
AN INFORMAL APPROACH TO FORMAL SPECIFICATIONS

A.L. Furtado

Pontif~cia Universidade Catolica do R.J.

Brasil

ABSTRACT

An attempt is made to help bridging the gap bet-
ween theoretical research and the real practice of
data base specification. Some fundamental problems
that must be addressed are described and a number
of formalisms that propose to attack them are over-
viewed. The case pro and against the use of formal
specifications is presented.

KeyworHs: data bases; formal specifications;
integrity constraints; data models; logic; abstract
data types; denotational methods; grammars.

i. Introduction

Formal specifications have been used in several
areas of computer science, particularly in program-
ming languages and in data bases. Efforts in the
former area started first and have established the
main lines for subsequent work (see [Pag], for
example). The present paper will concentrate on the
latter area.

More specifically, we shall be concerned with the
use of formal specifications in the design of data
base applications, i.e. particular data bases for
some application area of an institution.

During the design process a number of questions must
be answered, namely:

a. What information will be needed?
b. How is the information going to be used?
c. Under what form will the information be kept?

The aspects underlying these questions are, respec~
ivel~ information, operations and representation.
The answers should be satisfactory, in the sense
that the information will be meaningful, valid and
useful to the activities of the institution; the
information should also be easily and efficiently
accessible.

Oar first tendency would be to attack the problem
with the usual ad-hoc methods. However:

Dijkstra: "The problems of business administration
in general and data bases in particular are much
too difficult for people that think in [program-
Jmerese], compounded with sloppy English." [Di].

So, we ahould resort to some formal methodology,but

is the problem tractable through the existing for-
malisms? Some people feel oeherwise:

I
Hoare: "... the recommendation to remove refer- 1

... runs counter to the still prevalent '
belief in integrated information systems, relation~
al data bases, etc. and suggests that it may be --~
preferable to go back to earlier, simpler tech- I
niques using separate files without cross refer-
ences ..." [Hoa].

The above remark goes beyond a negative assessment
of the current formalisms for a problem of such
complexity. It suggests that we should drop the
problem as unfeasible~ Should we just give up? We
cannot afford to do so because there is a real need
clearly manifested by the business world:

iSibley: "Yet there are substantial problems and I
indust'~--'~----ry has started to solve them. It would be I
terribly sad if we manage to prove once again that I
l'computer science' is irrelevant to the real prac-~
~tice of computing." [Si]. I

After all these pessimistic remarks, one would ex-
pect at least that some constructive effort is
being done in the many specialized data base jour-
nals and conferences. Such work is indeed going on,
but as to its impact on the community:

Gotlieb: "The lesson about data bases to be drawn I
from this is that there is a real danger that the I
research carried out in universities and industri- I
al laboratories, as described in VLDB conferences,l
will have very little effect on the large opera~
I~ional data bases used by the world at large, and
~on which most money is spent. [Go].

With respect to the more formal research the main
cormmunications barrier does not seem to result from
any difficulty with the formalisms themselves, but
from the unawareness of practitioners of what re-
searchers propose to do, and perhaps from a certain
unwillingness of the latter to divulge their goals
in less than rigorous terminology. In this paper we
shall try to understand the problem and provide an
indication of how formal approaches propose to at-
tack it.

Most people take the ANSI/X3/SPARC architecture

32

[TK] as a common starting point. To follow this ar-
chitecture, one divides the design process into
three phases, wherein three schema levels are treat
ed; these are the conceptual schema (a high level
description of the entire data base), the external
schemas (partial high level descriptions, of in-
terest to different users),and~heinte~nalschema (des
cribing the implemented data base-~. Our discussion--
will concentrate on specifications at the conceptual
schema level.

Various difficulties are encountered in the specif-
ication of conceptual schemas, starting with the
lack of a standard terminology. A recent report has
done some contribution in this regard [Gr]. We feel
that both the terminology and the approach make com
munications difficult, because of the background oF
the people involved. The application area special-
ists have their own jargon and of course cannot be
expected to communicate in any formal or ad-hoc com
puter science jargon. 'Neutral' information system~
terminology has been tried but even that can be un-
satisfactory in many cases. It appears that the
designers, regardless of their background, are for-
ced to learn the specific requirements of an ap-
plication area as expressed in the application area
terminology; this has to be done at the crucial
first stage (informal description, in fig. I below)
where the prospective users are led to communicate
their needs and expectations. In other words, one
must learn first how that particular business wor~s,
so as to be in a position to assess what is import-
ant and what is accessory.

Characteristics of different application areas can
vary dramatically and widely different kinds of data
can be involved. Compare, for instance, data bases
of the traditional "parts and suppliers" style with
data bases for census data, airline reservation,
geographical information, satellite observations,
business forms, texts, etc.

The response to all this variability given by the
current data models and methodologies and, even
worse, by the commercially available data base ma-
nagement systems (DBMSs) is far from satisfactory.

In sections 2, 3 and 4 we shall give an informal
view of what we consider to be the main goals of
formal approaches, using for this purpose the three
basic aspects that we detected at the outset: in-
formation, operations and representation (fig.l).
The discussion will be illustrated by a simple ex-
ample.

