
PERFORMANCE EVALUATION OF A TWO-PHASE COXMIT BASED PROTOCOL FOR DDBs

Daniel A. Menascz
Departamento de Informatica

PontifIcia Universidade CatGlica,
22453 Rio de Janeiro, Brazil

Abstract

Many concurrency control algorithms for dis-
tributed database management systems have been pro
posed in the last few years, but little has been
done to analyse their performance. This paper pres
ents the specification of a concurrency control ai
gorithm based on the two-phase commit protocol for
DDBs. The results of a complete performance analy-
sis based on an analytic model are presented and
discussed.

1. Introduction

A database which has its data elements stored
at several sites of a computer network is called a
distributed data base (DDB). When a DDB is subject
to concurrent access from many users submitting
their database requests (transactions) at the same
or at different sites, the semantic integrity of
the database may be violated. Therefore, concur-
rency control mechanisms have to be incorporated
in the design of the distributed DBMS (DDBMS).Many
different solutions have been proposed in the last
few years in the literature [1,2,3,4,5,6,7,8 and
181.

A nice and comprehensive study of concurrency
control (CC) mechanisms was given by Bernstein and
Goodman in [9 and 101. Their work classify concur-
rency control mechanisms into timestamp based and
locking based ones. An important contribution of
the work in [9] is the recognition that CC mech-
anisms can be obtained by combining a read-write
synchronization technique with a write-write syn-
chronization technique. For instance, for times-
tamp based CC mechanisms they considered three dif
ferent techniques for read write synchronization -
and four techniques for write-write synchronization,
geprating a total of 12 principal CC mechanisms.
By introducing some modifications to the basic
techniques, over 50 different CC mechanisms can be
generated.

permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
public&m and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To COPY
o&e&se, or to republish, requires a fee and/or Specific permission.

@ 1982 ACM O-89791-070-2/82/003/0247 $00.75

247

Tatuo Nakanishi
Escola Federal de Engenharia de Itajubz

Minas Gerais, Brazil

In the presence of a such a multitude of CC
mechanisms one is faced with the problem of com-
paring their performance. Among the few works on
performance of CC mechanisms we have [11,12,13,19
and 141. This paper presents a specification and
a performance evaluation of a concurrency control
mechanism based on the two-phase commit protocol.

Section two of this paper presents very
briefly some of the background needed to read this
paper. We assume that the reader is familiar with
aspects of concurrency control in distributed data
bases. Section three presents the algorithm in an
informal but easy to understand manner. The al-
gorithm uses timestamp ordering to achieve write-
write synchronization and uses the two-phase com-
mit protocol to achieve atomic updates. Section
four introduces the analytic model used in the
analysis, and section five lists the results ob-
tained in the analysis. Section six concludes with
the presentation of several curves to illustrate
the behavior of the algorithm under several cir-
cumstances. Simulation was used to verify the ac-
curacy of the analytic model. A comparison between
the simulation and the analytic results also ap-
pears in section 6.

2. Basic Concepts and Definitions

A distributed database (DDB) is a database
with its data elements stored at several sites of
a computer network. Certain data items may be re-
dundantly stored at more than one site, for relia-
bility reasons. If a copy of all data items of the
database exists at every site then the DB is said
to be fully replicated. Otherwise it is said to be
partially replicated. In the former case, queries
can be completely evaluated at a single site,while
in the latter, several query processing alterna-
tives exist. The selection of an optimum query
evaluation strategy which minimizes response time
has been studied by several authors ClSl. We are
not interested in studying this effect, but rather
the impact of the degree of conflicts betweentrans
actions in their response time. Therefore, we as-
sume that the DB is fully replicated since con-
flicts between transactions will occur irrespectiw
of the degree of replication of the DB.

Users interact with the database through
transactions which may be of two types: read tra?Z
actions and update transactions. A read transactlm
is composed of one or more read acttons plus anJl
processing that may be necessary. Since tha DDB 1s

fully replicated the read actions can be performed
at a single site. An update transaction, .besides
reading and processing, will update the DB. In
this case, all copies must be updated.

The execution of an update transaction can
be divided into three phases: a read and processing
phase, a pre-commit phase and a commit phase.During
the pre-commit phase all information necessary to
update the database is stored in stable storage in
all sites. This information is,called an intentions
list Cl6 and 171. During the commit phase the data-
base is actually updated through the execution of
the intentions list. A detailed explanation of the
implementation of intentions lists can be found in
c171.

