in
lence

O
B
O‘
Z
O
S
-
wepond
®
D
-

Computer Sc

SPECIFICATION OF DATA BASES
THROUGH REWRITING RULES

A.L. Furtado
P.A.S. Veloso
Pontificia Universidade Catdlica do R.J.

Brasil

ABSTRACT

Formalisms based on graph transformations are used to specify data base applica-
tions. Starting from an informal description, two formal specifications - one query-

oriented and the other update-oriented - are successively derived.

1. INTRODUCTION

Formal specifications of data bases present some well-know advantages. Unfor—
tunately they also present some problems. Paramount among these are difficulties in
constructing and in understanding them, as well as in finding modularization strategies
able to cope with the size and complexity of data bases. The use of grammars within a
sequence of complementary specifications can help alleviating the above problems. Gram—
matical formalisms over strings [12] or graphs [3,4] have been proposed for data.base

specification.

Starting from a verbal description of a data base application, one can visualize
each state as a graph representing the real-world facts. With each class of facts we
can associate some query operation, to ascertain whether a fact holds at a given state.
Next we select some application-oriented update operations, characterizing them by what
facts they cause to be asserted or denied (or, equivalently, by their effect on the
result of queries). This characterization can be done under the intuition-appealing

form of graph-grammar productions.

Then we change our perspective, recognizing that, since each state is obtainable
by some sequence of updates, terms consisting of such sequences can represent the
states. This leads to the specificatién of a canonical term algebra L, where each
operation corresponds to a transformation on trees. Now we can program a (hopefully
confluent and Noetherian) term-rewriting system [10,14] whose normal forms are exactly

the elements of .

Section 2 introduces the example to be used to illustrate the methodology,

giving first an informal description and then showing a representation of states as

103

graphs (more exactly, intersecting two-level trees). Section 3 gives the first formal
specification, which is query-oriented and uses a graph-grammar formalism. In section
4, an update-oriented specification, under the form of a term-rewriting system, is

derived. Section 5 contains the conclusions and references to complementary work.

2. INFORMAL DESCRIPTION

The contents of a particular data base at some instant of time is called a
state. To be more precise, a state is a possibly empty unordered collection of ground
positive litterals, here called facts. For specific data base applications only cer-—
tain kinds of facts are admitted. In our example, referring to an academic world, a

fact may be that a course is being offered or that a student is taking a course.

Not all states containing these two kinds of facts will be valid, however. Here

we impose the static constraint that students can only be taking currently offered

courses.

States as seen at different instants of time can differ. The passage from a
state to another is a transition. Valid transitions must involve pairs of states which
are both valid (with respect to static constraints), and, in addition, must obey the

required transition constraints. In our example, the only tramsition constraint is

that, once a student starts to take some course, the number of courses that he takes
cannot drop to zero (in the academic term being recorded). In other words, at any
subsequent state he must be taking some course, which in particular may be the same

one that he is taking in the current state.

The figure below shows a valid transition between two valid states, using inter-

secting two-level trees:

takes offered offered —_— takeg\\‘§\\\fff;iii\\s‘~§jffered
333 i24 i50 333 i24 150

One may assert or demy a fact. If a fact is denied it simply vanishes from the
data base, since only positive facts are kept. Assert, deny and create (an initial

empty state) are primitive operations. Systems where primitive operations can be

used directly, at the risk of possibly violating some conmstraint, are called open
systems. As an alternative more apt ro preserve constraints, we shall consider

systems with encapsulation, where only certain application-oriented update operations

are directly available.

The operations in our example are: initiate academic term, offer course, cancel

course, enroll student in course and transfer student from a course to another.

104

3. QUERY-ORIENTED SPECIFICATION

The nameé of the chosen application-oriented update operations clearly indicate
what should be their intended effects. However, in view of the declared constraints,
we still must determine the applicability conditions and possible side~effects of the
operations. Intended effects, conditions and side-effects are all expressible as the
result of queries on facts holding in the original or in the resulting state. In our

example we have:

a. initiate acedemic term

intended effects : create (an empty state)
conditions : none

side-effects : mone

b. offer course
intended effects : assert that the course is offered
conditions : none

side-effects : none

c. cancel course
intended effects : deny that the course is offered
conditions : no student is taking the course

side-effects : none

d. enroll student in course

intended effects : assert that the student takes the course
conditions : the course is being offered

side—effects : none

e. transfer student from a course to another

intended effects : deny that the student takes the first course and assert that
he takes the other one ‘
conditions : the other course is being offered

side~effects : nome
Certain assumptions should be made explicit:
- if the conditions for an operation fail, the current state remains unchanged;

- if the intended effects already hold, the state also remains unaffected (e.g.

enroll a student in a course that he is already taking or cancel a course that

105
is not being offered);
- each fact is represented only once.
We give below the specification of the operations as graph-grammar productions,
using the notation explained in [4]. The first production originates the initial empty
state, taking the start symbol S into the data base schema; the data base schema is

implicitly present on both sides of all the other productiomns.