I INF ORMATION 1

I
I OPERATIONS I

I
[REPRESENTATION 1

CONCEPTUAL SCHEMA

Fig.l: The three levels of specification

Section 5 overviews the research work on formalisms.
Section 6 presents the case pro and against data
base specifications.

2. First level: information contents

At the first level, we say that data bases will con
tain instances of facts, defined as positive as-
sertions within the application area. Usually, ne-
gative facts are not stored (such as what courses
are not taken by a trainee). A state is the col-
lection of facts that are true at a given instant
of time; therefore, a state denotes the entire con-
tents of the data base at that instant. Static cons-
traints are restrictions defined on states. A valid
state is one that conforms to all specified static
constraints.

A transition is a state transformation. Transitions
can be denoted by pairs (or, more generally, se-
quences) of states. Again we may want to impose res
trictions on transitions. Thus a valid transition
besides being required to involve only valid state~
must conform to the declared transition constraints.

We now introduce the simple example to be used
throughout the discussion. The example belongs to
the area of personnel training of an enterprise,and
the data to be maintained refers to one training
term. Using the terminology of the present level we
have:

FACTS: - courses are offered
- trainees take courses

STATIC CONSTRAINT: trainees can only be taking
currently offered courses

EXAMPLE OF A VALID STATE: cl is offered
c2 is offered
John takes cl

TRANSITION CONSTRAINT: the number of courses taken
by a trainee cannot drop to
zero (during the training
term)

EXAMPLE OF A VALID TRANSITION:
cl is offered cl is offered
c2 is offered -> c2 is offered
John takes cl John takes c2

Certain points not explicit in our unrealistically
simple example must now be stressed. The first
point is time [BADW], implicitly involved in the
transition constraint, which prevents the number of
courses taken by a trainee to drop to zero only
within the training term under consideration; with-
out this proviso the constraint would not make
sense. Time appears in many ways: as simply a way
to order the states, as a duration, as a date, etc.
Next we observe that the size and complexity of
realistic data bases make their direct specification
in one piece an impracticable task. Modularization
is in order. Also, we must have ways to verify
properties of specifications, such as their consis-
tency, non-redundancy, etc., both within and across
the various modules.

In an "intelligent" data base, one should be able
to infer certain facts, which then would not have
to be stored. For example, if we know that the cur-

33

rent state of our training data base is valid and
that John takes cl, we could deduce that cl is of-
fered, taking our static integrity constraint as a
general law. Inference becomes more complex when
states are allowed to include alternative facts such
as John takes cl or c2, or facts with indeterminate
values, such as John takes some course whose name
is presently unknown (a so-called null value).

The relevance of the first level of specification
had an early recognition with the infolo$ical ap-
proach [Su].

3. Second level: operations

In view of the first level characterization in terms
of facts, we have an obvious choice for the primi-
tive operations that will achieve state transitions:

- create
- assert <fact>
- deny ~act>

the first operation being needed for initializing
the data base to the initial "empty" state, where no
facts are true. We also need an operation to check
whether a fact is currently true:

- <fact>?

The execution of certain sequences of assert and de-
ny operations may have the property that the origin-
al and the final states are valid as well as the
transition between them,even though some intermedi-
ate states or transitions perhaps violate some con-
straint. Such sequences will be called transactions.
For different classes of states a sequence may or
may not have the transaction property. The favorable
case will be characterized by a suitable pre-condi-
tion,which is a logical expression,possibly involv-
ing the inspection of certain facts in the current
state.We now define application operations as op-
erations that:
- correspond to actions happening in the application
world that may cause certain facts to hold or cease
to hold

- and have the general format: if pre-condition then
transaction (else do nothing).

In our example the application operations will be:

initiate training term: create
offer course: assert course is offered
cancel course: if no trainee takes the course

then deny course is offered
enroll trainee in course: if the course is offered

then assert trainee takes
course

transfer trainee from course i to course 2:
if the trainee takes coursel

and does not take course2
and course2 is offered

then deny trainee takes coursel
assert trainee takes course2

We are now in a position to introduce the encaps u -
lation design goal, coming from the abstract data
type approach: if only (correctly specified) ap-
plication operations are ever used, all static and
transition constraints will be preserved. Encapsu-
lation implies that primitive operations cannot be

used directly. This, of course, reduces the freedom
of users to handle kinds of updates whose need was
not anticipated; one should decide in each case
whether the loss of freedom is a reasonable price
to pay for the integrity of the data base. Also re-
mark that encapsulation need not restrict the use
of queries (<fact>?) [Zi]. Queries can never be
harmful to integrity, although we may want to res-
trict their usage for authorization considerations.

When we associate application operations with ac-
tions happening in the real world, we are assuming
that reality is changed only when the corresponding
application operations succeed in updating the data
base in the intended way. In other words, the seg-
ment of interest of the real world is undistingui-
shable from the data base. It becomes physically
impossible to perform an action that violates some
policy of the institution, expressed as a constrain.

We must recognize that this assumption is not always
realistic. There may be actions performed outside
the institution having results that we want to re-
cord in the data base (ex: the local minimum wage
is changed, a new tax is created). Sometimes the
institution may decide to act contrarily to its
policies, thereby deliberately disregarding self-
imposed constraints (ex: granting unusual dis-
counts), and in this case too we merely record the
fact. In both cases, the data base would be incor-
rect if such facts were not recorded, in the funda-
mental sense of a disagreement between reality and
the data base.