For each transaction there is a process, cal-
led transaction controller (TC), that manages the
execution of the transaction. The TC is assumed to
reside at the site where the transaction is intro-
duced in the system (the site of origin of the
transaction). Upon arrival at the system, a trans-
action is assigned a unique timestamp.

3. The Concurrency Control Algorithm

The algorithm presented here is rather simple
and is based on well known ideas such as the use of:

i)

ii)

iii)

two-phase commit protocol for atomic im-
plementation of update transactions

locking for conflict detection between
transactions

timestamps,delays and restarts for conflict
resolution between transactions.

The execution of a read transaction is total-
ly accomplished at the site of origin of the trans-
action. The read and computation actions of an up-
date transaction are executed at its site of origin
while the update actions have to be executed at all
sites. During the first phase of the two-phase com-
mit, update information is broadcast to all sites
and during the second .phase the updates are actual-
ly committed to the database.

Locks are used by transactions to indicate
their intention to read or update the DB. (A de-
tailed description of the types of locks con-
sidered here is given later). In this way, a trans
action can be prevented from accessing a database
resource if it is locked in an incompatible way
by another transaction. Instead of waiting in a
queue for the desired resource, transactions retry
after a certain delay.

An update transaction must successfully lock
all needed resources at its site of origin before
reading the database. Locks are held until the end
of transaction. During the execution of an update
transaction, no other conflicting transaction will
be able to lock the resources it needs. These
transactions will have to retry some time later.

Once an update transaction locks its resources
at its site of origin it must try to lock these re-
sources attheremaining sites. As it is not possible
to instantaneously lock the needed resources at all
sites, deadlocks may arise. In order to deal with
this problem, timestamp are used to establish
priorities between transactions. A timestamp is as-
signed to a transaction by its controller. This
timestamp indicates the instant when the transaction

succeeded in locking all needed resources. Trans-
actions with smaller timestamps are given higher
priority. During the precommit phase an update
transaction may be rejected by a transaction of
higher priority. The rejected transaction must
free all acquired resources and be resubmitted.

An update transaction may start its read ac-
tions at a given site even if there are other con-
flicting read transactions but no other conflict-
ing update transaction at that site. However, in
order to start the execution of its update actions
an update transaction must wait until all conflict
ing read transactions finish.

Propagation of lock requests and update in-
formation to any site is accomplished in a single
message. Let us now describe the different types
of messages and lock modes used in our concurrency
control algorithm.

The following messages are involved.

a. PRECOMMIT(t) :

b. ACK(t)

c. REJECT(t) :

d. COMNIT(t) :

this message is broadcast from
the transaction controller of
transaction t to all other sites,
requesting &at they store their
intentions lists in stable stor-
age.

this message is sent by a site
to the TC of t to indicate that
the PRECOMMIT-message was ac-
cepted and that the intentions
list of t was already stored in
stable storage.

this message is broadcast by a
site to all other sites to indi-
cate the rejection of the
PRECOMMIT of transaction t. -
this message is broadcast by the
transaction controller of t to
tell all other sites to execute
their intentions lists.

Any database item may be in six different
states:

1. u

2. (SH,i) :

3. WK

4.ST :

5. (IWK,i):

unlocked

locked in share mode by i read trans-
actions. This lock mode is used for
read-only transactions.

locked in weak mode. An item is put in-
to this state-to indicate that an up-
date transaction intends to.update it.
This type of lock may be lifted by
other transactions under certain cir-
cumstances as will be seen later.

locked in strong mode, This indicates
that the item is being update. This
type of lock may not be lifted by
another transaction.

locked in intention WK mode for one up-
date transaction andlocked in SH mode
by i(i>O) read transactions. Whenever
a WK lock would be placed on an item
locked in SH mode, an IWK lock is used
instead. When all read transactions
release the SH lock on the item, the
IWK lock is converted to WK lock.

248

6. (IST,ij: locked in intention ST mode by an up-
date transaction andyocked in SH
mode by i (i>O) read transactions.

