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NOTATION :

. Given a vector space V, V denotes the space of vector fields v, whose com~
ponents v;, i=I,2,...,n belong to V.
. Given vectors x and y of RD, x*y denotes the usual inner product given by

n
z Y and |x| = Vx°*x.

i=1 -

Given a bounded domain § ofiRn, LZ(Q) denotes the space of functions whose

square has finite integral over . The inner product and norm of LZ(Q) are

given respectively by (£f,g) = fog dx and |f|o = (£,6)] 2,

. L%(Q) is the subspace of functions f in LZ(Q), such that &lf dx = 0.

. HM(Q) is the space of functions whose derivatives up to the order m belongll2
to L2(f). The usual semi-norm of H®™(Q) is given by lv]m = { % (3%, 3%) } ,

0.|=m

o = (@I,uz,...&dn) being aamultiinteger, 0320, hx|= 0 +Olp+. . +0,, and
3% = 3lolv/omToxd2... Bx ™

. HL(Q) is the subspace of functioms in H](Q) that vanish on the boundary of
Q. HA(Q) is normed by the seminorm of 2@ .

. P, denotes the space of polynomials in n variables of degree less than or
equal to k.

1. —= INTRODUCTION.

This paper deals with a new kind of mixed finite element methods for
the numerical treatment of incompressible continuous media, such as viscous
fluids. In order to avoir non essential difficulties for the description of
the methods, we will mainly consider a model problem, namely a stationary
Stokes' problem. At the end of the paper we make some important remarks con-
cerning applications to other related problems.

The usual velocity-pressure formulation of our model problem leads to
determining a velocity field ue Eé(Q) and the associated hydrostatic pres-—
sure p e L5(R), Q being a bounded n-dimensional domain, n=2,3, with boundary
3R, such that :

(Vu,Vv)+(div v,p) = (f,v) Wve HL(Q)
(®) T ¥ T T
(div u,q) = 0 ¥q e L2(D)

If we approximate H](Q) and LZ(Q) by finite dimensional spaces Vh and
Q» whose construction is based upon a partition of Q into finite ele-
ments having a maximal edge length equal to h, we obtain the following ap-
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956  V.R. SANTOS
proximation of (P) :
Find [Bh’phje thQh such that :

) (Vo 7+ @1V vp) = (Eav) ¥y vy

h .

(le Eh’qh) =0 V‘th Qh
. 1 2

assuming that yhc yO(Q) and th LO(Q).
Remark : If one of the above inclusions does not hold, the respective inner
products in (Ph) must be replaced bg inner products (-,-)h that are obtained
by summation of inner products of L2(K) over Y, K being the generic element
of CZ (see below).

It is well-known that (Py) will only be well-posed if the approximation
spaces Vy and Q, satisfy the following Brezzi-type compatibility condition

(div v, ,q,)
~h’"h’h
Vel ||yh”h

where B must be strictly positive (and possibly independent of h).
Here the norms of Vh and Qh denoted by h and h respectively, are

discrete H&(Q) and L2(Q) n?fgs, obtained by summation over the elements of

},» namely |‘]|h = (Y-,9*)p/“ and [+, = (ey)p' 7, where :
2
Vv, ,Vv, ), = z J Vv, eVv. dx and (q,,q,). = Z J q, dx,
~~D’I h7'h K. eh K ~~ ~~h h’*h’h KE@hKh ~

Notice that these norms will coincide with the norms of Hé(Q) and Lg(Q) if
% = L) K=gandv crl@, q<2(@.

K,

For the special case of problem (P), a rather significant number of
possible choices of spaces vy, and Q,» not only satisfying condition él),
but also leading to a sequence {[gh,ph]}h that converges in gé(Q)><LO(Q) to

u,p) as h goes to zero, are known for the two-dimensional case (see e.g.
2, 3, 4 and references therein). As for the three-dimensional case the num~
ber of good methods is smaller.

It is important to notice that condition (1) implies in particular that
the dimension of Q_ must be suitably exceeded by the dimension of V4, There-
fore, most of the above mentioned methods, are such that dim Vi is too big
with respect to dim Qn+ In many respects, this fact can be viewed as a waste,
since the velocity is only apparently well-approximated when one uses such
a V- As a matter of fact, since in this case the approximation of the pres-
sure is relatively poor, the incompressibility condition is badly approxi-—
mated, which causes the overall discretization error to increase signifi-
cantly. Therefore, it is advisable to try to reduce to a minimum the dis-
crepancy between the orders of approximation of gé(n) by V}, and of LO(Q) by
Q> while keeping those spaces compatible and, moreover, obtaining a good
order of overall approximation of Lu,p] by [uy,ppl. Actually we can say
that this order will be optimal if It coincides with the order of approxi-
mation of Vh and Q considered separately.