In what follows we shall concentrate on the simple
situation where things happen through the data base
so that we may ignore the problems above. Also,
wherever we assume that the real world and the data
base coincide, we can automate certain actions,
achieving the so-called active systems, where ac-
tions can be triggered by the occurrence of certain
events (logical expressions, possibly involving
stored facts, similar therefore to pre-conditions).

There may be more than one way to design application
operations that effectively preserve the declared
constraints. Part of this freedom of choice comes
from the existence of different ways to combine
pre-conditions and primitive operations and also to
alternate actions initiated by users with triggered
actions. To discuss these possibilities we shall
employ the example in fig, 2.

cl is offered transfer cl is offered
c2 is offered c2 is offered
John takes cl John takes c2

deny assert i I"~ ancel

~cl is offered 11
c2 is offered

c2 is offered
John takes e2

Fig. 2: using the application operations

With the present definition of the operations we
could not execute cancel(el) at the state where
John takes this course, whereas the use of cancel
is legal at the state reached by transferring John
to c2 (note, incidentally, the decomposition of

34

transfer into primitive operations with the occur-
rence of a transition that would be illegal by it-
self, since at the intermediate state John takes
zero courses). This suggests that, in order to make
cancel applicable at the first state shown, we might
redefine cancel by expanding its corresponding se-
quence of primitive operations thereby being able to
weaken its pre-conditions. The new sequence of as-
sert and deny operations would place all trainees
taking cl alone in some other course (if such ex-
ists) and would simply remove any other trainees
from cl.

Besides redefining an operation, we are free to
create additional operations. For instance, we might
add an operation allowing a trainee flo drop a cours~
if it is not the only one that he is currently tak-
ing. Finally, if we had both drop and transfer op-
erations, we could achieve the modified effect of
cancel indicated above without redefining the op-
eration: we should merely add a trigger causing
either drop or transfer to be invoked for each
trainee taking cl.

This shows that, because m~e than ~ne seeomd level
specification may be compatible with the same first
level specification, we may substitute a second
level version for another while the first level
remains stable. The first level does not entirely
determine the second, since defining the repertoire
of operations is a design decision to be made at
the second level, often with considerable flexibil-
ity.

The order of execution of operations, on the other
hand, is not entirely free because of the interplay
of pre-conditions and effects. In our example, en-
roll(John,cl) can only be executed after offer(cl)
has been executed. Operations whose effects are
necessary to fulfill pre-conditions of other op-
erations entail serial execution. On the contrary,
offer(cl) and of~), for instance, can be e-
xecuted i__n_nparallel.

Also from the study of the interplay of pre-condi-
tions and effects, one can conclude that different
sequences of operations can accomplish the same net
result. For instance, starting at the initial empty
state, the two sequences:

offer(cl); offer(c2); enroll(John,cl);
transfer(John,cl,c2); cancel(cl)

and

offer(c2); enroll(John,c2)

lead to the same state and are in this sense equiv-
alent.

4. Third level: representation

One of the ways to specify a data type is to employ
"some established mathematical discipline ... used
to provide a high level abstract implementation or
model of the desired data abstraction" [LZ]. We
claim that this describes accurately the main pur-
pose of data models. The mathematical disciplines
of the current data models involve trees, graphs,
tables, etc. as abstract representations.

Most formal work on data bases aims at formalizing
some data model, rather than a specific data base
application. The assumption is that data models
have not been presented in a sufficiently formal
way, even the more mathematically-oriented ones
such as the relational model.

If we regard a data base application as a data type
on its own right and a data model as another (less
restricted) data type, then it is natural to view
the process of going from the second to the third
level of specification as the implementation of a
data type by another [GHM]. The process consists of
fin~l~ng a representation for data base application
states in terms of the (tree, graph, table, etc.)
structure underlying the data model and of writing
"programs" for each application operation using the
data model operations.

Figure 3 shows how our example would be represented
according to the entity-relationship model [Ch].
Trainees and courses are entities, trainees being
"weak" entities since they only exist in the data
base while taking some course. The presence of a
course means that it is being offered. A course may
be involved in at least zero and at most an arbi-
trary number of occurrences of the takes relation-
ship (i.e. each course may be taken by zero or more
trainees), whilst the lower and upper limits for
trainees are I and an arbitrary number,respectivel~

Fig. 3: representation in the ER model

The static constraint that a trainee can only take
courses that are being offered is implicit in this
representation, because it follows from the graph
constraint that an edge (relationship) can only e-
xist between existing nodes (entities). The tran-
sition constraint that the number of courses taken
cannot drop to zero is only partly implicit, how-
ever. We have only managed to express that while a
trainee is present in the data base he must be tak-
ing at least one course, but there is no convention
in ER-diagrams to express that once inserted a
trainee cannot be removed. Whatever is not implici~
or can somehow be expressed in a declarative way
provided by some feature of the data model, should
be expressed procedurally within the "programs" im-
plementing the application operations.

