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Abstract 

Many concurrency control algorithms for dis- 
tributed database management systems have been pro 
posed in the last few years, but little has been 
done to analyse their performance. This paper pres 
ents the specification of a concurrency control ai 
gorithm based on the two-phase commit protocol for 
DDBs. The results of a complete performance analy- 
sis based on an analytic model are presented and 
discussed. 

1. Introduction 

A database which has its data elements stored 
at several sites of a computer network is called a 
distributed data base (DDB). When a DDB is subject 
to concurrent access from many users submitting 
their database requests (transactions) at the same 
or at different sites, the semantic integrity of 
the database may be violated. Therefore, concur- 
rency control mechanisms have to be incorporated 
in the design of the distributed DBMS (DDBMS).Many 
different solutions have been proposed in the last 
few years in the literature [1,2,3,4,5,6,7,8 and 
181. 

A nice and comprehensive study of concurrency 
control (CC) mechanisms was given by Bernstein and 
Goodman in [9 and 101. Their work classify concur- 
rency control mechanisms into timestamp based and 
locking based ones. An important contribution of 
the work in [9] is the recognition that CC mech- 
anisms can be obtained by combining a read-write 
synchronization technique with a write-write syn- 
chronization technique. For instance, for times- 
tamp based CC mechanisms they considered three dif 
ferent techniques for read write synchronization - 
and four techniques for write-write synchronization, 
geprating a total of 12 principal CC mechanisms. 
By introducing some modifications to the basic 
techniques, over 50 different CC mechanisms can be 
generated. 
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In the presence of a such a multitude of CC 
mechanisms one is faced with the problem of com- 
paring their performance. Among the few works on 
performance of CC mechanisms we have [11,12,13,19 
and 141. This paper presents a specification and 
a performance evaluation of a concurrency control 
mechanism based on the two-phase commit protocol. 

Section two of this paper presents very 
briefly some of the background needed to read this 
paper. We assume that the reader is familiar with 
aspects of concurrency control in distributed data 
bases. Section three presents the algorithm in an 
informal but easy to understand manner. The al- 
gorithm uses timestamp ordering to achieve write- 
write synchronization and uses the two-phase com- 
mit protocol to achieve atomic updates. Section 
four introduces the analytic model used in the 
analysis, and section five lists the results ob- 
tained in the analysis. Section six concludes with 
the presentation of several curves to illustrate 
the behavior of the algorithm under several cir- 
cumstances. Simulation was used to verify the ac- 
curacy of the analytic model. A comparison between 
the simulation and the analytic results also ap- 
pears in section 6. 

2. Basic Concepts and Definitions 

A distributed database (DDB) is a database 
with its data elements stored at several sites of 
a computer network. Certain data items may be re- 
dundantly stored at more than one site, for relia- 
bility reasons. If a copy of all data items of the 
database exists at every site then the DB is said 
to be fully replicated. Otherwise it is said to be 
partially replicated. In the former case, queries 
can be completely evaluated at a single site,while 
in the latter, several query processing alterna- 
tives exist. The selection of an optimum query 
evaluation strategy which minimizes response time 
has been studied by several authors ClSl. We are 
not interested in studying this effect, but rather 
the impact of the degree of conflicts betweentrans 
actions in their response time. Therefore, we as- 
sume that the DB is fully replicated since con- 
flicts between transactions will occur irrespectiw 
of the degree of replication of the DB. 

Users interact with the database through 
transactions which may be of two types: read tra?Z 
actions and update transactions. A read transactlm 
is composed of one or more read acttons plus anJl 
processing that may be necessary. Since tha DDB 1s 



fully replicated the read actions can be performed 
at a single site. An update transaction, .besides 
reading and processing, will update the DB. In 
this case, all copies must be updated. 

The execution of an update transaction can 
be divided into three phases: a read and processing 
phase, a pre-commit phase and a commit phase.During 
the pre-commit phase all information necessary to 
update the database is stored in stable storage in 
all sites. This information is,called an intentions 
list Cl6 and 171. During the commit phase the data- 
base is actually updated through the execution of 
the intentions list. A detailed explanation of the 
implementation of intentions lists can be found in 
c171. 

For each transaction there is a process, cal- 
led transaction controller (TC), that manages the 
execution of the transaction. The TC is assumed to 
reside at the site where the transaction is intro- 
duced in the system (the site of origin of the 
transaction). Upon arrival at the system, a trans- 
action is assigned a unique timestamp. 

