relation scheme
R in D and every sequence X of distinct attributes of R. Simi-
larly, IND2 (projection and permutation) represents a set of
1-ary rules, and IND3 (transitivity) represents a set of 2-ary
rules. For a given database scheme, the set of all of these
rules (rules represented by one of INDl, IND2, IND3) is a
2-ary complete axiomatization.

We shall give a necessary and sufficient condition for the
existence of a k-ary complete axiomatization for a set 9 of
sentences over a database scheme D. In Section 5, we shall
use this characterization to show that for each k, there is a
database scheme such that if 9 is the set of all FDs and INDs
over the scheme, then there is no k-ary complete axiomatiza-
tion for 8. But what does this mean? Let D be a given data-
base scheme, and let 8 be the set of all FDs and INDs over
D. There are only a finite number of distinct FDs and INDs
over D; let this number be k. Then there is certainly a k-ary
complete axiomatization: we simply take all rules “if T then
T”, where T is a set of FDs and INDs over D, where 7 is a
single FD or IND over D, and where T l=o~. What our results

73

say is that there is no single k that can work for every data-
base scheme D (although, as we just saw, every database
scheme D has a k-ary complete axiomatization for FDs and
INDs for some k).

By a “complete axiomatization for FDs and INDs”, one
might mean a “uniform” complete axiomatization, good for
every scheme D. For example, our complete axiomatization
for INDs in Section 3 is in some sense “uniform”, as are
Armstrong’s [Ar] complete axiomatization for FDs, Beeri,
Fagin and Howard’s [BFH] complete axiomatization for multi-
valued dependencies, Sadri and Ullman’s [SU] and Beeri and
Vardi’s [BV] complete axiomatization for template dependen-
cies, and Yannakakis and Papadimitriou’s [YP] complete
axiomatization for algebraic dependencies (i.e., embedded
implicational dependencies [Fa4]). Whatever one means by a
“uniform” k-ary complete axiomatization, this must at least
imply that for every scheme, there is a k-ary complete axio-
matization. Therefore, our result on the nonexistence of a
k-ary complete axiomatization for FDs and INDs over certain
schemes certainly implies the nonexistence of a “uniform”
k-ary complete axiomatization for FDs and INDs.

Before we present the main result of this section, we need
some more definitions. Let D be a database scheme, let 9’ be
a set of sentences about D, and let I be a subset of 8. We
say that r is closed under implicafion (with respect to D and 9)
if whenever (a) ZEl?, (b) ae8, and (c) L br, (I, then uer.
If D and 9 are understood, then we simply say that I is
closed under implication. If k?O is an integer, then we say
that r is closed under k-ary implication (wiih respect io D and
9’) if whenever (a), (b), and (c) above hold, and also (d) /Xl
5 k, then ser. Again, if D and 9 are understood, then we
simply say that r is closed under k-ary implication.

Theorem 4.1: Let D be a database scheme, let .??’ be a set of
sentences about D, and let k>O be an integer. There is a
k-ary complete axiomatization for sentences in 8 if and only
if whenever I E 9 is closed under k-ary implication, then T is
closed under implication.

Proof: See [CFP]. 0

Corollary 4.2: Let D be a database scheme, let 9 be a set
of sentences about D, and let k>O be a constant. Assume
that ZEN, that oc8, and that

(3 Z Co,
(ii) if rt Z: then it is false that 7 j=o, and
(iii) if A is a set of at most k members of Z, if ~8 and if

A t*, then there is some 6cA such that 6 j=r.
Then there is no k-ary complete axiomatization for sentences
in 8.