Figure 1 illustrates the possible transitions
for the state of a database resource at a given
site. The labels on the arrows indicate the kind of
lock request which caused the transition. The
labels SH, WK, ST and U indicate a request to place
the resource in SH, WK, ST and U mode respectively.
A superscript is used to distinguish different
situations when resources are freed.

An update transaction is only allowed to
request to place a resource in ST or IST mode if it
is in WK or IWK for the same transaction.

t I, 7 I I

SH,l IWK ,1 ST IST.1
I

SH Lll ul

F-TIC'

"1

s11,2

1 t
. *
. .

--r--- -- t

3 INK,2)F-(ISI',2)

+I--&<+>-:+]
: .

ul : the resource is freed by a read transaction.

U2 : the ~.CSOU~CE is freed by a, update transaction re-

jccted during the prccommit phase.

u3 : the ~csource is freed by an update transaction which

completes.

Figure 1 - Transitions Setween Lock Modes

In order to describe the algorithm a graphic-
al representation will be used to help the reader
to visualize what is really going on. The following
graphical conventions are used:

if condition C is true
then go to 5 else go to
b. -

place all items of a
transaction in x mode.The
lock mode which results
from this request can be
found by examining the di?
gram of figure 1.

.)o broadcast message M.

>

rl A --CL
-I ..*

send message M.

arrival of message M.

save message M.

access the database.

the rate at which trans-
actions cross the circled
path is X.

waiting for a message to
arrive.

We are now ready to describe the algorithm a
correctness proof of which can be found in 1201.
The graphical description that follows illustrates
the algorithm as executed at a single site. All
sites implement the same algorithm. Let us first
consider read transactions (see figure 2). When
read transactions arrive they perform the test in-
dicated in the figure. If the answer is no (N exit)
then the test is repeated after a certain delay.
Otherwise, the necessary items are locked in share
mode, the database is read and the resources are

Cl : are all the resources needed in U or SH mode?

Figure 2 - Reed Transaction

unlocked. The algorithm for update transactions is
shown in figure 3.

249

(3-b)

Cl :

c2 :

The conditions for the tests in figure 3 are

are all needed resources in U or SH mode?

are all needed resources still locked in WK or
IWK mode for the transaction?

c3 :

c4 :

c5 :

are the needed resources free, locked in SH
mode or locked in WK or IWK mode for trans-
actions with greater timestamp?

is the node the TC of the transaction?

is the number of received ACKs (#ACK) equal to
N - 2?

C6 :

c7 :

are all the needed resources in ST mode?

C8 :

has the site already received a PRECOMMIT mess -
age for this transaction?

is there a saved REJECT for the transaction?

date
must
cess

Figure 3.a represents the arrival of an up-
transaction at a given node. The transaction
initially read the database (see database ac-
box labelled l), and then, in parallel, start

to store its intentions list in stable storage(box
labelled 2) and broadcast the PRECOMMIT messages.
The arrival of a REJECT message at the site of the
TC causes the transaction to be restarted. Figure
3.b shows that when a PRECOMMIT message is received
it can be either accepted or rejected. Notice
that a PRECOMMIT message may lift locks placed in
WK or IWK mode by transactions of greater timestamp.
This is the reason why the test of condition C2 in
figure 3.a is necessary. Figure 3.c shows that when
all ACKs are received by the TC of the transaction,
a COMMIT message is broadcast to all other sites.
The database access box labelled 3 represents the
execution of the intentions list. Finally, figure
3.d shows what happens when a COMMIT message is
received.

Figure 3 - Update Transaction

As it can be seen from the test of condition

c3’ a precosnnit of a transaction with a smaller
timestamp has higher priority over one of greater
timestamp. In other words, precommits of conflict-
ing transactions are accepted in timestamp order.
This is how write-write synchronization isachieved
(see Bernstein 80a). In C201 a proof
that any execution generated by this algorithm is
serializable, and that read transactions always
see consistent data, can be found.

Let us conunent on the necessity of the test
of condition Cg before actually executing the in-
tentions list of a transaction. Whenever a node is
ready to commit, all resources involved are either
in ST or IST mode. If all resources are in ST node
then the commit can be done right away. Otherwise,
it must be delayed until the IST mode is converted
to ST mode. This will hanpen when read transactions
that were reading when the IST mode was installed
finish to read. It should be remembered that after
the IST mode is granted, no other read transaction
is allowed to start. Therefore, it is very likely
that no wait will be necessary before executing
the commit, since an interval of at least 2T time
units (T is the message transmission time) will
elapse between the granting of an IST lock and the
execution of the commit.