[initiate] 1. - : S = TAKES OFFERED

l
STUDENT COURSE

[offer] 2. ¢ : > offered
éj c
[cancell 3. ¢ : takes offered >
L c
[enroll] 4, s ¢ : offered = . takes offered
é] é] c s/// \\\\\\\\c
[transfer] 5. s ¢ d: takes offered = takes. offered

|D é lJJ S/\C (!1 S/ \lli

It is easy to show that the two constraints will be enforced if the data base
is handled only through the above operations. The case of the transition constraint
is trivial because none of the operations reduces the number of courses that a student
is taking. The static constraint motivated the conditions for applying cancel, enroll

and transfer.

Some freedom of choice is given by the possibility of strengthening either com-

ditions or side-effects. For example, we might replace c by:

c'. cancel course
intended effects : deny that the course is offered
conditions : no student is taking the course exclusively

side-effects : deny that any student is taking the course

This example also shows how the enforcement of constraints depends on the

interplay of conditions and effects of operations. The condition in ¢' is motivated

106

by the transition constraint, which could now be violated by the execution of the

side-effects.

4, UPDATE-ORIENTED SPECIFICATION

So far we have specified a data base by describing each state by means of its
properties expressed by the facts that hold. In section 3 we encapsulated a particular
data base application to be handled only through a fixed set of update operations.
Then only states reachable by sequences of these operations will be generated and it

becomes natural to represent each such state by a sequence of operations creating it.

Each such sequence can be regarded as a trace [1,6]. We can then describe the

effects of each operation as a transformation on traces.
4.1 - Canonical Terms

It is convenient to choose as representatives a set of terms closed under sub-
terms. Then we shall have canonical terms [7]. Moreover, in order to have a unique

term representing each state, only certain terms are to be elected.

In the case of our example of a data base abplication it is clear that the
operations offer and enmroll, besides the initialization, suffice to generate all the
valid reachable states (these are then the comstructor operations [81). In fact, we
can be even more selective: a state where courses CpsreesCy are offered and the

enrollments consists of the pairs (Sl’dl)""’(sn’dn) can be represented as

initiate

enroll cen enroll ——— offer . offer
7\ / \ |
s d sn d c

1 1

n 1 m

where whenever c¢ occurs in an enroll then it also occurs in some offer.

In order to have uniqueness of representatives we fix a particular ordering
(say lexicographic) among courses and demand ep SeerSien - Analogously we also
require (sl,dl) << (sn’dn)' These terms will constitute our canonical represen—

tatives.
4.2 - Transformations
Now that we have a one—to-one correspondence between states and canonical re-

presentatives we can specify each application operation by describing the correspond-

ing tree transformationms on canonical representatives. In order to describe the

107

transformations on a term X of the form

enroll e enroll ————— offer v offer —————— initiate
/ \d / \cl | f
51 1 n n 1 ‘m

as above, we use the notation C = {cl,...,cm} , E= {(sl,dl),...,(sn,dn)}. Notice

that both sets can be read off from X. Also, we abbreviate X as

[0
(o]
=

]
(@]

With these considerations we can describe the updates as follows:

initiate academic term:
* e e
> initiate
offer ¢ at X:

% X if ceC

offer —— X —>
—— e
I |
c E

— o0 —— i otherwise

(Here, o. means o with offer inserted in its proper place according
|
Ct+c C c

ing; e.g. if c,<c<e, . t
to the ordering; e.g. if c;ce<e g hen

" offer ... offer).

o is offer ... offer offer
! | | 1 | |
C+c c1 ci c ci+1 cn

enroll s in d at X:
— i if ceC and (s,d) ¢E

e [
X |
enroll — X ——> ¢ E+(s,d) C
/7 N\ .
s d X otherwise
(Here e is analogous to o)
E+(s,d) C+e
cancel ¢ at t:
e o i if ceC and for any s (s,c) ¢E
* l [
cancel X ~—>1qE C-c

c X otherwise

108

(Here o denotes the result of removing offer from o ; e.g.

C-c) c C
if ¢ = ¢. then o is offer offer —— offer offer).
(|: I | T |
c ¢y cj_1 Ci41 <

transfer s from c to d at X:

e o i if (s,c) €E and deC
* l l
transfer — X —> E-(s,c)+(s,d) C
s c d X i otherwise
(Here T is the analogous of o)
E-(s,c) C-c
Similarly the queries can be described:
is ¢ offered at X:
True 1f ceC
*
offered X — -
| False otherwise
c
does s take d at X:
True if (s,d) ¢E
%
takes X — .
/ \ False otherwise
s d

The above transformations can be regarded as the specification of the "input-
output behavior" of a rewriting system. Our task now is to produce such a rewriting

system.
4.3 - Strategy

One way to arrive at a rewriting system performing the desired transformations

" consists in decomposing them into simpler transformations achieving some subgoals.

