ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 1 Jan 1983 Page 17

MULTI~LEVEL SPECIFICATIONS BASED ON TRACES

P.A.S. Veloso and A.L. Furtado

Dept. Informatica, Pontificia Universidade Catdlica
22453 Rio de Janeiro, RJ; Brazil

ABSTRACT

A methodology for the formal specification of da
ta base applications is presented. Central to the
methodology is the idea of proceeding through
successive levels of "traces', which enables an
initial algebra specification to be obtained from
one based on preconditions and effects. Besides
being executable these trace levels provide a
way to go from a natural language specification
to an algebraic one.

INTRODUCT ION

This paper proposes a methodology to specify a
data base application using the very same termino-
logy of the application area. Starting from an in-
formal, natural-language specification one passes
to a description of update and query operations by
means of preconditions and effects. From this des-
cription one can pass easily to an executable spec
ification where "programs'' manipulate 'traces'!.
This specification can be refined by proceeding
via a series of levels of trace (which have simple
intuitive meanings and are sufficiently complete®).
From a level of unique representatives one can then
pass, if desired, to an algebraic specification.

This approach permits avoiding premature consi-
deration of details extraneous to the application
area {as choice of data model, data organization ,
etc.), while avoiding lack of precision due to free
usage of natural languages. However, the adoption
of this abstract data type approach, does not mean
that one ends up with a closed data base such as an
airline reservation system; it only means that the
otherwise unrestricted application programs can
only manipulate the data base through the predefined
operations,

A SIMPLE EXAMPLE

Consider the data base of a company ACME, market
ing a single kind of machine. ACHME can either lease
or sell a machine to a customer. In both cases, the
customer uses the machine but only in the latter
does he own it. in the former case the customer can
decide tc buy the machine. If a machine has been
leased but not bought the customer can choose to
return it to ACME. We assume each customer to have
at most one machine.

The words under!ined, together with phi (which
initializes the data base to an "empty'' state)
corresponds to the 4 updates and 2 queries available.

We shall be using queries to form predicates and
selectors, by taking advantage of a PLANNER-1ike no
tation. For instance, if A is a name of a customer,
owns(A,s) is a predicate as is owns(?,s) (short for
dvowns(v,5)). On the other hand, owns(?v,s) is a
selector in that in addition to checking whether
there exists some customer owning a machine it also
assigns to ¥ the name of one such customer,

We assume each data base state s to be observa-
ble by means of the queries, in that s can be com-
pletely characterized by the positive ground in-
stances of the predicates holding in it.

Thus the effect of an update is to change the
logical value of certain.predicates, which may cons
titute a precondition for the application of other
updates. {By convention, if the preconditions for
an update fail the state remains unchanged).

This leads to a formal specification of updates
by means of preconditions and effects. For instance
the precondition for the update t:=sell(x,s) is
aowns(x,s) and its effects is uses{x,t) A owns(x,t).
For t:=return{x,s), the precondition is
uses(x,s] A -owns(x,s) and the effect is-uses(x,t).

TRACE LEVELS

One can visualize a state graph, where each node
is labelled by a set of positive ground predicates
and edges are labelled by update operations. In this
graph, states are represented by the nodes. But we
can conceive an alternative, namely, representing a
state by a sequence of updates (edge labels) lead-
ing to it. These sequences of operations can be re-
corded as traces'.

in fact, by inspecting a trace,one can determine
the result of a query. Also, processing an update
consists of manipulating the trace. So, traces can
be used as (a universal kind of) data structures.

One can start by denoting each state by the ac-
tual record of the sequence of operations that
created it. In this case, executing an update con-
sists simply of appending the name of the operation
to the trace. On the other hand, the execution of
queries is more complex: some of the operations re-
corded in the trace may have had no effect or may
have been cancelled or superseded by others. How-
ever one can write a procedure ownd to evaluate the
query owns on such traces as follows.