Summing up, we can say that the ideal situation is to have :
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. . m 1
(1) inf ||y ll,, = 0D ¥re B (@)
Yhé~h
. . m 2
(ii) inf |q-q |, = O(h") ¥q e L7(Q)
hih o
thQh
(iii) lumw fly, + lo=pyly = 0(h™
for some real m, m> 0, while keeping the asymptotic ratio
dim Q
. h
6 = lim ————
o 4im Vy

as close to one as possible.

As an illustration of what happens for what we now call classical me-
thods, we have the following case :

Assume that Q_  is taken to be the simplest, namely the space functions
that are constant (P,) over each triangle of partition ﬁ%. In this case (ii)
holds with m=1. Now if for the velocity we take the space of continuous fields,
whose restriction to each element is linear (P]), we satisfy (i) with m=1,
but since 6=1 we cannot satisfy (1) and therefore (iii) does not hold.

If on the other hand we keep the same Q, and we take V; to be the space
of vector fields that are continuous and fully quadratic (Py) over each tri-
angle, we have (ii) and (iii) with m=1, whereas (i) holds with m=23. What
happens in this case is that V,, was taken too big for a piecewise’constant
Qn (indeed we have 8§ = 1/4).

The above argument compels us to search for a Vy, consisting of functions,
whose restriction to each triangle is neither Py nor P2, so as to make (i),
(ii) and (iii) hold with the same m. We give below the proposed solution.

2, - ASYMMETRIC FINITE ELEMENTS.

Let K be a triangle with vertices S;,S7 and S3 and let B be the edge
opposite to vertex 83, that we call the base of K. We define P4/3 to be the
space of quadratic functions defined over K, whose restriction to the edges
other than B are linear functions. Clearly dim P4/3 = 4 and the set of four
degrees of freedom {ai}i=1’ where aj is the value of the functiom at S;s S4
being the mid-point of B, is P4 /3-unisolvent.

If A; denotes the area coordinate of K with respect to Si, the four
associated basis functions are given by :

S

3

Py = A2AN,  is1,2
P3 = Aj 2)
Py = WAy

Due to the asymmetric structure
of this element, some care is needed Sod o o
when constructing a triangulation,
such that the space vy, of functions

Figure |
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whose restriction to each triangle belongs to P4)3 is conforming. We propose
below two such constructions among many other possibilities :

Partition & : First construct an arbitrary partition 8y of Q into convex
quadrilaterals J. Then subdivide each J into two triangles K; and Ky by
means of anyone of its two diagomals. These diagonals are the only bases of
the triangles of @111.

Partitionf?% : First construct an arbitrary triangulation.sh of ). Then sub-
divide each triangle J of 8h into triangles K;,Ky and K3 by taking the cen-
troid M of J and joining it to the vertices of J. The bases of the so-gene~
rated triangulation.@% are only the edges of the J's.

Clear enough, the fields of Vj are such that their values at the nodes
lying on the boundary of Qh vanish. Then for both partitions we have Vh<:Hé(ﬂh)
and (i) and (ii) hold with m=!. v

Also, as one can easily check, for both‘C% and‘ﬁ% we have 6=1/2. Fur-
thermore, as we will see later on, (1) holds as does (iii) with m=1. For
the moment, let us consider a three-dimensional version of the above Py/3-
element :

Let K be a tetrahedron with vertices S1,52,83 and S4, and B be the face
opposite to S;,, called the base of K. Let P76 be the five-dimensional space
of functions defined over K, spanned by the four area coordinates of K, A s

AosA3,24, and ¢ = Ajhy + AjA3 + AgXq. The set of degrees of freedom {ai};=1,

where a; is the functional value at Si, S5 being the centroid of K, is
P7/¢-unisolvent and the associated bases functions are given by :
54
P; = Ai_¢
Py =Ny (3)
Pg = 3¢

Among many ways of partitioning
2, suitable for the definition of
space Vy associated with Py/6s we s
consider the following :

First comstruct an ar-

Partition ﬁllx :

bitrary partition 8 of Q into convex S3
hexahedrons J having quadrilateral Figure 2

faces. Then each J is subdivided into .
five tetrahedrons in the classical

way illustrated in Figure 3 below.
Finally each tetrahedron ABCD lying
in the interior of J is subdivided
into four tetrahedroms by taking its
centroid E and joining it to A,B,C

Figure 3

and D. The bases of the partition
5% are nothing but the faces of te-
trahedron ABCD.