Usually the entity-relationship model is only the
first step in the representation level. Some other
data model corresponding to commercially available
Data Base Management Systems (DBMSs) must be used
if one wants to pass eventually from the conceptual
to the internal schema, where a computer implement-
ation will be achieved. Since from [Ch] strategies
have been proposed for obtaining representations in
the relational, network or hierarchical models [Da]
from an entity-relationship representation.

Here we stress that a through knowledge of the data
base application resulting from levels i and 2 is
fundamental for the choice of an adequate re-
presentation, both the first (entity-relationship)
and the derived ones. The "automatic" solution for

35

deriving a relational representation would lead to
two "entity-relations" (for trainees and for cour-
ses) and one "relationship-relation" (for the takes
relationship). Yet the constraints identified at
level I and the definition of operations at level 2
suggest that the "entity-relation" for trainees is
unnecessary. Perhaps two relations COURSES(COURSE
NAME,NUMBER OF ENROLLMENTS) and TAKES(TRAINEE,
COURSE NAME) would constitute a reasonable way to
structure the data base.

Besides diagrams, data models usually provide
languages to express the structure and manipulation
of data bases. Given the wide variability of the
features of data base applications, mentioned in
the introduction, it seems convenient to adapt the
languages to accomodate such differences. One might
characterize the language of a data model as an
extensible language, there being a "customized" lan
guage for each application (or family of applicat-
ions).

Data models have been extended [TL], mainly by in-
corporating ideas coming from research in artificial
intelligence. These ideas include semantic hierar-
chies (e.g. is-a and part-of, corresponding to the
generalization and a$$regation data abstractions)
[SS], semantic networks [Fi] and frames [Mins,Rou].

We remarked, in the previous section, that passing
from the first to the second level involves choos-
ing among possibly many compatible alternatives;
the same is true about the passage to the third
level: different data models can be chosen. Hence,
higher levels are more stable and remain unaffected
when changes are introduced in the lower levels,
such as adding new operations, at the second level,
or shifting to a different data model or performing
a restructuring within the same data model, at the
third level.

5. ~ flurry of formalisms

Some of the techniques that have been used in the
formal specification of data bases are:

a. first order logic [GM, GMN, Ga, Ja];
b. special logics, particularly dynamic logic [CB],

temporal logic [CF], modal logic [Li] and non-
monotonlclogic [Mink].

c. algebraic presentations [EKW, LMWW, BZ, VCF];
d. denotational methods, with a special emphasis on

the Vienna Development Method (VDM) [NO, BL];
e. grammars based on strings [RB] or on graphs [Ful,

EK, FV2] and two-level grammars [Fu2].

The use of logic leads naturally to the investigat-
ion of consistency, non-redundancy and other prop-
erties of specifications [CCF]. It also leads to
various applications of inference, particularly by
looking at data bases as collections of facts ex-
tended with general laws. Another use of inference
lies in automatic synthesis, where a plan is deter-
mined with the help of some theorem-proving algo-
rithm, for traversing the state space. The goal is
to achieve a transition from the current state to
some state where the desired facts are true, both
the transition and the state reached being valid
[SMF]. Finally, systems based on theorem-proving,
e.g. Prolog [WPP], can run specifications expressed

in logic. Running specifications allow testing and
experimentation (prototyping) ; the importance of
this feature comes from the impossibility to prove
the equivalence between an initial informal des-
cription and (any kind of) formal specification.

Dynamic logic has been used to construct paradigms
for data base languages, specifying the various
co,hands within an axiom system in order to permit
formal proofs about programs consisting of such
commands. Temporal logics aim at the formalization
of complex transition constraints; they can also
cope with the description of active systems, in-
cluding events and triggers. Both formalisms are
appropriate to investigate the synchronization
problems related to parallel or serial execution
of operations. Modal and non-monotonic logic have
been applied to indefinite data bases, which are
those containing alternative ori~--~a~erminate
facts.

Algebraic presentations take the abstract data
type approach. A state is referred to by some se-
quence of application-oriented operations (start-
ing at the initial empty state) able to generate
it. Such sequences have been called traces [BP,VF],
which recalls that they contain a " h ~ ' of how
the state might be reached. The fundamental role
is played by (possibly conditional) equations,
allowing to determine whether two or more traces
lead to the same state; among such equivalent
traces one may choose, according to appropriate
criteria, a canonical trace (canonical term, in
[GTW]) to designate the state uniquely. As happens
with specifications based on logic, algebraic
specifications are amenable to prototyping [Ge,FV~
BGW]; operations can be executed symbolically as
transformations on traces [FVC]. A formal treat-
ment of modularization, where modules are data
types wherefrom other data types are constructed,
has been proposed in [BG] and applied to data
bases [DMW,SFNC].

The fundamental idea of denotational specifications
is to explain each construct in mathematical terms
[Sco,Te]. This makes them ideal for ~he formaliza-
tion of data models, data languages and entire
DBMSs. A standardization effort [BS] has included
a VDM specification of the relational model, for-
malizing the structural aspects and the syntax and
semantics of operations; constraints related to
the structure and to the operations have been duly
considered. One would expect that similar tech-
niques could be used to formalize data base ap-
plications also in mathematical terms; next, one
could verify if a description of the data base ap-
plication using the data model is faithful, i.e.
mathematically equivalent to the formalization.