A final comment on the algorithm is that there
is no situation in which a transaction has to wait
for database resources. This is avoided using
delays and retries.

4. Model Definition and Parameters

In this section we present the assumptionsand
parameters used to construct the model analysed in
this paper.

4.1 Transaction Characterization

The set of resources read by a transaction is
called its read set and the set of resources up-
dated by it is called its write set. Our first as-
sumption for transactions is:

Tl : The size of the read set is the same as the
size of the write set and is the same (con-
stant) for every transaction.

The next assumntion is concerned with the ar-
rival process of transactions.

T2 : Read and update transactions arrive at the SE
tern according to a Poisson process. The total
arrival rate of read or update transactions
is equally divided among all sites, i.e. the
load is balanced.

The important measure of interest for trans-
actions is their response time. The response time
of a transaction is measured as the time interval
between the instant the transaction is submitted
to the system and the instant when the user is
notified of the completion of the transaction. UP-

date transactions are considered to be completed
when all sites have written their intentions list
into stable storage, since from this point on, the
modifications generated by the transaction will be
reflected into the database no matter how many fail
ures occur. For read transactions the completion
instant is when all read and processing actions
have been executed.

250

4.2 Network and DDB Assumptions

The assumptions regarding the database are
the following:

Dl : The database is fully replicated

D2 : The total number of items which compose the
database is constant, i.e. we disregard in-
sertions and deletions to the database.

The assumptions regarding the network are the
following:

Nl : The network does not lose nor duplicates mes-
sages. Actually, the transport layer at each
node implements this property for messages.

N2 : ?lessages that go from site A to site B arrive
at their destination in the same order they
were sent.

N3 : The transmission time between a pair of nodes
is assumed to be constant.

4.3 Site Assumptions

This section considers the assumptions about
the computer system of a site. Our model takes into
account that transactions use both CPU and I/O de-
vices and that they compete for the use of these
resources. The model used to analyze this effect is
shown in figure 4 and is a network of queues.

P L

Figure 4 - Model of a Site

As we can see, there are (D + 1) queues.Queue
0 is the CPU queue and the remaining ones are as-
sociated with the D existing I/O devices. After
being served at the CPU, transactions move to any
one of the I/O devices with equal probability. The
probability 2 shown in figure 4 was introduced to
add another characteristic to transactions, namely
their complexity. Complex transactions will have to
go through several cycles before they leave the sys
tern (small values of p), while simple transactions-
will require few cycles (p closer to one). The CPU
and all I/O devices are assumed to be exponential
servers with FCFS queueing discipline.

4.4 List of Parameters and Performance Measures

A list of all parameters considered in the
model is given below:

n = number of resources used by a transaction

XY= average arrival rate of read transactions per
node.

Xu= average arrival rate of update transactions per
node.

p = probability that a transaction leaves the com-
puter system after being served by an I/O de-
vice.

M = number of resources of the database.

D = number of I/O devices per node.

N = number of sites in the network.

T = transmission time of a message between a pair
of nodes.

P cpu
= average CPU processing rate.

u. =
10

average I/O device processing rate.

RD = resubmission delay during the read phase,

The performance measures of interest are

Rr = average response time of read transactions.

R
U

= average response time of update transactions.

5. Performance Evaluation Results

This section presents the results obtained in
our analysis. All derivations can be found in [20].

Before we present the results, we would like
to comment on some assumptions we made. The first
strong assumption used throughout the analysis is
that the arrival process of any kind of message is
a Poisson process. This approach was taken because
otherwise the analytic model would become extreme-
ly hard to manage. In order to verify how good an
approximation this is, we built a simulation pro-
gram in SIMSCRIPT II. The simulation results agre-
ed very well with the analitic ones, as one can see
from table 1.

The other assumption that we would like to
comment on is assumption Tl, namely that all trans-
actions use a constant number, n, of resources.
This choice was adopted because it simplified the
analysis and also because we did not have actual
data that could serve as an indication of what
would be a realistic distribution of the size of
the read or write sets. Cur assumption implies that
the probability of conflict between two transacticns,
denoted by PC is

CM;)
l- - if n < M/2

PC =

1 1 otherwise (1)

We assume that the average time spent at the
computer system to execute the read actions of a
transaction and the average time to store its in-
tentions list in stable storage are the same. Let
this time be denoted by t. Then we have the fol-
lowing result.