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 1 Jan 1983 Page 18

op owns(x:customer, s:state) logical
var y:customer, t:state
match s
phi = false
Tease(y,t) = owns(x,t)
sell(y,t) = if x=y, then true
else owns (x,t)
return(y,t) = owms(x,t)
endmatch
endop

This procedure is written in a procedural style
of presentation?: the match statement is a case-ike
construct, inside which a recursive pattern-matching
process takes place; the value of the statement is
the value of the expression to the right of a '="'
whose lefthand side matches successfully the trace
supplied as argument. In this case, we have
owns (x,s) = true iff the trace s has the form

coeesell(x, .0 ).

The above traces keep an actual record of all the
updates invoked. So, they contain some redundant in
formation as far as an answering queries is conceﬁi
ed. This remark leads to the idea of ''levels of
trace'': by discarding redundant information one
gains the flexibility of restructuring the sequences
of updates.

Here we shall be considering 4 levels of trace,
called 1.0 through 4.0 {the decimal notation sug-
gests that other intermediate levels may be con-
celved). We call level 1.0 the one just considered,
where traces are the actual records of the sequences
of updates, analogously to the so-called ‘''audit
trails'',

At level 2.0 updates involve the previous test-
ing of preconditions: if they hold, and only then,
the name of the operation is appended to the trace,
Queries become simpler as the burden of testing pre
conditions shifts to the updates. (Level 2.0 traces
are like ''logs'' kept for recovery purposes). The
procedure corresponding at level 2.0 to the update
lease is

op {Lease(x:customer, s:state) state
uses{x,s) = s;
= lease(x,s)

endop

whereas for the query owns we have

op oums(x:icustomer, s:istate)
var y:customer, t:state
match s

Ehi = false

lease(y,t) = {f x=y then false

T else owms{x,t)

sell(y,t) = if x=y then true

else oums(x,t)

x=y then false

else ouns(x,t)

logical

return(y,t)= i

endmatch
endop

At levels 1.0 and 2.0 traces become longer with
time. Now at level 3.0 the traces record only those
operations whose effects have not been supersededor
cancelled. For instance a level-3.0 trace correspox
ing to

return(A, lease(C, sell(B, lease(A, lease(B,phi)))))
s Tease(C, sell (B, phi))

At level 3.0 the procedures for updates become
more complex, e.g.

op sell(x:customer, s:state) : state
var yicustomer, t:state
ouns (x,s) = s;
~uses(x,s) = sell(x,s);
match s -
lease(y,t) = if x=y then sell(x,t)
T else leasel(y,sell(x,t))
sell(y,t) = sellly, sell(x,t))

endmatch

endop

On the other hand, queries become simpler not hav-
ing to account for all kinds of updates. (Notice,
for instance, that return will never be recorded on
a level-3.0 trace, its execution simply deletes the
corresponding lease.)

There can be more than one level-3.0 trace denot
ing a state. Certain sequences of updates will cause
the same end effects no matter the order in which
they are executed. So, we are free to impose some
external ordering criterion, such as decreasing
lexicographic order of customer names.

On level 4.0 traces have the same size as level
3.0, differing only with respect to the ordering
requirement. Now, updates bear the additional burden
of maintaining the order, e.g.

op sell(x:customer, s:state) state
var vy:customer; t:state
ownis (x,s) = s
match s

phi = sell(x,s)
Tease(y,t) = if x=y then sell(x,t)

" else if x<y then sell(x,s)

else lease(y,4ell(x,t))
sell(y,t) = if =<y then sell(x,s)

else sell(y,sell(x,t))

endmatch
endop

Compared to level 3.0 the new procedures for
queries do not become simpler but can be made more
efficient by taking advantage of the ordering.

A natural question, due to the multiplicity of
trace-level specifications for the same data base
application, is: what is the ''best' level? All four
specifications considered here are executable and
sufficiently complete”. (Notice that query proce-=
dures designed for a level work correctly - albeit
less efficiently - on traces of subsequent levels.)
While designing and testing the specification it
appears that the extra information kept on levels
1.0 and 2.0 may be useful. For other purposes other
levels may be more convenient. For instance, the
uniqueness of level-4.0 traces for each state can
be very handy in showing whether two sequences of
updates lead to the same state.