For instance, consider the transformations of offer c at X. We can:

- first, move the initial offer inwards over all the enroll's , obtaining

|

c

109

- Now, we continue moving offer—c inwards over the ci's while ¢ LT until

either we reach a c; with ¢ c; or initiate, obtaining:

e offer ... offer offer ... offer

| b I | |
E c c C. c
1 1 m

initiate

in which case we stop, or else we reach a c; with ¢ = e > i.e.

e offer ... offer offer ... offer initiate

E c1 c c cm

in which case we stop after deleting the extra occurrence of offer,

Cc

These sub-transformations suggest which rules to write. The rules can then be
checked to be sound and powerful enough to actually perform the required sub-trans—

formations. A detailed presentation of a complete example appears in [14].
4.4 - Rewrite Rules

We can now specify our example data base applicatibn by means of a system of
rewrite rules that performs the required transformations. This amounts Basically to
design a (possibly non-deterministic) program performing symbolic manipulations on
trees. In fact, we shall present our rewriting system in a procedural notation [15],
which consists of rewrite rules with a superimposed order: of application (resembliﬁg,‘

e.g., programmed grammars [131).

For each application operation we shall a procedure that performs the required,
transformation on a canonical representative, passed as parameter. Traceé will cor-
respona to syntactically correct sequences of procedure calls, resulting in the
corresponding canonical representatives. Procedures for queries should inspect the

canonical representative to return True or False.

Each procedure consists of a heading followed by an optional pre-condition
testing and then by a match statement. The latter recursively analyses the tree
structure of the canonicai representative X passed as parameter. The value re-
turned‘by a particular invocation of the procedure is the value of the right-hand

side of the first =>-statement whose left-hand side happens to be satisfied.

In all procedures we assume the following type declarations:

s , t: student ; ¢

»

op initiate academic term!

= initiate

endop

op offer ¢ at X!

110

d , e: course ; X , Y : state.

_match X :
initiate => offer initiate
[
c
offer Y = case ¢ %
d ¢ < d : offer
c
c =d : offer
]
d
c > d : offer
[
d
endcase
enroll —— Y = enroll offer
7\ VAN
s d s d
endmatch
endop
op enroll s in ¢ at X!
= is ¢ offered at X? = X;
match X
enroll —— Y = case (s,c) * (t,d)

t/ \d

(s,c) < (t,d)

(S,C) = (s ’d)
(s,¢) > (t,d)

endcase

otherwise => enroll ~—— X

endmatch

endop

S/ \C

c at Y!

: enroll

offer ¢ at Y!

enroll —— Y

s/ \c
: X

: enroll

t/ \d

t/ \d

enroll s in ¢ at Y!

m

op cancel ¢ at X!
match X
—

initiate = X

offer Y => case ¢ ¥ d
|
d c=d:Y
c #d : offer - cancel c at Y.
I
d
endcase
pai LA
enroll —— Y => case ¢ * d
il Py
/ N\
ot d c=d: X

c #d i enroll cancel c at X!

7N\
£ d

endcase
e
endmatch
endop
it 4

op transfer s from ¢ to d at !
match X
——

enroll —— Y => case (s,c) ¥ (t,e)

t/ \e

(s,c) < (t,e) = X
(s,c) = (t,e) : enroll s in d at Y!

(s,c) > (t,e) : enroll transfer s from ¢ to d at Y!

t e
endcase
otherwise = X
_—

endmatch

endop

query is c offered at Y?
et
match X

initiate => False

offer Y = case c *d
L ¢ < d : False
c =d : True
¢ >d: is c offered at Y?
endcase
_enroll — Y = is ¢ offered at Y?
t/, \d
endmatch

enﬁquerz

112

query does s take ¢ at X?

match X

initiate = False

offer Y = False
|
d
enroll —— Y = case (s,c) * (t,d)

/ \;

(s,e) < (t,d) : False
(s,c) = (t,d) : True ‘
(s,c) > (t,d) : does s téke c at Y?
endcase
endmatch -

endquery

These procedures taken together form the analogue of a CLU-1like cluster [11].
In fact, it can be verified that this cluster will generate exactly the trees cor-
responding to the canonical representatives. That is the reason why the match-state-
ments contain at most three patterns corresponding to the comstructors. It is worth-
while remarking that this fact allows the form of the rules to be simpler. For

instance, the procedure for transfer contains the following rewrite rule:

transfer enroll Y — enroll Y
/1N / N\ /N
s c d s c s d
which is not necessarily sound if enroll —— Y is not guaranteed to be canonical.

