
ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 1 Jan 1983 Page 1 7

MULTI-LEVEL SPECIFICATIONS BASED ON TRACE S

P .A .S . Veloso and A .L . Furtado

Dept . Informatica, PontifTcia Universidade Cat6lica
22453 Rio de Janeiro, RJ ; Brazi l

ABSTRACT

A methodology for the formal specification of da
to base applications is presented . Central to th e
methodology is the idea of proceeding throug h
successive levels of "traces", which enables a n
initial algebra specification to be obtained fro m
one based on preconditions and effects . Beside s
being executable these trace levels provide a
way to go from a natural language specificatio n
to an algebraic one .

INTRODUCTIO N

This paper proposes a methodology to specify a
data base application using the very same termino-
logy of the application area . Starting from an in -
formal, natural-language specification one passe s
to a description of update and query operations b y
means of preconditions and effects . From this des -
cription one can pass easily to an executable spe c
ification where "programs" manipulate "tracesi '
This specification can be refined by proceeding
via a series of levels of trace (which have simpl e
intuitive meanings and are sufficiently complete ") .
From a level of unique representatives one can the n
pass, if desired, to an algebraic specification .

This approach permits avoiding premature consi-
deration of details extraneous to the applicatio n
area (as choice of data model, data organization ,
etc .), while avoiding lack of precision due to fre e
usage of natural Ianguage 6 . However, the adoptio n
of this abstract data type approach, does not mea n
that one ends up with a closed data base such as a n
airline reservation system ; it only means that th e
otherwise unrestricted application programs ca n
only manipulate the data base through the predefine d
operations .

A SIMPLE EXAMPL E

Consider the data base of a company ACME, marke t
ing a single kind of machine . ACME can either leas e
or sell a machine to a customer . In both cases, th e
customer uses the machine but only in the latter
does he own it . In the former case the customer ca n
decide to buy the machine . If a machine has bee n
leased but not bought the customer can choose t o
return it to ACME . We assume each customer to hav e
at most one machine .

The words underlined, together with phi (whic h
initializes the data base to an "empty" state)
corresponds to the 4 updates and 2 queries available .

We shall be using queries to form predicates an d
selectors, by taking advantage of a PLANNER-likes n o
tation . For instance, if A is a name of a customer ,
owns(A,$) is a predicate as is owns(?,$) (short for
3vowns(v,$)) . On the other hand, owns(?v,$) is a
selector in that in addition to checking whethe r
there exists some customer owning a machine it also
assigns to v the name of one such customer ,

We assume each data base state s to be observa -
ble by means of the queries, in that s can be com-
pletely characterized by the positive ground in -
stances of the predicates holding in it .

Thus the effect of an update is to change th e
logical value of certain predicates, which may con s
titute a precondition for the application of othe r
updates . (By convention, if the preconditions fo r
an update fail the state remains unchanged) .

This leads to a formal specification of update s
by means of preconditions and effects . For instance,
the precondition for the update t :=sell(x,$)

	

i s
mowns(x,$) and its effects is uses(xTTri\ owns(x,t) .
For t :=return(x,$), the precondition i s
uses(x,s A m owns(x,$) and the effect is-1uses(x,t) .

TRACE LEVEL S

One can visualize a state graph, where each nod e
is labelled by a set of positive ground predicate s
and edges are labelled by update operations . In thi s
graph, states are represented by the nodes . But we
can conceive an alternative, namely, representing a
state by a sequence of updates (edge labels) lead-
ing to it . These sequences of operations can be re -
corded as traces' .

In fact, by inspecting a trace,one can determin e
the result of a query . Also, processing an updat e
consists of manipulating the trace . So, traces can
be used as (a universal kind of) data structures .