Grammatical formalisms are directed to specify the
syntax of some language. Graph-grammars are useful
whenever we want to concentrate on the structural
connections existing among data base components
and/or to describe intuition-appealing languages
based on diagrams. Two-level grammars [Wi] are
particularly fit for handling "context-sensitive"
(i.e. non-local) constraints, thus facilitating
modular design; they are even powerful enough to
formalize the semantics of operations. By separat-

36

ing the rules of a two-level grammar into general
and specific, we can specify both a data model and
each application, thereby effectively converting
the language of the data model into an extensible
language.

It has been widely recognized [Do,HL, Pag,CPIM,VCF]
that different formalisms serve better different
purposes, so that it may be convenient to provide
two or more complementar• ~ specifications to for-
malize the varlous aspects of the same data base
application.

6. An "abstract" dialo~

Author: Although much remains to be done, I claim
that some practical results have emerged from the
above research efforts. We can already envisage
the complete formal description of a data-based
information system. Having the complete descriptio~
one would then decide which rules would be automa-
ted and which would remain as (well-documented)
precepts to guide the human agents, externally
therefore to the data base.

Practitioner: There is a peculiar aspect in your
presentation. To describe your example data base
you did not use any formal notation. Should I con-
clude that, instead of insisting on formalisms, you
should simply advocate a rigorous usage of natural
language?

A: Unfortunately this is not enough in many cases
r~ar]. Let me show you a rather surprising example
of the ambiguities inherent ~n natural language:
the famous transition constraint that "salaries
cannot decrease".

P: Is that ambiguous? Even the way to enforce it
seems quite obvious. You just compare the old and
the new salary upon each insertion or modification
of the salary item IDa].

A: The ambiguity does not reside on how you enfor-
ce the constraint but on its very meaning, which,
expressed in temporal logic [CF], can be, among
other alternatives:

(a) ~n~s (<>(EMP (n,s) ;as' (EMP(n,s')^s>s')))
(b) ~n~s (<>(EMP(n,s)^O (as' (EMP(n,s')As>s'))))

Expression (a) reads:

(a')"it is false that there is an employee n and
salaries s and s' such that eventually n has
salary s in one state and salary s', less than
s, in the next state".

Expression (b) looks almost the same, except that
"in the next state" is replaced by "in some future
state". This little distinction is crucial: ex-
pression (a) does not prevent you from firing an
employee and hiring him again with a lower salary,
while (b) says that you cannot do that.

P_!: Good grief] Would you require a user to analyse
these abstruse expressions?

A: No. The scenario that formal specifiers gifted
with common sense would have i~ mind is:

- a user transmits to the specifier the constraint
"salaries cannot decrease";

- the specifier writes the constraint in formal no-

tation;

- since an adequate formalism forces the specifier
to be precise about the state with salary s' being
either the next state or some future state, he goes
back to the user and asks the question.

There is no need to show the users the formal ex-
pressions. It is however a good practice to show
them a "translation" of the expressions into natur-
al language, like (a'). These translations tend to
be longer than the original formulations made by
the users, and they are rightly so because, as de~-
monstrated, they can bring to the fore troublesome
points that might otherwise be ignored.

P: It is a matter of conjecture to determine
wh--'ether the occurrence of ambiguities is frequent
enough to justify formalisms. Some people feel that
the effort to develop a formal specification does
not pay-off. Well-written comments, in natural lan-
guage of course, are almost always easier to under-
stand [Row].

A: But comments are written together with programs
an---d their sole purpose in documentation, whilst
specifications propose to determine, beforehand,
what programs will be supposed to do. A specific-
ation does pay-off, even more, when it is exec-
utable so that one can experiment with it, perhaps
changing it several times as demanded by the future
users, before co~nniting oneself to a lengthy and
costly implementation. Furthermore, it is useful to
have this specification cast in a style that favors
rigorous verifications of correctness. Finally, the
executable specification can be re-activated during
the maintenance phase, in order to experiment with
changes necessitated by new needs of the user com-
munity.

P: It is certainly nice to have an executable
s~pecification available with all those features.
Incidentally, the idea of producing a first version
for experimentation only has been defended by soft-
ware engineers [Broo] and has been used with good
results reported (as in [As], for example). Howeve~
I have certain misgivings as to the effort needed
to produce it, particularly when formal methodolo-
gies are employed. First, let me point out the
matter of scale. You were discussing a very small
example. I fear that producing a specification for
any realistic data base application and making it
reliably consistent would be a difficult job indee~
even when modular strategies are used.

A: There are examples of non-trivial applications
~eing specified using formal techniques [GH, Sch],
and there are cases [BP] where they helped finding,
not only ambiguities, but even errors that several
people had failed to detect in a preliminary in-
formal specification, erro~that would be tricky
and expensive to correct in the programming phase.

P: Yes, but the specifications were done by acade-
mlc people. Also you need programming languages
based on logic or on symbol-manipulation, whereas
most professional programmers are not trained to
use them. The size itself of the programming task
in the case of realistic applications could be such
that, for having the executable specification, we
would perhaps double the time and cost of embarking
on an implementation after a simpler requirements

37

analysis.