3. The Concurrency Control Algorithm 

The algorithm presented here is rather simple 
and is based on well known ideas such as the use of: 

i) 

ii) 

iii) 

two-phase commit protocol for atomic im- 
plementation of update transactions 

locking for conflict detection between 
transactions 

timestamps,delays and restarts for conflict 
resolution between transactions. 

The execution of a read transaction is total- 
ly accomplished at the site of origin of the trans- 
action. The read and computation actions of an up- 
date transaction are executed at its site of origin 
while the update actions have to be executed at all 
sites. During the first phase of the two-phase com- 
mit, update information is broadcast to all sites 
and during the second .phase the updates are actual- 
ly committed to the database. 

Locks are used by transactions to indicate 
their intention to read or update the DB. (A de- 
tailed description of the types of locks con- 
sidered here is given later). In this way, a trans 
action can be prevented from accessing a database 
resource if it is locked in an incompatible way 
by another transaction. Instead of waiting in a 
queue for the desired resource, transactions retry 
after a certain delay. 

An update transaction must successfully lock 
all needed resources at its site of origin before 
reading the database. Locks are held until the end 
of transaction. During the execution of an update 
transaction, no other conflicting transaction will 
be able to lock the resources it needs. These 
transactions will have to retry some time later. 

Once an update transaction locks its resources 
at its site of origin it must try to lock these re- 
sources attheremaining sites. As it is not possible 
to instantaneously lock the needed resources at all 
sites, deadlocks may arise. In order to deal with 
this problem, timestamp are used to establish 
priorities between transactions. A timestamp is as- 
signed to a transaction by its controller. This 
timestamp indicates the instant when the transaction 

succeeded in locking all needed resources. Trans- 
actions with smaller timestamps are given higher 
priority. During the precommit phase an update 
transaction may be rejected by a transaction of 
higher priority. The rejected transaction must 
free all acquired resources and be resubmitted. 

An update transaction may start its read ac- 
tions at a given site even if there are other con- 
flicting read transactions but no other conflict- 
ing update transaction at that site. However, in 
order to start the execution of its update actions 
an update transaction must wait until all conflict 
ing read transactions finish. 

Propagation of lock requests and update in- 
formation to any site is accomplished in a single 
message. Let us now describe the different types 
of messages and lock modes used in our concurrency 
control algorithm. 

The following messages are involved. 

a. PRECOMMIT(t) : 

b. ACK(t) 

c. REJECT(t) : 

d. COMNIT(t) : 

this message is broadcast from 
the transaction controller of 
transaction t to all other sites, 
requesting &at they store their 
intentions lists in stable stor- 
age. 

this message is sent by a site 
to the TC of t to indicate that 
the PRECOMMIT-message was ac- 
cepted and that the intentions 
list of t was already stored in 
stable storage. 

this message is broadcast by a 
site to all other sites to indi- 
cate the rejection of the 
PRECOMMIT of transaction t. - 
this message is broadcast by the 
transaction controller of t to 
tell all other sites to execute 
their intentions lists. 

Any database item may be in six different 
states: 

1. u 

2. (SH,i) : 

3. WK 

4.ST : 

5. (IWK,i): 

unlocked 

locked in share mode by i read trans- 
actions. This lock mode is used for 
read-only transactions. 

locked in weak mode. An item is put in- 
to this state-to indicate that an up- 
date transaction intends to.update it. 
This type of lock may be lifted by 
other transactions under certain cir- 
cumstances as will be seen later. 

locked in strong mode, This indicates 
that the item is being update. This 
type of lock may not be lifted by 
another transaction. 

locked in intention WK mode for one up- 
date transaction andlocked in SH mode 
by i(i>O) read transactions. Whenever 
a WK lock would be placed on an item 
locked in SH mode, an IWK lock is used 
instead. When all read transactions 
release the SH lock on the item, the 
IWK lock is converted to WK lock. 
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6. (IST,ij: locked in intention ST mode by an up- 
date transaction andyocked in SH 
mode by i (i>O) read transactions. 

Figure 1 illustrates the possible transitions 
for the state of a database resource at a given 
site. The labels on the arrows indicate the kind of 
lock request which caused the transition. The 
labels SH, WK, ST and U indicate a request to place 
the resource in SH, WK, ST and U mode respectively. 
A superscript is used to distinguish different 
situations when resources are freed. 