Proof: Let I = {r& there is r’aX such that r’ j=r). Since
Zsr but u$T, it follows that I is not closed under implica-
tion. We now show that P is closed under k-ary implication.
Assume that T is a set of at most k members of I’, that TC~
and that T br. We must show that reP. For each = in T,
find u’e L such that a’ C a (we know that (I’ exists by defini-
tion of P). Let A+‘: aeT]. Clearly A cr, since A j=T and
Tj=r. By (iii), it follows that rer. Hence, P is closed under
k-ary implication. Since I is not closed under implication, it
follows from Theorem 4.1 that there is no k-ary complete
axiomatization for sentences in 9’. This was to be shown. 0

Corollary 4.2 can be used to explain Sagiv and Walicka’s
[SW] result on the nonexistence of a k-ary complete axiomati-
zation axiomatization for embedded multivalued dependencies
(EMVDs), for each k (for a definition of EMVDs, see [Fall.)
This follows because, for each k>O, they exhibit a relation
scheme R, a set I: of EMVDs over R and a single EMVD o
over R that obey the conditions of Corollary 4.2.

5. NONEXISTENCE OF A k-ARY COMPLETE AXIOMA-
TIZATION FOR FDs AND INDs.

We can use Theorem 4.1 to prove the following two re-
sults. The fist theorem deals with finite implication and the
second with unrestricted implication.

Theorem 5.1: For no k is there a k-ary complete axiomatiza-
tion for finite implication of FDs and INDs.

Theorem 5.2: For no k is there a k-ary complete axiomatiza-
tion for FDs and INDs.

Note: By Theorem 5.1, we mean that for each k, there is
a database scheme D such that there is no k-ary complete
axiomatization for finite implication of FDs and INDs over D.
A similar comment applies to Theorem 5.2.

Since the proof (which appears in [CFP]) of Theorem 5.2
is substantially more complicated than the proof of Theorem
5.1, we give here only the proof of Theorem 5.1. The proof
of Theorem 5.1 depends in part on a counting argument,
which applies only in the case of a finite database.

Proof of Theorem 5.1: Let k be a fixed natural number. Let
RJAB] (O<i<k) be a set of relation schemes. Define (where,
henceforth, addition is module k):

(1) I: = {Ri:A~B, Ri[A]~Ri+t[B]: Osi<k], and
(2) 0 = Ro[B]rR,[A].

Let I be the union of I: with the set of all trivial FDs and
INDs (those that are tautologies). By Theorem 4.1 (where
finite implication plays the role of implication, that is, where
j=rla plays the role of j=), we need only show that I is closed
under k-ary finite implication but not under finite implication.

We fist show that T is not closed under finite implication.
To do this, we need only show that Z C . o, since it is im-
mediate that X E I and that e t I. Let $=I ro,...,rk] be a
finite database satisfying Z. Since 9 satisfies
Ri[A]ERi+t[B]. it follows that kt[A]] < kl+t[BI, for O<i<k’.
Since fl satisfies R:A+B, it follows that ~i[B]I I ~i[Al holds,
for O<isk. Putting these inequalities together, we obtain
iq#lt I kt[B]] < tq[AlI < . . . S iqJAli I b-@li I iq$AlI.
Hence, ks[Al I ko[B]l. But since 9 satisfies the IND
Rs[A]GR,[B] and since 9 is finite, we then have
r&A] = ro[B]. Hence, ro[B]Grk[A], and so 9 obeys 0.

We conclude the proof by showing that I is closed under
k-ary finite implication. That is, we shall show that if T is a
set of at most k members of I, if T is an FD or IND, and if
T j= li”T, then r e I.

Since Z contains ktl INDs, we know that T does not
contain some IND 8 of Z. Since I: is symmetric with respect
to INDs, we may assume without loss of generality that 6 is
the IND Rs[A&R,[B]. We construct a database
9 = {ro,...,rJ as follows:

r. = l((O,O), (O,ktl)), ((LO), Wtl)), (C&O), (l,k+lNl

ri = {((O,i), (O,i-l)), ((l,i), (l,i-1)), ((2itl,i), (2i+l,i-
1)) ((2i+2,i), (2i+l,i-l))], for lli<k.

Figure 1 exhibits 9 for k=3.