A: Designing a data base application is decidedly
not an outright programming job, unless one con-
fuses it with the mere superimposition of a DBMS
over a number of existing files. Highly trained
people are needed, although , admitedly, not ne-
cessarily university people... Anyway, it is in
order to simplify this task and also to take care
of the bulk of the effort involved that software
tools have begun to appear (e.g. [Ge,GT]).

P: How do I communicate my intentions to software
to---ols that take the algebraic approach? Can I just
indicate the queries and updates with their pre-
conditions and effects?

A: In general you are required to supply the e-
quations that show what sequences of application
operations are equivalent. But it may be possible
to construct some interface enabling you to com-
municate through it as you said and having the sys-
tem (perhaps with your help, interactively) derive
the equations.

P: I look forward to seeing such software tools
widely available and featuring user-friendly inter-
faces. It is fine to praise formal "non-procedural"
methodologies for their freedom from progran~ing
and other implementation details; but to dispense
the users of the methodologies from knowing about
programning by demanding in exchange that they be-
come logicians or mathematicians is totally unreal-
istic. Another objection that I have to the formal
specifications that we have been discussing is that
they leave out more than implementation details.
Certain properties of systems such as speed and
space requirements, memory access patterns, relia-
bility [Sh], concurrency, security, recovery, ex-
ception handling [Brod], etc. are left out as well
or, at best, insufficiently treated.

A: This may still be partly true. Yet some of the
aspects that you enumerated belong to the internal
schema rather than to conceptual schema design. The
main benefits of executable specifications, at the
current state of the art, refer to testing the
behaviour of a data base application subjected to
integrity constraints, thereby giving the prospec-
dveusers an opportunity to assess it and react to
it. Executable specifications can help in preparing
for the phase when the requirements that you men-
tioned will be considered, if you put {hem to a
monitored usage and collect some statistics.

P: Other important properties, related to users'
views, are also missing. In most cases you cannot
first design the conceptual schema and then divide
it among the users; very seldom you will find in
an institution a person or group of persons with a
global knowledge of the application area, able to
give you a complete description. The usual bottom-
up strategy is to extract from the various prospec-
tive users their specialized views and then inte-
grate the views [NG], identifying and disciplining
the interferences among them.

A: Views belong to external schema design, and the
paper deals with the conceptual schema only, as
promised in the introduction... However it is fair
to indicate here that some theoretical work about
external schemas and the interference problem is

under way [Pao,CCF]. About view integration, the
proposed usage of the data abstractions introduced
by [SS] is worth mentioning [TF].

P: I submit that we still have to wait for reports
o-'n actual usage of all this by people working in
the business environment, as has been done for
structured programming and top-down design (in [Hog,
for example). Only from the analysis of such re-
ports one will be able to settle the case of
whether this line of research is relevant to prac-
titioners, or will remain exclusively as a con-
tribution towards the understanding of data and
data-handling functions.

References

[As] M.M. Astrahan et al - "A ~istory and evalu-
ation of System R" - Research report
RJ2843(36129), IBM S.Jose (1980).

[BADW] A.Bolour, L.Anderson, L.Dekeyser and H.Wong
"The role of time on information processing
SIGMOD Record, 12, 3 (1982) 27-50.

[BG] R.W. Burstall and J.Goguen - "Putting
theories together to make specifications"-
Proc. Fifth International Joint Conference
on Artificial Intelligence (1977)
1045-1058.

[BGW] R.M. Balzer, N.M. Goldman and D.S. Wile -.
"Operational specification for rapid pro-
totyping" - Technical Report, Information
Sciences Institute, USC (1981).

[BL]

[BP]

D. Bjorner and H.H. Lovengreen - "Formali-
zation of database systems and a formal
definition of IMS" - Proc. 8th Internation-
al Conference on Very Large Data Bases
(1982) 334-347.

W. Bartussek and D.Parnas - "Using traces to
write abstract specifications for software
modules" - UNC Report 77-012 - University
of North Carolina at Chapel Hill (1977).

[Brod] M.L.Brodie - "Type specification and data-
bases" - topic outline for a panel in 8th
International Conference on Very large Da-
ta Bases (1982).

[Broo] F.P. Brooks - "The mythical man-month" -
Addison-Wesley (1979).

[BS] M. Brodie and J. Schmldt (eds) - "Final
report of the ANSI/X3/SPARC DBS-SG Re-
lational Database Task Group - SIGMOD Re-
cord, 12, 4 (1982).

[BZ] M.L. Brodie and S.N. Zilles (eds.) - Proc.
of the Workshop on Data Abstraction, Data-
bases and Conceptual Modelling - SIGMGD
Record, II, 2 (1981).

[CB] M.A. Casanova and P.A. Bernstein - "A for-
mal system for reasoning about programs
accessing a relational database" - ACM
TOPLAS 2,3 (1980) 386-414.

38

[co~ -]

[CF]

[Ch]

[CPIM]

[Da]

[Di]

[DMW]

[Do]

[EK]

[EKW]

[Fi]

[Ful]

[Fu2]

[FVI]

M.A. Casanova, J.[M.V. de Castilho and A.L.
Furtado - "Properties of conceptual and ex
ternal schemas" - Proe. Formalization of
Programming Concepts = North-Holland (1980
to appear.