ALGEBRAIC SPEC!FICATION

One finds in the abstract data type literature
two viewpoints on what is a '"good'" specification,
Namely, sufficient completeness” and initial (or




ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 1 Jan 1983 Page 19

terminal) algebra®. For the latter viewpoint only

trace level 4.0 is adequate, whereas all levels are
adequate for the former.

We shall now indicate how an algebraic specific-
ation can be methodically obtained from the preced-
ing ones. We shall consider two kinds of equations:
Q-equations and U-equations (related to queries and
updates, respectively). They closely resemble the
statements in the symbolic procedures, but for the
fact that one cannot require eqguations to be applied
to traces in a predetermined order.

Twelve equations like the following ones describe
the result of the level-1.0 query procedures and
form a level=-1.0 specification

uses(x, sell(x,s)) = true
owns (x, lease(y,s)) = owns(x,s)

x#y ~ owns(x, sell(y,s)] = owns(x,s)

In going from tevel 1.0 to level 2.0 one has to
discard operations that caused no change of state.
This is what the following 4 (conditional)

U - equations

uses(x,s) = false » return(x,s) = s
uses(x,s) = true = l1ease(x,s) = s
owns (x,s) = true ~ sell(x,s) = s
owns{x,s) = true + return(x,s) = s

At level 3.0 in addition one discards updates
whose effects were cancelled or superseded. This is
asserted in the following 2 U-equations

return(x, lease(x,s)) = return(x,s)

sell(x, lease(x,s)) = sell(x,s)

However, these equations apply only to adjacent
updates. Further U-equations are needed to take care
of other cases. Five commutativity U-equations like
the following ones will do the job

lease(x, sell(y,s)) = sellly, lease(x,s))
xZy + return(y, lease(x,s)) = lease(x, return(y,s))

By means of these equations one can take any
trace (from any level) and rearrange it into an e-
quivalent level~4.0 trace.

CONCLUS ION

The several levels of formal specification are
all useful by themselves, besides providing a cons-
tructive methodology to go from the starting infor-
mal specification to less intuitive formal ones’.

From the broader viewpoint of software engineer-
ing, we think that the notion of trace levels is
important in that it relates the two apparently dis
joint approaches of sufficient completeness and i-
nitiality.

REFERENCES

|. W. Bartussek and D.L. Parnas, Using traces to
write abstract specifications for software
modules, UNC Report 77-012, Univ. of North
Carolina at Chapel Hill, 1977.

Furtado and P.A.S. Veloso, Procedural spec-
ifications and implementations for abstract
data types, ACM/Sigplan Notices, vol.l6,

n. 3, 1981, pp. 53-62.

2, AL,

3.

J.A. Goguen, J.W. Thatcher and E.G. Wagner, An
initial algebra approach to the specific-
ation, correctness and implementation of
abstract data types, Current Trends in Pro
gramming Methodology, R.T. Yeh (ed.}, B
Prentice-Hall 1978, pp. 80-149,

. J.Guttag, Notes on type abstraction (version 2),

IEEE Transactions on Software Engineering,
vol. 6, n. 1, 1980, pp. 13-23.

C. Hewitt, Description and theoretical analysis
{using schemata) of PLANNER: a language for
proving theorems and manipulating models in
a robot, Ph.D. thesis, Dept. of Math., MIT,
1972,

D.L. Parnas, The use of precise specifications
in the development of software, {nformation
Processing 77, B. Gilchrist (ed.), North-
Holland 1977, pp. 861-867.

. P.A.S. Veloso, J.M.V. de Castilho and A.L.Furtad,

Systematic derivation of Complementary
Specifications, Proc. 7th Very Large Data
Bases Conference, 1981, pp. 409-421.