An update transaction is only allowed to 
request to place a resource in ST or IST mode if it 
is in WK or IWK for the same transaction. 

t I, 7 I I 

SH,l IWK ,1 ST IST.1 
I 

SH Lll ul 

F-TIC' 

"1 
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1 t 
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+I--&<+>-:+] 
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ul : the resource is freed by a read transaction. 

U2 : the ~.CSOU~CE is freed by a, update transaction re- 

jccted during the prccommit phase. 

u3 : the ~csource is freed by an update transaction which 

completes. 

Figure 1 - Transitions Setween Lock Modes 

In order to describe the algorithm a graphic- 
al representation will be used to help the reader 
to visualize what is really going on. The following 
graphical conventions are used: 

if condition C is true 
then go to 5 else go to 
b. - 

place all items of a 
transaction in x mode.The 
lock mode which results 
from this request can be 
found by examining the di? 
gram of figure 1. 

.)o broadcast message M. 

> 

rl A --CL 
-I ..* 

send message M. 

arrival of message M. 

save message M. 

access the database. 

the rate at which trans- 
actions cross the circled 
path is X. 

waiting for a message to 
arrive. 

We are now ready to describe the algorithm a 
correctness proof of which can be found in 1201. 
The graphical description that follows illustrates 
the algorithm as executed at a single site. All 
sites implement the same algorithm. Let us first 
consider read transactions (see figure 2). When 
read transactions arrive they perform the test in- 
dicated in the figure. If the answer is no (N exit) 
then the test is repeated after a certain delay. 
Otherwise, the necessary items are locked in share 
mode, the database is read and the resources are 

Cl : are all the resources needed in U or SH mode? 

Figure 2 - Reed Transaction 

unlocked. The algorithm for update transactions is 
shown in figure 3. 
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(3-b) 

Cl : 

c2 : 

The conditions for the tests in figure 3 are 

are all needed resources in U or SH mode? 

are all needed resources still locked in WK or 
IWK mode for the transaction? 

c3 : 

c4 : 

c5 : 

are the needed resources free, locked in SH 
mode or locked in WK or IWK mode for trans- 
actions with greater timestamp? 

is the node the TC of the transaction? 

is the number of received ACKs (#ACK) equal to 
N - 2? 

C6 : 

c7 : 

are all the needed resources in ST mode? 

C8 : 

has the site already received a PRECOMMIT mess - 
age for this transaction? 

is there a saved REJECT for the transaction? 

date 
must 
cess 

Figure 3.a represents the arrival of an up- 
transaction at a given node. The transaction 
initially read the database (see database ac- 
box labelled l), and then, in parallel, start 

to store its intentions list in stable storage(box 
labelled 2) and broadcast the PRECOMMIT messages. 
The arrival of a REJECT message at the site of the 
TC causes the transaction to be restarted. Figure 
3.b shows that when a PRECOMMIT message is received 
it can be either accepted or rejected. Notice 
that a PRECOMMIT message may lift locks placed in 
WK or IWK mode by transactions of greater timestamp. 
This is the reason why the test of condition C2 in 
figure 3.a is necessary. Figure 3.c shows that when 
all ACKs are received by the TC of the transaction, 
a COMMIT message is broadcast to all other sites. 
The database access box labelled 3 represents the 
execution of the intentions list. Finally, figure 
3.d shows what happens when a COMMIT message is 
received. 

Figure 3 - Update Transaction 

As it can be seen from the test of condition 

c3’ a precosnnit of a transaction with a smaller 
timestamp has higher priority over one of greater 
timestamp. In other words, precommits of conflict- 
ing transactions are accepted in timestamp order. 
This is how write-write synchronization isachieved 
(see Bernstein 80a). In C201 a proof 
that any execution generated by this algorithm is 
serializable, and that read transactions always 
see consistent data, can be found. 