M.A. Casanova and A.L. Furtado - "A family
of temporal languages for the description
of transition constraints" - Proc. Work-
shop on Logical Bases for Databases (1982)
to appear.

P.P. Chen- "The entity-relationship model
- toward a unified view of data" - ACM
T(DS i, I (1976).

R.L. Carvalho, A. Pereda B., C.J.P. Lucena
and T.S.E. Maibaum - "Data specification
methods" - Proc. International Conference
on Systems Methodology, Washington (1982).

C.J. Date - "An introduction to database
systems" - Addis0n-Wesley (1981).

E.W. Dijkstra - "How to tell truths that
might hurt?" - SlGPLAN Notices, 17, 5
(1982) 13-15.

W. Dosch, G. Mascari and M. Wirsing - "On
the algebraic specification of databases"
- Proc. 8th International Conference on
Very Large Data Bases" (1982) 370-385.

J.E. Donahue - "Complementary definitions
of programming languages semantics" -
Springer (1976).

H. Ehrig and H.J. Kreowski - "Applications
of graph grammar theory to consistency,
synchronization and scheduling in data
base systems" - Information Systems, vol.5
(1980) 225-238.

H. Ehrig, H.J. Kreowski and H.Weber -
"Algebraic specification schemes for data
base systems" - Proc. 4th International
Conference on Very large Data Bases
(1978) 427-440.

N.V. Findler (ed.) - "Associative net-
works: representation and use of knowledge
by computers" - Academic Press (1979).

A.L. Furtado - "Transformations of data
base structures" - in "Graph-grammars and
their application to computer science and
biology" - V. Claus, H. Ehrig and G.
Rozenberg (eds.) - Springer (1979) 224-23&

A.L. Furtado - "A W-grammar approach to
data bases" - Monograph 9/82, PUC/RJ
(1982).

A.L. Furtado and P.A.S. Veloso - "Proce-
dural specifications and implementations
for abstract data types" - ACM/SlGPIAN
Notices, vol. 16 no. 3 (19Sl) 53-62.

[FV2]

[FVC]

[Ga]

[Ge]

[GH]

[GBM]

[GM]

[GMN]

[Go]

[Gr]

[GT]

[GTW]

A.L. Furtado and P.A.S. Veloso - "Speci-
fication of data bases through rewriting
rules" - Proe. 2nd International Workshop
on Graph Grammars and their Applications
to Computer Science (1982) to appear.

A.L. Furtado, P.A.S. Veloso and J.M.V. de
Castilho - "Verification and testing of
S-ER representations" - in 'Entity re-
lationship approach to information model-
ling and analysis' - P.P.Chen (ed.) -
E-R Institute (1981) 125-149.

H. Gallaire - "Impacts of logic on data
bases" - Proc. 7th International Con-
ference on Very large Data Bases (1981)
248-259.

S.L. Gerhart et al - "An overview of
Affirm: a specification and verification
system" - Proc. IFIP (1980) 343-348.

J. Guttag and J.J. Horning- "Formal
specification as a design tool" - Proe.
of the 7th Annual Symposium on Princi-
ples of Programming Languages (1980)
251-261.

J. Guttag, E. Horowitz and D.R. Musser -
"The design of data type specifications"
in 'Current trends in programming method-
ologies' - R. T. Yeh (ed.) vol. IV -
Prentice-Hall (1978).

H. Gallaire and J. Minker - "Logic and
data bases" - Plenum Press (1978).

H. Gallaire, J. Minker and J.M. Nicolas-
"Advances in data base theory" - Plenum
Press (1981).

C.C. Gotlieb - "Some large questions
about very large data bases" - Proc.
Sixth Very large Data Bases Conference -
(1980) 3-7.

J.J. van Griethuysen (ed.) - Concepts
and terminology for the conceptual schema
and the information base" - report from
the ISO TC97/SCb/WG3 group (1982).

J.A. Goguen and J.J. Tardo - "An intro-
duction 'to OBJ: a language for writing
and testing formal algebraic specific-
ations" - Proc. Specifications of Re-
liable Software - IEEE Computer Society
(1979).

J.A. Goguen, J.W. Thatcher and E.G. Wag-
ner - "An initial algebra approach to
the specification, correctness and im-
plementation of abstract data types" -
in 'Current trends in programming me-
thodology' - R.T. Yeh (ed.) - vol IV -
Prentice-Hall (1978) 80-149.

39

[HL]

[Hoa]

[Hol]

[Ja]

[Li]

[U~WW]

[LZ]

[Mink]

[Mins]

[NG]

[NO]

[Pag]

[Pao]

[Par]

C.A.R. Hoare and P.E. Lauer - "Consistent
and complementary formal theories of the
semantics of programming languages" -
Acta Informatica 3 (1974) 135-153.

C.A.R. Hoare - "Data reliability" - Proc.
International Conference on Reliable Soft-
ware (1975) 528-533.

J.B. Holton - "Are the new progr~ing
techniques being used?" - Datamation -
July (1977) 97-103.

B.E. Jacobs - "on database logic" - J. ACM,
29, 2 (1982) 310-332.