251

Result 1: given by

~=&-.- + ocpu DP.

B l - ocpu
1 (2)

where P
I? =-

CP” PCI CP”

‘io
D =-

PDI.Iio

x 1

B=h N-1
r + -2 Cl + r + (N - l)p3

p3 p2
1

and

p2 i Pr Can update transaction is not rejected after
read-computation phase but before entering
its precommit phase1

a
P3 = L’an update transaction is not rejected

during its precommit phase1

Result 2: The average response time, Rr, of a read
transaction is given by

9

1 - Pl
= RD(-)+t

Pl

where,

(3)

pl i ‘r [a transaction finds all needed resources
free or locked in SH mode at its site of
origin1

Result 3: The average response time of an update
transaction is given by

Rr 2T R =-+ -+maxCEl
u p2p3 p3 N-l

(4)

where the notation KC;1 indicates the expected
J

value of a random variable defined as the maximum
between j random variables distributed as the ran-
dom variable v. Since E is the random variable
which indicates the time a node takes to process
an external PRECOMIT message, sTc:l is the aver-

age maximum time it takes the PRECOMMIT message
to be processed at the (N-l) nodes.

We show in Result 4, an expression for
the average of thE! maximum of a given number of
identically distributed random variables. This
derivation is rather simple if we assume that t” is
exponentially distributed with an average F.

Result 4: Let 7 be a random variable defined as

y = maxCxl,%2,..,,%kl where x”l,...,xk are identical

and independently distributed random variables. Let
the xi r.v.s. be all exponentially distributed with

average X. Then, the expected value of 7, i is

k-l (k?) (-1)j
y=maxCiil=k: C

k j=O (j+1j2
(5)

Result 5: The probability that a transaction finds
all needed resources free or locked in SH mode at
its site of origin, pl, is given by

Pl =
‘“d”’ (M,-nk) pke-P

k=O (!) k!

where p2C2T + p3 maxCEll +
N-l

2-N N-2

+ (N - l)X”~~~-l IT + p3 N-lCT + maxC~l1)
N-l

(6)

Result 6: The probability, p2 that an update trans
action is not rejected after its read phase but-
before it enters its precommit phase is given by

= (vt + 1)
1-N

p2

where

2-N

y = A” PC p3N-l

Result 7: The probability, p3, that an update tram
action is not rejected during its precommit phase
is given by

P3 = c
.-CXT

1 - (at)2

,N-1
(8)

2-N

where a = h”PC p N-1
3

In order to obtain Rr and Ru, the following
procedure would be used.

1. Choose initial values p2(‘) and pi(‘) for the
probabilities p2 and p3. Recommen ed values are
0.9999. Set i=O.

2.

3.

4.

5.

Compute E using p2 (9
and p3

(9 according to
Result 1.

Compute p (i+l) using Pi and f according to
Result 7.3

Compute p (i+l) using ~3(~+‘) and t according
to Res”lt’6.

If maxj [(p2
(i+l) - p2(i))/p2(i+l) I,

I(p3(i+l)- p3(i))jp3(i+l)lj is greater than a

given tolerance, then set i=i+l and go to step2.

252

6.

7.

8.

9.

6.

Compute E using p2 (i+l) and ~3(~+') according to
Result 1.

Compute pl using p3
(i+l) , p (i+l)

2 and f accord-
ing to Result 5.

Compute Rr using pl and t according to Result
2.

Compute R using R,, p2 (i+l) , p (i+l) -
3 and t ac-

cording t! Result 3.

Conclusions

Many concurrency control algorithms for DDBs
have been proposed in the last few years. In the
vast majority of cases, their performance analysis
has been limited to counting the number of messages
or the number of bits transmitted. In this paper we
presented a concurrency control algorithm and the
results of a performance evaluation which yielded
results such as average response time of read and
update transactions.and utilization of CPU and I/O
devices, as a function of several parameters and as
a function of the degree of conflicts between trans
actions.

The results obtained in the previous section
allows us to draw many interesting curves, but due
to space limitations, we will concentrate only on
four of them.