S/ r\C

5. CONCLUSIONS AND FURTHER COMPLEMENTARY WORK

We have started from intuition-oriented specifications to obtain specifications
where some problems are more amenable to formal treatment. The usage of a graph re-
presentation throughout all stages further contributed to making the formal spec1f1-

cations understandable.

Both formalisms — query~-oriented and update-oriented - were based on trans-
formations. We might have used instead generative grammatical formalisms, able to
either generate or parse (depending on the direction according to which the rules

are used) valid instances of states and transitioms.

Modularization appears to be conmected with some grammatical aspects.. Indeed,

one can view a module as generated from a nonterminal. Also operations on languages

113

can be used to combine grammars for diverse modules.

Expressing constraints across separately generated modules, i.e. non-local or

"context-sensitive" constraints, becomes a simpler task when the grammatical formalism

is based on two-level grammars, which also encompass in a natural way the notion of

parameterization [16]. Using W-grammars [2,9,17], we have been able to formalize a .

number of fundamental data base concepts, including'mappings between schemas [5].

Finally, [15] contains an example showing how to obtain an algebraic specifi-

cation (under the form of conditional axioms) from a rewriting system in procedural .

notation.

ACKNOWLEDGEMENT

Financial support from the Conselho Nacional de Desenvolvimento Cientifico e

Tecnologico is gratefully acknowledged.

REFERENCES

[1] BARTUSSEK,W. and PARNAS,D. "Using traces to write abstract specifications for
software modules" ; Technical Report 77-012; University of North Carolina (1977)

[2] CLEAVELAND,J.C. and UZGALIS,R.C "Grammars for pfogramming languages"; Elsevier
North-Holland (1977).

[3] EHRIG,H. and KREOWSKI,H.J. "Applications of graph grammar theory to consistenmcy,
synchronization and scheduling in data base systems'"; Information Systems, vol.
5 (1980) 225-238,

[4] FURTADO,A.L. "Transformations of data base structures"; In 'Graph-Grammars and
their Application to Computer Science and Biology'; Claus,V., Ehrig,H. and
Rozenberg,G. (eds.); Springer Verlag .(1979) 224-236.

[5] FURTADO,A.L. "A W-grammar approach to data bases"; Technical Report 9/82; Pon~
tificia Universidade Catdlica do Rio de Janmeiro (1982).

[6] FURTADO,A.L and VELOSO,P.A.S. "On multi-level specifications based on traces";
Technical Report 8/81; Pontificia Universidade Catolica do Rio de Janeiro
(1981).

[7] GOGUEN,J.A., THATCHER,J.W. and WAGNER,E.G. "An initial algebra approach to the

specification, correctness and implementation of abstract data types"; In
"Current Trends in Programming Methodology', Vol. IV, Yeh,R.T. (ed.); Premtice-
Hall (1978).

L8l

[9l

[10]

f11]

[12]

£13]

[14]

[15]

[16]

[171]

114

GUTTAG,J. "Abstract data types and the development of data structures"; Comm.
of the ACM, 20 (1977) 397-404.

HESSE,W. "A correspondence between W-grammars and formal systems of logic and
its application to formal language description'; Technical Report TUM-INFO-
7727, Technische Universitit Minchen (1977).

HUET,G and OPPEN,D.C. "Equations and rewrite rules: a survey'"; Technical Report

STAN-CS-80-785, Stanford University (1980).

LISKOV,B. et al. "Abstraction mechanisms inCLU"; Comm. of the ACM, 20 (1977)
564~576.

RIDJANOVIC,D. and BRODIE,M,L. "Defining database dynamics with attribute
grammars'; Information Processing Letters, Vol. 14, n® 3 (1982) 132-138.

ROSENKRANTZ,D.J. "Programmed grammars and classes of formal languages'; Journal

of the ACM, vol. 16 (1969).

VELOSO,P.A.S. "Methodical specification of abstract data types via rewriting
systems'; Technical Report 7/81, Pontificia Universidade Catolica do Rio de

Janeiro, (1981).

VELOSO,P.A.S., CASTILHO,J.M.V. and FURTADO,A.L. "Systematic derivation of
complementary specifications'; Proc. Seventh International Conference on Very

Large Data Bases; (1981) 409-421.

WAGNER,E.G. "Lecture notes on the algebraic specification of data types";

Technical Report RC 9203 (#39787), IBM Thomas J. Watson Research Center (1981).

WIJNGAARDEN,A, van et al (eds.). "Revised report on the algorithmic language
ALGOL 68"; Acta Informatica, 5 (1975) 1-236,