One can start by denoting each state by the ac-
tual record of the sequence of operations tha t
created it . In this case, executing an update con-
sists simply of appending the name of the operatio n
to the trace . On the other hand, the execution o f
queries is more complex : some of the operations re -
corded in the trace may have had no effect or ma y
have been cancelled or superseded by others . How-
ever one can write a procedure own2 to evaluate th e
query owns on such traces as follows .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 1 Jan 1983 Page 1 8

oP oWnd(x :customer, s :state) : logica l
var y :customer, t :state
match s

phi m' false
lease(y,t) m' oumd(x,t)
sell y,t)

	

if x=y, then tru e
else own.e(x,t)

return(y,t) ' oWnb x,t)
endmatc h

endo p

This procedure is written in a procedural styl e
of presentation 2 : the match statement is a case-lik e
construct, inside which a recursive pattern-matching
process takes place ; the value of the statement i s
the value of the expression to the right of a ' ~
whose lefthand side matches successfully the trace
supplied as argument . In this case, we hav e
owna(x,$) = true iff the trace s has the for m

. . . .sell(x,)

The above traces keep an actual record of all th e
updates invoked . So, they contain some redundant i n
formation as far as an answering queries is concer n
ed . This remark leads to the idea of "levels of
trace" : by discarding redundant information one
gains the flexibility of restructuring the sequence s
of updates .

Here we shall be considering 4 levels of trace ,
called 1 .0 through 4 .0 (the decimal notation sug-
gests that other intermediate levels may be con-
ceived) . We call level 1 .0 the one just considered ,
where traces are the actual records of the sequences
of updates, analogously to the so-called "audi t
trails" .

At level 2 .0 updates involve the previous test -
ing of preconditions : if they hold, and only then ,
the name of the operation is appended to the trace .
Queries become simpler as the burden of testing pr e
conditions shifts to the updates . (Level 2 .0 traces
are like "logs" kept for recovery purposes) . The
procedure corresponding at level 2 .0 to the updat e
lease i s

2. Lecu e(x :customer, s :state) : stat e
(bSe6(x,$)

	

s ;
lease(x,$)

endo p

whereas for the query owns we hav e

op ow,vs(x :customer, s :state) : logica l
var y :customer, t :stat e
match s

phi

	

false
lease(y,t)

	

if x=y then false
else ownb(x,t)

sell(y,t)

	

if x=y then tru e
else ownd(x,t)

return(y,t)," if x=y then false
else oWn,s(x,t)

endmatch
endo p

At levels 1 .0 and 2 .0 traces become longer wit h
time . Now at level 3 .0 the traces record only thos e
operations whose effects have not been superseded o r
cancelled . For instance a level-3 .0 trace correspond
ing to

return(A, lease(C, sell(B, Iease(A, lease(B,phi)))))
is lease(C, sell(B, phi))

At level 3 .0 the procedures for updates becom e
more complex, e .g .

2. 4eLe (x :customer, s :state) : state
var y:customer, t :state
odnb(x,$) " s ;
-iu/.,c (x,$)

	

sell(x,$) ;
match s

lease(y,t)

	

if x=y then sell(x,t)
else lease(y,de f(x,t))

sell(y,t) > selyy, 4ete(x,t))
endmatc h

endo p

On the other hand, queries become simpler not hav-
ing to account for all kinds of updates . (Notice ,
for instance, that return will never be recorded o n
a level-3 .0 trace, its execution simply deletes th e
corresponding lease .)

There can be more than one level-3 .0 trace deno t
ing a state . Certain sequences of updates will caus e
the same end effects no matter the order in whic h
they are executed . So, we are free to impose som e
external ordering criterion, such as decreasin g
lexicographic order of customer names .

On level 4 .0 traces have the same size as leve l
3 .0, differing only with respect to the orderin g
requirement . Now, updates bear the additional burde n
of maintaining the order, e .g .

.°. seLL(x :customer, s :state) : stat e
var y :customer ; t :stat e
oaW (x,$)

	

s ;
match s

phi

	

sell(x,$)
lease(y T

	

if x=y then sell(x,t)
else if x<y then sell(x,$)

else lease y,Ae22(x,t))
sell(y,t) m if x<y then sell-7, -s)

else sellyZe2e(x,t))
endmatch

endo p

Compared to level 3 .0 the new procedures fo r
queries do not become simpler but can be made mor e
efficient by taking advantage of the ordering .

A natural question, due to the multiplicity of
trace-level specifications for the same data bas e
application, is : what is the "best" level? All fou r
specifications considered here are executable an d
sufficiently complete `' . (Notice that query proce -
dures designed for a level work correctly - albei t
less efficiently - on traces of subsequent levels .)
While designing and testing the specification i t
appears that the extra information kept on level s

1 .0 and 2 .0 may be useful . For other purposes othe r
levels may be more convenient . For instance, th e
uniqueness of level-4 .0 traces for each state ca n
be very handy in showing whether two sequences o f
updates lead to the same state .