Figure 5 displays the variation of theaverage
response time of update transactions, Ru, as a fun2
tion of their average arrival rate. Two sets of
curves are shown: one for M = 200 and one for
M = 500. For each value of M, two values of l/&are
considered. As it can be seen from the figure, read
transactions have little impact on update trans-
actions. Both sets of curves exhibit a similar be-
havior. In the beginning Ru grows very modestly
since the average arrival rate of transactions is
sufficiently small so that conflicting transactions
interfere very little with one another. After a
certain point, the average arrival rate of update
transactions is high enough so that the effect of
the degree of conflicts between them starts to im-
pact considerably their average response time. This
effect is superimposed with that of the increased
contention for CPU and IO resources in the computer
system of each site. The isolation of these two ef-
fects can be seen in Figures 6 and 8 discussed below.

Figure 6 shows the interesting effect of the
complexity of update transactions ,p, on their aver-
age response time R,, (p is the probability that a
transaction leaves the computer system after being
served by an I/O device). A decrease in p represents
an increase in the numbers of CPU-IO cycles that
will have to be performed by each transaction. In
other words for a given arrival rate of update trans
actions, smaller values of p imply higher contention
for computer system resources. As one can see, this
increase in load has a heavy impact on Ru. Also indi
cated in Figure 6 is the average response time, g,-
of an update transaction which finds the system
empty. These values can be interpreted as a lower
bound on Ru, since no interference between trans-
actions is considered.

Each one of the three curves of Figure 8
shows the variation of R as a function of the size
of the transaction, n, fzr a given value of l/X,.As

the size of a transaction increases, the probabil-
ity of conflicts between transactions also
increases. However, this effect can be better ob-
served for higher values of A,,. For instance, the
curve for l/x,= 3.0 grows much faster than that
for l/A,= 20.0. It is worth noticing the dramatic
effect that the number of DB resources referenced
by a transaction has on performance. Consider the
curve for 1/Xu=3.0. For ~10, R, is 59% higher
than its value for n=2, although the number of
resources referenced by a transaction grew from 1%
to 5% of the total DB resources.
This can be explained by the fact that, for n=2,the
probability of conflict, PC, is equal to 0.0199
while for n-70, PC = 0.4085.

Finally Figure 7 shows the variation of the
utilization of the CPU and IO devices with X, and
x r'

In order to render our analysis more manage-
able we made two simplifying assumptions, namely
that the arrival process of any type of message at
a given site is Poisson and that the computation
time at each node is exponentially distributed. A
simulation model was developed to verify the valid
ityofthese assumptions. As one can see from table
1 the maximum observed error is of the order of
10% even when the system is heavily loaded. In
other words, the analytic model is remarkably ac-
curate.

1.2 r

o-6t , . # . , I , I , Jl/Au
10. 6. 6. 4. 2. 0.

~=6; ~~0.2; ,,=5; D=3; T=O.l; RD=O.5; 1hcpu=0.005;

1/~i,=o.025;

Figure 5 - Ru v.cj aver.inter arrival time of upCate trans.

R” r l/Au= 3.0

1.4 -

1.0

I'
/ I

0.6

!J
*I'

-c' c*
___ _- --

__--

5.0

20.0

G

0.2
c
1,. , I. 8, Ip

0.5 0.4 0.3 0.2 0.1

N=6; M=500; n=5; D=3; T=O.li RD=O.5; l/~,pu =0.005:

1/pi,=o.025: 1/xr=5.0

Figure 6 - ~~ vs probability P

253

, pi0

>

P CPU

I , I . 0 ! . I . 11/X"
10. a. 6. 4. 2. 0.

~=6;)+500; D=3; ~5; T=D.l; RD=0.5; lhcpu' P=0.2;

l/lJioi l/l,=lDu

Figure 7 - Utilizations vs average inter arrival times

____-__-L-___-_------ Re u

2 4 6 a 10

+6; M-200; ,,=3; P0.1; RD=O.S; p=0.2; 1hcpu=0.005;
l/j~~=0.025; l/X,=5.0

Acknowledgement

The authors would like to thank Marco Antonio
Casanova for the helpful discussions they had and
for his comments on a draft of this paper. This
research was supported by FINEP. Support from CNPq,
Brasil and from IBM do Brasil is gratefully ac-
knowledged.