Partition‘C% : First construct an
arbitrary partition 8, of Q into
tetrahedrons. Then each tetrahedron
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J of &}, is subdivided into four tetrahedrons in the same way as tetrahedron
ABCD of partition ®l. The bases of the elements QEZ?E are nothing but the
faces of the J's.

Now we define Vj to be the space of functions that are continuous at
the vertices and at the centroids of the bases, and that vanish on the nodes
lyin% on the boundary of the polyhedron Qh' Notice that Vh is not a subspace
of H4(Q). Indeed, a field of ¥y, 1s necessarily continuous only over the
bases of the partition, since their restriction to a face other than the
base depends on the values at the centroid of the latter and at the vertex
opposite this face. One can infer this fact by simply examining the basis
functions given by (3).

Nevertheless we can prove the following Lemma, that is the key to the
convergence analysis to be given later on :

Lemma 1 : Let K be a tetrahedron and ve Py/q. Let also Ty be the linear
interpolate of y at the vertices of K. Then we have :

J div ¢ dx = %-J Pen ds (4)
K v B~

where n is the unit outer normal vector to B and Y = v-mv.

Proof : From (3) we can conclude that = By, where B €R3. From the Stokes'

formula we have :
3

¢
J div ¢ dx = § J Yen, ds + J Yen ds,
K o i=1 JF.” © B

i
where n, is the unit outer normal vector with respect to face F; opposite
to §;. Exact integration of { over the faces of K yields :

{ 1 1
J Pen; dx 15 area (Fi)§'ﬂi =17 J Ben; ds
F ¥y
i
and Yen ds = l-area (B)RBen = 1 Pen ds.
B 4 - 4 B

Finally, from the fact that J div B dx = J Ren ds + ) J Ben; ds = 0,
we obtain (4). K ~o B~ i F,” "~

3. - CONVERGENCE RESULTS.

Lemma | provides an essential tool for proving convergence results for
the three-dimensional P7/6-approximation of a Dirichlet problem, for the
operator —A. Moreover it states that the total flux over the faces of tetra-
hedron K of the non-conforming component y of veP7/q, corresponds to a fixed
fraction (2/3) of the flux along the base B of K, where v is continuous.

This fact is also crucial for deriving inequality (1).

We give below the main lines for achieving this for partition'@% with
B independent of h. The case of partition.@ﬁ will be discussed more briefly

later on.

The key to the proof of the validity of (1) for n=2 and n=3 is the cons-
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truction of a vector field Vy € Yy, associated with an arbitrary dp € Q,, such
that

{ 2
qp div v, dx>C,|q,| (5)
Kez@ﬁ K h h 117hin
and “l’h“h Sczlthh > (6)

with C] and C2 independent of h, which gives (1) with g = CI/CZ'

This construction of y, is very technical and for the details we refer
to [ 5]. Let us simply say here that v, is a linear combination of vector
fields Yﬁe Vs i=0,1,...,n, respectively associated with orthogonal spaces
Qﬁ,Qh,...,Qﬁ, whose direct sum is precisely Q. If

n+l
1= x
i=1
is a macrosimplex of partition 84, Q is spanned by {Yg}J g. , where yg(§)=0
if 54 J and the values of yi(g) for xe J are given in ESj ?or n=2 and 3.

Now, for the case of partition ﬁi a vector field satisfying both (5)
and (6) does not exist in general. However, using an analogous technique,
based on a splitting of Q,, it is possible to prove that (1) holds with a
constant B that in general depends on h. This dependence is expressed in
exactly the same way as the one of the constant B associated with spaces
Vi and Qp constructed in the following way :

Vh is the space of functions whose restriction to each quadrilateral
(resp. hexahedron) J of sh is isoparametric bilinear (i.e. of type Q)

Q;, is the space of functions whose restriction to each Je8, is cons-
‘tant (i.e. of type Q).

Notice that the above result is a little weaker than the one for par-
tition.f%, since it means that (1) holds for partition f% only if it holds
for the classical Q) X Q, element described above. As a matter of fact, it
is known [ 6] that this element provides very satisfactory results for the
velocity, although sometimes it fails to generate a convergent sequence of
pressures. Exactly the same may happen to our asymmetric elements if parti-
tions of type ﬁ%.are used.