Let us conunent on the necessity of the test 
of condition Cg before actually executing the in- 
tentions list of a transaction. Whenever a node is 
ready to commit, all resources involved are either 
in ST or IST mode. If all resources are in ST node 
then the commit can be done right away. Otherwise, 
it must be delayed until the IST mode is converted 
to ST mode. This will hanpen when read transactions 
that were reading when the IST mode was installed 
finish to read. It should be remembered that after 
the IST mode is granted, no other read transaction 
is allowed to start. Therefore, it is very likely 
that no wait will be necessary before executing 
the commit, since an interval of at least 2T time 
units (T is the message transmission time) will 
elapse between the granting of an IST lock and the 
execution of the commit. 

A final comment on the algorithm is that there 
is no situation in which a transaction has to wait 
for database resources. This is avoided using 
delays and retries. 

4. Model Definition and Parameters 

In this section we present the assumptionsand 
parameters used to construct the model analysed in 
this paper. 

4.1 Transaction Characterization 

The set of resources read by a transaction is 
called its read set and the set of resources up- 
dated by it is called its write set. Our first as- 
sumption for transactions is: 

Tl : The size of the read set is the same as the 
size of the write set and is the same (con- 
stant) for every transaction. 

The next assumntion is concerned with the ar- 
rival process of transactions. 

T2 : Read and update transactions arrive at the SE 
tern according to a Poisson process. The total 
arrival rate of read or update transactions 
is equally divided among all sites, i.e. the 
load is balanced. 

The important measure of interest for trans- 
actions is their response time. The response time 
of a transaction is measured as the time interval 
between the instant the transaction is submitted 
to the system and the instant when the user is 
notified of the completion of the transaction. UP- 

date transactions are considered to be completed 
when all sites have written their intentions list 
into stable storage, since from this point on, the 
modifications generated by the transaction will be 
reflected into the database no matter how many fail 
ures occur. For read transactions the completion 
instant is when all read and processing actions 
have been executed. 
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4.2 Network and DDB Assumptions 

The assumptions regarding the database are 
the following: 

Dl : The database is fully replicated 

D2 : The total number of items which compose the 
database is constant, i.e. we disregard in- 
sertions and deletions to the database. 

The assumptions regarding the network are the 
following: 

Nl : The network does not lose nor duplicates mes- 
sages. Actually, the transport layer at each 
node implements this property for messages. 

N2 : ?lessages that go from site A to site B arrive 
at their destination in the same order they 
were sent. 

N3 : The transmission time between a pair of nodes 
is assumed to be constant. 

4.3 Site Assumptions 

This section considers the assumptions about 
the computer system of a site. Our model takes into 
account that transactions use both CPU and I/O de- 
vices and that they compete for the use of these 
resources. The model used to analyze this effect is 
shown in figure 4 and is a network of queues. 

P L 

Figure 4 - Model of a Site 

As we can see, there are (D + 1) queues.Queue 
0 is the CPU queue and the remaining ones are as- 
sociated with the D existing I/O devices. After 
being served at the CPU, transactions move to any 
one of the I/O devices with equal probability. The 
probability 2 shown in figure 4 was introduced to 
add another characteristic to transactions, namely 
their complexity. Complex transactions will have to 
go through several cycles before they leave the sys 
tern (small values of p), while simple transactions- 
will require few cycles (p closer to one). The CPU 
and all I/O devices are assumed to be exponential 
servers with FCFS queueing discipline. 

4.4 List of Parameters and Performance Measures 

A list of all parameters considered in the 
model is given below: 

n = number of resources used by a transaction 

XY= average arrival rate of read transactions per 
node. 

Xu= average arrival rate of update transactions per 
node. 

p = probability that a transaction leaves the com- 
puter system after being served by an I/O de- 
vice. 

M = number of resources of the database. 

D = number of I/O devices per node. 

N = number of sites in the network. 

T = transmission time of a message between a pair 
of nodes. 

P cpu 
= average CPU processing rate. 

u. = 
10 

average I/O device processing rate. 

RD = resubmission delay during the read phase, 

The performance measures of interest are 

Rr = average response time of read transactions. 

R 
U 

= average response time of update transactions. 

5. Performance Evaluation Results 

This section presents the results obtained in 
our analysis. All derivations can be found in [20]. 

Before we present the results, we would like 
to comment on some assumptions we made. The first 
strong assumption used throughout the analysis is 
that the arrival process of any kind of message is 
a Poisson process. This approach was taken because 
otherwise the analytic model would become extreme- 
ly hard to manage. In order to verify how good an 
approximation this is, we built a simulation pro- 
gram in SIMSCRIPT II. The simulation results agre- 
ed very well with the analitic ones, as one can see 
from table 1. 