It is straightforward but tedious [CFP] to verify that the
database 9 obeys precisely the FDs and INDs in P-8 (in the
terminology of Fagin [Fa4], the database 9 is a finite Arm-
strong database for T-8.) Since TSP-6, it follows that 9 obeys
T. Because T j=tia~, we also know that fl obeys T. Since 9

KG) I I

(0,2)
(1.2)
(22)
(32’)
(42)
EC’)
62)
(7.2)
6’2)

Figure 1

obeys precisely I-6, it follows that rcr-15. Hence, rcr, which
was to be shown. 0

Let 9 be a class of dependencies such that the database
fl constructed in the proof of the previous theorem violates
every nontrivial member of 9. By letting P be as before,
along with the set of all trivial members of 8, our proof
shows that there is no k-ary complete axiomatization for finite
implication of FDs, INDs, and dependencies in 9. For exam-
ple, if we let 9 be the class of multivalued dependencies, or
MVDs [Fall, then we know that there is no k-ary complete
axiomatization for finite implication of FDs, INDs, and
MVDs, since 9 obeys no nontrivial MVDs. Further, our
proof shows that Theorem 5.1 holds, even if no relation
scheme has more than two attributes.

To conclude, we make one more remark about the nonexis-
tence of a k-ary complete axiomatization. Let us denote by
Z, the set B of FDs and INDs in the proof of Theorem 5.1,
and similarly let ok be (r of Theorem 5.1. Then the rule “if
Z, then ok” has more than k antecedents, none of which can
be eliminated and still leave a sound rule. However, the read-
er is cautioned against believing that this property, in and of
itself, shows the nonexistence of a k-ary compIete axiomatiza-
tion. For, let Tk be the set {At+Az, AZ-As,
Ak+t--A,,,} of FDs, and let rk be the FD At--A,+,. Then
the rule “if Tk then ok” has this same property, yet FDs have
a 2-ary complete axiomatization ([Ar], [Fa2j).

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

We have shown that inclusion dependencies have a simple
complete axiomatization, just as FDs do. However, when
INDs and FDs are considered together, then for no k is there
a k-ary complete axiomatization. This result was obtained
with the help of a general necessary and sufficient condition
for the existence of a k-ary complete axiomatization. This
condition is itself of interest, since it might help analyze
classes of dependencies that have not yet been completely
axiomatized (such as join dependencies [ABU]).

We have also shown that the decision problem for INDs is
PSPACE-complete. Thus, there is no polynomial-time decision
procedure (unless P=PdPACE). Although the decision prob-
lem for FDs is decidable and the decision problem for INDs is

decidable, we do not know whether the decision problem for
FDs and INDs together is decidable. This is one of the most
interesting theoretical questions about INDs and FDs, that
deserves further research.

REFERENCES

L-U1

WI

WI

P-1

[=I

WI

WI

[CFPI

[Co11

[Co21

175

A. V. Aho, C. Beeri and J. D. Ullman, “The Theo-
ry of Joins in Relational Databases,” ACM Trans.
on Database Systems 4,3 (September 1979), 297-
314.
W. W. Armstrong, “Dependency Structures of
Database Relationships,” Proc. IFIP 74 (1974).
580-583.
C. Beeri and P. A. Bernstein, “Computational
Problems Related to tke Design of Normal Form
Relational Schemas,” ACM Trans. on Database
Systems 4,l (March 1979), 30-59.
C. Beeri, R. Fagin and J. H. Howard, “A Com-
plete Axiomatization for Functional and Multiva-
lued Dependencies in Database Relations,” Prod.
1977 ACM SIGMOD Conf., 47-61.
C. Beeri and H. F. Korth, “Compatible Attributes
in a Universal Relation”, Proc. First ACM
SIGACT-SIGMOD Conf. on Principles of Data-
base Systems (1982), to appear.
C. Beeri and M. Y. Vardi, “Formal Systems for
Tuple and Equality Generating Dependencies”,
Hebrew Univ. of Jerusalem Technical Report
(April 1981).
P. A. Bernstein, N. Goodman, “What Does Boyce-
Codd Normal Form Do?“, Proc. 6th Int. Conf. on
Very Large Databases (1980), 245-269.
M. A. Casanova, R. Fagin, and C. H. Papadhnitrl-
ous, “Inclusion Dependencies and their Interaction
with Functional Dependencies”, IBM Research
Report RJ3380, San Jose, California.
P. Chen, “The Entity-Relationship Model - To-
ward a Unified View of Data,” ACM Trans. on
Database Systems 1,l (March 1976), 9-36.
E. F. Codd, “Relational Completeness of Database
Sublanguages,” in Data Base Systems (R. Rustin,
ed.), Prentice-Hall, New Jersey (1972).
E. F. Codd, “Extending the Database Relational
Model to Capture More Meaning,” ACM Trans.