W. Lipski - "On databases with incomplete
information" - J. ACM, 28, I (1981) 41-70.

P.P. Lockemann, H.C. Mayr, W.H. Well and
W.H. Wohlleber - "Data abstractions for
data base systems" - ACM TGDS, 4, I (1979)
60-75.

B. Liskov and S. Zilles - "An introduction
to formal specifications of data abstrac-
tions" in 'Current trends in programming
methodologies' - R.T. Yeh (ed.) - vol I -
Prentice-Hall (1977) 1-32.

J. Minker - "On indefinite databases and
the closed world assumption" - Technical
Report 1076, University of Maryland (1981).

M. Minsky - "A framework for representing
knowledge" - in 'The psychology of com-
puter vision' - P.H. Winston (ed.) -
McGraw-Hill (1975) 413-424.

S.B. Navathe and S.G. Gadgil - "A method-
ology for view integration in logical data
base design" - Proc. 8th International
Conference on Very Large Data Bases (1982)
142-155.

E.J. Neuhold and T. Olnhoff - "The Vienna
Definition Method (VDM) and its use for
the specification of a relational data
base system" - in 'Information Processing
80' - S. Lavington (ed.) - North-Holland
(1980).

F.G. Pagan - "Formal specification of pro-
gramming languages" - Prentice-Hall (1981).

P. Paolini - "Verification of views and
application programs" - Proc. Workshop on
Formal Bases for Databases, Toulouse
(1979).

D.L. Parnas - "The use of precise speci-
fications in the development of software"-
in 'Information Processing 77' - B. Gil-
christ (ed.) - North-Holland (1977) 861-
867.

[RBI

[Rou]

[Row]

[Sch]

[Sco]

[Sh]

[Si]

[SFNC]

[SMF]

[SS]

[Su]

[Te]

[TF]

[TK]

[TL]

D. Ridjanovic and M.IL. Brodie - "Defining
database dynamics with attribute grammars"
- Information Processing Letters, vol.14,
n. 3 (1982) 132-138.

N. Roussopoulos - "CSDL: a conceptual
schema definition language for the design
of data base applications" - IEEE Trans.
on Software Enginnering, SE-5,5 (1979)
481-496.

L.A. Rowe - "Data abstraction from a pro-
granting language viewpoint" - in [BZ]
29-35.

D. Schwabe - "Formal techniques for speci-
fication and verification of protocols" -
Ph.D. dissertation, University of Califor-
nia, Los Angeles (1981).

D. Scott - "Outline of a mathematical
theory of computation" - Proc. Fourth An-
nual Princeton Conference on Information
Sciences and Systems (1970) 169-176.

M. Shaw - "The impact of abstraction con-
cerns on modern programming languages" -
Proc. of the IEEE, 68, 9 (1980) 1119-1130.

E.H. Sibley - "Database management sys-
tems: past and present" - in [BZ], p. 192.

U. Shiel, A.L. Furtado, E.J. Neuhold and
M.A. Casanova - "Towards multi-level and
modular conceptual schema specifications"
- to appear in Information Systems.

C.S. dos Santos, T.S.E. Maibaum and A.L.
Furtado - "Conceptual modelling of data
base operations" - International Journal
of Computer and Information Sciences, I0,
5 (1981) 299-314.

J.M. Smith and D.C.P. Smith - "Database
abstractions: aggregation and generaliza-
tion" - ACM TODS 2, 2 (1977) 105-133.

B. Sundgren - "A conceptual foundation
for the infological approach to data ba-
ses" - in 'Data base management' - J.W.
Klimbie and K.L. Koffeman (eds.) -
North-Holland (1974) 61-94.

R.D. Tennent - "The denotational seman-
tics of programming languages" - Comm. of
the ACM - 19, 8 (1976) 437-453.

T.J. Teorey and J.P. Fry - "Design of da-
tabase structures" - Prentlce-Hall (1982).

D.C. Tsichritzis and A.Klug (eds.) - "The
ANSl/X3/SPARC DBMS framework - report of
the study group" - AFIPS Press (1977).

D.C. Tsichrltzis and F.L. Lochovsky - "Da
ta models" - Prentice-Hall (1982).

40

[VOF]

[VF]

[Wi]

[WPP]

[Zi]

P.A.S. Veloso, J.M.V. de Castilho and A.
L. Furtado - "Systematic derivation of can
plementary specifications" - Proc. Seventh--
International Conference on Very Large Da-
ta Bases (1981) 409-421.

P.A.S. Veloso and A.L. Furtado - "Multi-
level specifications based on traces" -
Proc. International Computer Symposium on
Application Systems Development, Nurnberg
(1983, to appear).

A. van Wijngaarden et al (eds.) - "Re-
vised report on the algorithmic language
AlgOL 68" - Acta Informatica, 5 (1975)
1-236.

D.H.D. Warren, L.M. Perelra and F. Pereira
- "PROLOG - the language and its implemen-
tation compared with LISP" - Proe. Sym-
posium on AI and Programming Languages -
SIGART Newsletters, 64, Aug. (1977)
109-115.

S.N. Zilles - "Types, algebras and model-
ling" - in BZ 207-209.

41