The other assumption that we would like to 
comment on is assumption Tl, namely that all trans- 
actions use a constant number, n, of resources. 
This choice was adopted because it simplified the 
analysis and also because we did not have actual 
data that could serve as an indication of what 
would be a realistic distribution of the size of 
the read or write sets. Cur assumption implies that 
the probability of conflict between two transacticns, 
denoted by PC is 

CM;) 
l- - if n < M/2 

PC = 

1 1 otherwise (1) 

We assume that the average time spent at the 
computer system to execute the read actions of a 
transaction and the average time to store its in- 
tentions list in stable storage are the same. Let 
this time be denoted by t. Then we have the fol- 
lowing result. 
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Result 1: given by 

~=&-.- + ocpu DP. 

B l - ocpu 
1 (2) 

where P 
I? =- 

CP” PCI CP” 

‘io 
D =- 

PDI.Iio 

x 1 

B=h N-1 
r + -2 Cl + r + (N - l)p3 

p3 p2 
1 

and 

p2 i Pr Can update transaction is not rejected after 
read-computation phase but before entering 
its precommit phase1 

a 
P3 = L’an update transaction is not rejected 

during its precommit phase1 

Result 2: The average response time, Rr, of a read 
transaction is given by 

9 

1 - Pl 
= RD(- )+t 

Pl 

where, 

(3) 

pl i ‘r [a transaction finds all needed resources 
free or locked in SH mode at its site of 
origin1 

Result 3: The average response time of an update 
transaction is given by 

Rr 2T R =-+ -+maxCEl 
u p2p3 p3 N-l 

(4) 

where the notation KC;1 indicates the expected 
J 

value of a random variable defined as the maximum 
between j random variables distributed as the ran- 
dom variable v. Since E is the random variable 
which indicates the time a node takes to process 
an external PRECOMIT message, sTc:l is the aver- 

age maximum time it takes the PRECOMMIT message 
to be processed at the (N-l) nodes. 

We show in Result 4, an expression for 
the average of thE! maximum of a given number of 
identically distributed random variables. This 
derivation is rather simple if we assume that t” is 
exponentially distributed with an average F. 

Result 4: Let 7 be a random variable defined as 

y = maxCxl,%2,..,,%kl where x”l,...,xk are identical 

and independently distributed random variables. Let 
the xi r.v.s. be all exponentially distributed with 

average X. Then, the expected value of 7, i is 

k-l (k?) (-1)j 
y=maxCiil=k: C 

k j=O (j+1j2 
(5) 

Result 5: The probability that a transaction finds 
all needed resources free or locked in SH mode at 
its site of origin, pl, is given by 

Pl = 
‘“d”’ (M,-nk) pke-P 

k=O (!) k! 

where p2C2T + p3 maxCEll + 
N-l 

2-N N-2 

+ (N - l)X”~~~-l IT + p3 N-lCT + maxC~l1) 
N-l 

(6) 

Result 6: The probability, p2 that an update trans 
action is not rejected after its read phase but- 
before it enters its precommit phase is given by 

= (vt + 1) 
1-N 

p2 

where 

2-N 

y = A” PC p3N-l 

Result 7: The probability, p3, that an update tram 
action is not rejected during its precommit phase 
is given by 

P3 = c 
.-CXT 

1 - (at)2 

,N-1 
(8) 

2-N 

where a = h”PC p N-1 
3 

In order to obtain Rr and Ru, the following 
procedure would be used. 

1. Choose initial values p2(‘) and pi(‘) for the 
probabilities p2 and p3. Recommen ed values are 
0.9999. Set i=O. 

2. 

3. 

4. 

5. 

Compute E using p2 (9 
and p3 

(9 according to 
Result 1. 

Compute p (i+l) using Pi and f according to 
Result 7.3 

Compute p (i+l) using ~3(~+‘) and t according 
to Res”lt’6. 

If maxj [ (p2 
(i+l) - p2(i))/p2(i+l) I, 

I(p3(i+l)- p3(i))jp3(i+l)lj is greater than a 

given tolerance, then set i=i+l and go to step2. 
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6. 

7. 

8. 

9. 

6. 

Compute E using p2 (i+l) and ~3(~+') according to 
Result 1. 