[Fall

IFa21

Pa31

Fa41

[FMU

WI

[GJI

[JKI

WI

on Database Systems 4,4 (December 1980), 397-
434.
R. Fagin, “Multivalued Dependencies and a New
Normal Form for Relational Databases,” ACM
Trans. on Database Systems 2,3 (September
1977), 262-278.
R. Fagin, “Functional Dependencies in a Relation-
al Database and Propositional Logic,” IBM J. Res.
and Develop. 21.6 (November 1977), 534-544.
R. Fagin, “A Normal Form for Relational Databas-
es that is Based on Domains and Keys,” ACM
Trans. on Database Systems 6.3 (September
1981), pp. 387-415.
R. Fagin, “Horn Clauses and Database Dependen-
cies,” Proc. 1980 ACM SIGACT Symp. on Theory
of Computing, 123-134. Also, to appear, J. ACM.

IY] R. Fagin, D. Maier, J. D. Ullman and M. Yanna-
kakis, “Tools for Template Dependencies,” SIAM
J. Computing, to appear.
R. Fagin and M. Y. Vardi, “Armstrong Databases
for Interrelational Dependencies”, to appear.
M. R. Carey and D. S. Johnson, Computers and
Intractibility: A Guide to the Theory of NP-
Completeness, Freeman, 1979.
D. S. Johnson and A. Klug, “Testing Containment
of Conjunctive Queries under Functional and In-
clusion Dependencies”, Proc. First ACM SIGACT-
SIGMOD Conf. on Principles of Database Systems
(1982), to appear.
W. Kent, “Consequences of Assuming a Universal
Relation,” ACM Trans. on Database Systems 6.4
(December 1981), pp. 539-556.

WI

LPI

Lil

[Sal

WI

rw

Lw

[WMI

WI

[zal

A. Klug, “Entity-Relationship Views Over Uninter-
preted Enterprise Schemas,” Proc. Int. Conf.
Entity-Relationship Approach to Systems Analysis
and Design (1979), 52-72.
H. R. Lewis and C. Papadimitriou, Elements of the
Theory of Computation. Prentice-Hall (1981).
S. H. Lin, Existential Dependencies in Relational
Databases. Ph.D. Thesis, UCLA (1981).
W. J. Savitch, “Relationship Between Nondeter-
ministic and Deterministic Tape Complexities,” J.
Comput. System Sci. 4 (1970), 177-192.
F. Sadri and J. D. Ullman, “A Complete Axiomati-
zation for a Large Class of Dependencies in Rela-
tional Databases,” Proc. 1980 ACM SIGACT
Symp. on Theory of Computing, 117-122.
Y. Sagiv and S. Walecka, “Subset Dependencies
and a Completeness Result for a Subclass of Em-
bedded Multivalued Dependencies,” to appear, J.
ACM.
J. M. Smith and D. C. P. Smith, “Database Ab-
stractions: Aggregation,” Comm. ACM 20.6 (June
1977), 405-413.
G. Wiederhold, R. El-Masri, “A Structural Model
for Database Systems,” TR STAN-CS-79-722,
Stanford University (February 1979).
M. Yannakakis and C. Papadimitriou, “Algebraic
Dependencies,” Proc. 21st IEEE Symp. on Found.
of Computer Science (1980), 328-332.
C. Zaniolo, “Design of Relational Views over
Network Schemas,” Proc. 1979 ACM SIGMOD
Conf., 179-190.

176