References

Cl1 -

c21 -

c31 -

c41 -

CSI -

161 -

c71 -

C81 -

c91 -

Cl01 -

1111 -

Ellis, C.A., "A Robust Algorithm for Up-
dating Duplicated Databases", Proceedings
1977, Berkeley Workshop on Distributed
Data Management and Computer Networks,
Lawrence Berkeley Laboratory, University
of California, Berkeley California, May,
1977.

Thomas, R.H., "A Majority Concensus Approach
to Concurrency Control for Multiple Copy
Databases", ACM Transactions on Database
Systems 5, 2, June 1979.

Rosenkrantz, D.J., Stearns, R.E. and Lewis
P.M. "System Level Concurrency Control for
Distributed Database Systems", ACM Trans-
actions on Database Systems, 3, 2, June
1978.

Alsberg, P.A., Belford, G.G., Day, J.D. and
Grapa, E., "Multi-Copy Resiliency Tech-
niques", Center for Advanced Computation,
AC Document NO 202, University of Illinois,
May 1976.

Menascg, D.A., Popek, G.J. and Muntz, R.R.,
"A Locking Protocol for Resource Coordina-
tion in Distributed Databases", ACM TODS,
June 1980.

Stonebraker, M., "Concurrency Control and
Consistency of Multiple Copies of Data in
Distributed INGRES, IEEE Transactions on
Software Engineering, SE-5, 3, May 1979,

Bernstein, P.A., Shipman, D.W. and Rothnie
Jr, J.B., "Concurrency Control in a System
for Distributed Database (SDD-I)", ACM
Transactions on Database Systems 5,1, Mar
1980.

Reed, D.P., "Naming and Synchronization a
Decentralized Computer System", Ph.D.
Thesis, M.I.T. Department of Electrical
Engineering, Sep 1978.

Bernstein, P.A., and Goodman, N., "Timestarp-
Based Algorithms for Concurrency Control in
Distributed Database Systems", Proc. 6th
VLDB Conference, Montreal, Canada, Ott 1980.

Bernstein, P.A., and Goodman, Nk, "Fundament
al Algorithms for Concurrency Control in-
Distributed Database Systems", Tech. Rep.,
Computer Corporation of America, Feb 1980.

Garcia Molina, H., "Performance of Update
Algorithms for Replicated Data in a Dis-
tributed Database" Ph.D. Dissertation, Com-
puter Science Department, Stanford Univer-

254

sity, Jun 1979.

cl21 - Ries, D., "The Effects of Concurrency Control
on the Performance of a Distributed Data
Management System", Proc. 4th Berkeley Con-
ference on Distributed Data Management &
Computer Networks, Aug 1979.

cl31 - Dantas, J.E.R., "Performance Analysis of Dis
tributed Database Systems" Ph.D. Disserta--
tion, Computer Science Department, Universi

- ty of California, Los Angeles, 1980.

Cl41 - Menas&, D.A. and Nakanishi, T., "Optimistic
versus Pessimistic Concurrency Control
Mechanisms in Database Management Systems",
Information Systems, 7, 1.

cl51 - Hevner, R. and Bing Yao. S.. "Query Proces-

Cl61

Cl71

Cl81

- . .._
sing in Distributed Database Systems",
IEEE Trans. on Software Engineering SE-5, 3,
May 1979.

Lampson, B. and Sturgis, H., "Crash Recovery
in a Distributed Data Storage System", Tech.
Report, Computer Science Laboratory, Xerox
Palo Alto Research Center, Palo Alto,
California 1976.

Menasce, D.A., and Landes, O., "On the Des&
of a Reliable Storage Component for Dis-
tributed Database Systems“, ibid C91.

Gardarin, G. and Chu W.W., "A Distributed
Control Algorithm for Reliably and Consist-
ency Updating Replicated Databases", IEEE
Transaction on Computers, C-29, 12, Dec.
1980.

Cl91 - Lee, H., "Queueing Analysis of Global Lock-
ing Synchronization Schemes for Multicopy
Databases", IEEE Transaction on Computers,
C-29, 5, May 1980.

r201 - Nakanishi, T. and Daniel A. Menas&, "Cor-
rectness and Performance Evaluation of a
Two-Phase Commit Based Protocol for DDBs,
Technical Report, Departamento de Inform&-
tica, PUC/RJ, Brazil.

255