Compute pl using p3 
(i+l) , p (i+l) 

2 and f accord- 
ing to Result 5. 

Compute Rr using pl and t according to Result 
2. 

Compute R using R,, p2 (i+l) , p (i+l) - 
3 and t ac- 

cording t! Result 3. 

Conclusions 

Many concurrency control algorithms for DDBs 
have been proposed in the last few years. In the 
vast majority of cases, their performance analysis 
has been limited to counting the number of messages 
or the number of bits transmitted. In this paper we 
presented a concurrency control algorithm and the 
results of a performance evaluation which yielded 
results such as average response time of read and 
update transactions.and utilization of CPU and I/O 
devices, as a function of several parameters and as 
a function of the degree of conflicts between trans 
actions. 

The results obtained in the previous section 
allows us to draw many interesting curves, but due 
to space limitations, we will concentrate only on 
four of them. 

Figure 5 displays the variation of theaverage 
response time of update transactions, Ru, as a fun2 
tion of their average arrival rate. Two sets of 
curves are shown: one for M = 200 and one for 
M = 500. For each value of M, two values of l/&are 
considered. As it can be seen from the figure, read 
transactions have little impact on update trans- 
actions. Both sets of curves exhibit a similar be- 
havior. In the beginning Ru grows very modestly 
since the average arrival rate of transactions is 
sufficiently small so that conflicting transactions 
interfere very little with one another. After a 
certain point, the average arrival rate of update 
transactions is high enough so that the effect of 
the degree of conflicts between them starts to im- 
pact considerably their average response time. This 
effect is superimposed with that of the increased 
contention for CPU and IO resources in the computer 
system of each site. The isolation of these two ef- 
fects can be seen in Figures 6 and 8 discussed below. 

Figure 6 shows the interesting effect of the 
complexity of update transactions ,p, on their aver- 
age response time R,, (p is the probability that a 
transaction leaves the computer system after being 
served by an I/O device). A decrease in p represents 
an increase in the numbers of CPU-IO cycles that 
will have to be performed by each transaction. In 
other words for a given arrival rate of update trans 
actions, smaller values of p imply higher contention 
for computer system resources. As one can see, this 
increase in load has a heavy impact on Ru. Also indi 
cated in Figure 6 is the average response time, g,- 
of an update transaction which finds the system 
empty. These values can be interpreted as a lower 
bound on Ru, since no interference between trans- 
actions is considered. 

Each one of the three curves of Figure 8 
shows the variation of R as a function of the size 
of the transaction, n, fzr a given value of l/X,.As 

the size of a transaction increases, the probabil- 
ity of conflicts between transactions also 
increases. However, this effect can be better ob- 
served for higher values of A,,. For instance, the 
curve for l/x,= 3.0 grows much faster than that 
for l/A,= 20.0. It is worth noticing the dramatic 
effect that the number of DB resources referenced 
by a transaction has on performance. Consider the 
curve for 1/Xu=3.0. For ~10, R, is 59% higher 
than its value for n=2, although the number of 
resources referenced by a transaction grew from 1% 
to 5% of the total DB resources. 
This can be explained by the fact that, for n=2,the 
probability of conflict, PC, is equal to 0.0199 
while for n-70, PC = 0.4085. 

Finally Figure 7 shows the variation of the 
utilization of the CPU and IO devices with X, and 
x r' 

In order to render our analysis more manage- 
able we made two simplifying assumptions, namely 
that the arrival process of any type of message at 
a given site is Poisson and that the computation 
time at each node is exponentially distributed. A 
simulation model was developed to verify the valid 
ityofthese assumptions. As one can see from table 
1 the maximum observed error is of the order of 
10% even when the system is heavily loaded. In 
other words, the analytic model is remarkably ac- 
curate. 

1.2 r 

o-6t , . # . , I , I , Jl/Au 
10. 6. 6. 4. 2. 0. 

~=6; ~~0.2; ,,=5; D=3; T=O.l; RD=O.5; 1hcpu=0.005; 

1/~i,=o.025; 

Figure 5 - Ru v.cj aver.inter arrival time of upCate trans. 

R” r l/Au= 3.0 

1.4 - 

1.0 

I' 
/ I 

0.6 

!J 
*I' 

-c' c* 
___ _- -- 

__-- 

5.0 

20.0 

G 

0.2 
c 
1,. , I. 8, Ip 
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