Now assuming that (1) holds with B independent of h, it is possible to
use the following bound for the error of [gh,ph] given in [7]

llu=gll, + Ip=puln=c yﬁ?{;h”B"Yh”h * irelg lp=q, |, +

9y 7
lEh(B’p’Yh)[ 7
+ su —_——————
e Vo ey
. Z du
where E, (u,p,w, ) = . J = *w, ds + J pnew, ds (8)
h< ~h Ket’}ll 3K on  ~h K~

dK being the boundary of simplex K of B, i=l or 2, and g-g-emd n denoting
respectively the outer normal derivative and unit vector‘with respect to 9K.
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The constant C that appears in (7) does not depend on h.

The estimate of the two first terms on the right hand side of (7) is
classical, and corresponds to the separate errors of the apprgximation of
gé(Q) by Vy and of L%(Q) by Qp. Since Py cP_cP, with a=l+]/Cn+I, we have
the following estimates of type (i) and (ii) with m=1, in which C denotes
various constants independent of h :

@ inf luvy I, < hlsl,
MR

(ii) inf [p—thhsCh[p|1
99,

The last term 'E (E’P’Yh)l only needs to be estimated in the case n=3,
for it vanishes identically when Vy, is conforming. The key to this estimate
is again Lemma 1, together with a classical Lemma due to Ciarlet [ 8] for
non-conforming methods. We get :

IEh(E’P’Yh)l = Ch[|§|2 + Iplljllwh“tl’

which applied to (7) leads to :
”E—BhH}1 * IP—Ph[thCh[IEIZ + |P|1]
that is to say, we have optimal results in (iii) with m=1.

4., — CONCLUDING REMARKS.

1°) The idea of using asymmetry for the definition of functions of Vh
and Q over each element gives rise to other kind of finite elements. In
particular two elements are proposed in [ 9] for the two and three-dimensio-
nal cases respectively. We describe below the two~dimensional one :

Given a triangle K we define P5/3
to be the space of quadratic functions
defined over K, spanned by A],XZ,A3,
A1,A3 and %2,A3, and ?1/2 to be the
space of linear functions spanned by
1 and A3. The set of functional values
at points S;» i=1,2,3,4,5 and M;=1,2,
indicated in Figure 4 below, are res-
pectively P5/3 and Pl/z—unisolvent.

5

For this element we can construct
a partition like %}, where the diago- Figure 4
nals of the quadrilaterals are edges
5187, among other possible conmstructions, including Cﬁ itself. Then we define
Vi, to be the space of continuous functions, whose restriction to each trian—
gle belongs to Pg 3, whereas Q is the space of discontinuous functions
ghoie restriction to each triangle belongs to P1/2' In this way we have

=2/3.

More details on this element can be found in [ 9], including numerical
examples (these will be shown during the Symposium, together with those
related to the two elements treated in this paper).
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2°) It is possible to reduce significantly the amount of calculation
with the Py /3 and P7/6 elements introduced above, by eliminating at the ma-
trix level, terms corresponding to nodes lying in the interior of the macro-
simplices associated with ¢!, i=1,2. In particular, in the case of partition
s 1f this elimination is performed, the computational effort becomes equi-
valent to the one that applies to the following elements, illustrated in
Figure 5 below for n=1 and n=3.

o degrees of freedom for the velocity
x degrees of freedom for the pressure

Figure 5

Notice that in the case n=2 this simplification means working with the
Py element associated with macrotriangle J, for the velocity, and with a
plecewise constant pressure over KysKoye oo s Kpays instead of a constant func-
tion over the whole J, like in the case of the Py x Py element described at
the begining of the paper. For n=3, the same remark applies to a 8-node
reduced quadratic non-conforming element proposed by the author for the ve-
locity, instead of-the Py element [7].

3°) The asymmetric structure of the elements considered in this paper
has important advantages, besides those that we have considered so far.
Among these we have the possibility of treating in a very efficient way the
delicate case of the nonlinear incompressibility condition arising in finite
elasticity, namely :

det (I+Vv) =1 a.e. in Q,

where I is the identity nxn tensor and v is a displacement vector field.
This condition, which becomes div y = 0 if IYY]<< 1, is very difficult to
be approximated properly, when one uses classical mixed finite element me-
thods for the linear case above. This is explained by the fact that, if the
restriction to K of a field of Vy, belongs to Py, then the above determinant
over K is a polynomial of degree n(k-1) and not a polynomial of Py like
div yp. However, in the case of P,s3 and Py o we can prove [ 5] that this
determinant is not of degree n but only of degree one, i.e., exactly the
same as in the case of the linear incompressibility condition. This fact
allows us to expect the same approximation properties in the nonlinear case
as in the case considered in this paper.
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