ALGEBRAIC SPECIFICATIO N

One finds in the abstract data type literature
two viewpoints on what is a "good" specification .
Namely, sufficient completeness° and initial (or

ACM SIGSOPT SOFTWARE ENGINEERING NOTES Vol 8 No 1 Jan 1983 Page 19

terminal) algebra 3 . For the latter viewpoint onl y
trace level 4 .0 is adequate, whereas all levels are
adequate for the former .

We shall now indicate how an algebraic specific -
ation can be methodically obtained from the preced -
ing ones . We shall consider two kinds of equations :
Q-equations and U-equations (related to queries an d
updates, respectively) . They closely resemble the
statements in the symbolic procedures, but for th e
fact that one cannot require equations to be applie d
to traces in a predetermined order .

Twelve equations like the following ones describ e
the result of the level-1 .0 query procedures an d
form a level-1 .0 specificatio n

uses(x, sell(x,$)) = tru e
own s-(x, lease(y,$)) =owns(x,$)
x#y

	

owns(x, sell(y, so= owns(x,$)

In going from level 1 .0 to level 2 .0 one has t o
discard operations that caused no change of state .
This is what the following 4 (conditional)
U -equation s

uses(x,$) = false 4 return(x,$) = s
use s-(x,$) = true - leaseTx,$) = s
owns(x,$) = true 4 sell x,$) = s
owns(x,$) = true -r return(x,$) = s

At level 3 .0 in addition one discards update s
whose effects were cancelled or superseded . This i s
asserted in the following 2 U-equation s

return(x, lease(x,$)) = return(x,$)
sell(y, lease x,$)) = sell(x,$)

However, these equations apply only to adjacen t
updates . Further U-equations are needed to take care
of other cases . Five commutativity U-equations like
the following ones will do the jo b

lease(x, sell(y,$)) = sell(y, lease(x,$))
x#y -i return y, lease(x,s) = lease(x, return(y,$))

By means of these equations one can take any
trace (from any level) and rearrange it into an e-
quivalent level-4 .0 trace .

CONCLUSIO N

The several levels of formal specification are
all useful by themselves, besides providing a cons-
tructive methodology to go from the starting infor-
mal specification to less intuitive formal ones 7 .

From the broader viewpoint of software engineer-
ing, we think that the notion of trace levels i s
important in that it relates the two apparently di s
joint approaches of sufficient completeness and i-
nitiality .

REFERENCE S

1 . W . Bartussek and D .L . Parnas, Using traces t o
write abstract specifications for softwar e
modules, UNC Report 77-012, Univ . of North
Carolina at Chapel Hill, 1977 .

2. A .L . Furtado and P .A .S . Veloso, Procedural spec -
ifications and implementations for abstrac t
data types, ACM/Sigplan Notices, vol .16 ,
n . 3, 1981, pp . 53-62 .

3 . J .A . Goguen, J .W. Thatcher and E .G . Wagner, A n
initial algebra approach to the specific -
ation, correctness and implementation o f
abstract data types, Current Trends in Pr o
gramming Methodology, R .T . Yeh (ed .) ,
Prentice-Hall 1978, pp . 80-149 .

4 . J .Guttag, Notes on type abstraction (version 2) ,
IEEE Transactions on Software Engineering ,
vol . 6, n . 1, 1980, pp . 13-23 .

5 . C . Hewitt, Description and theoretical analysi s
(using schemata) of PLANNER : a language fo r
proving theorems and manipulating models i n
a robot, Ph .D . thesis, Dept . of Math ., MIT ,
1972 ,

6 . D .L . Parnas, The use of precise specification s
in the development of software, Informatio n
Processing 77, B . Gilchrist (ed .), North-
Holland 1977, pp . 861-867 .

7 . P .A .S . Veloso, J .M .V . de Castilho and A .L .Furtadh ,
Systematic derivation of Complementar y
Specifications, Proc . 7th Very Large Data
Bases Conference, 1981, pp . 409-421 .

