


"‘7‘(4/\._..51:‘
BB 58 M e X &

Proceedings of the
International Conference on

Advanced Automation—1983

PERALF=F+=A B ~=+—0
Dec, 19-21,1983

G B 5 I A E T P
FERE e LT

Institute of Information Science, Academia Sinica

Taipei, Taiwan, Republic of China



A THEORETICAL PROPOSAL TO A CASD SYSTEM EXTENDING THE JACKSON'S METHOD

C.J.P.Lucena+; R.C.B.,Martins+; P.A.5.Veloso+; D.D.Cowan§

+ Department of Computer Science, Pontificia Universidade Catol1ca do Rio de Janeiro, Rio de Janeiro,Brazil
§ Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

ABSTRACT

This paper presents a new programming method, called the data transform programming method. In partic-
ular, we present a specialization of data transform programming to deal with file processing applica-
tions, Direct comparison is made with Jackson' s approach [1] by the presentatlon of uniform solutlons
to problems that cannot solved through his b351c method. The new method consists of the application cf
data transformations to the abstract problem statement, following the formal notions of problem reduc—
tion and problem decomposition. Data transformations are expressed in programming terms through a basic
set of data type constructors. The method reduces the original problem to a set of sub-problems . that
can be solved through the direct application of Jackson's method. It produces a solution  which is”

correct by construction.

Key-words: Software 'engineering, Jackson's method, data-flow design, theory of programming, théory of

problems.
1. INTRODUCTION

As computer costs go down the use of computer assis-—
tance in the process of problem solving increases.
In fact, Computer Assisted Design (CAD) is rapidly
catching up in mpst technological areas. Very recent-
ly, as the software development process became better
known, a new area has been.receiving widespread at-
tention: Computer Assisted Software Design (CASD).
Most of the work in the CASD area can be Toughtly
classified into two categories: systems to support
the activity offprogramming—in—the—large (systems
level programming) and systems to aid the process of
programming-in-the-small (module level programming).
The present work describes a methodology that can be

used as a basis for a CASD system.

It has been observed tHat many of the changes in typ-
ical data processing applications, often called }ile
processing programé, are caused by the changes in the
structure of.the dqtn‘to be processed or to be out—
put as the result of processing and by the accompany-

ing actions which must occur to reflect these changes

in the structure of the input/output data. Hence, 'if
a program or system of programs can be designed ito
reflect the structure of the data that is being pro-
cessed, then modifications to the data might mote
easily be reflected in the modifications of the program
necessitated by these changes. The above ideas were
captured byvexperienced practitioners who have for-
mulated programming methodologies that have consider-
ably influéncedvtoday's‘programm{ng practices indus-
try. The work of Jackson's [1], Warnier [Z]V and
Yourdon and Constantine [3], are often quoted as° some

of the most important in this area.

As in many engineering areas, also in the area of soft-
ware engineering, most 9f the research work id theory
(in particular in programming theory) takes a 1ong
time to influence industry. In fact, most|of the work
in formal program derivation has little or mno , impact
in routiné data processing'agplfdations progfnﬁm\iné..
On‘the.othér hand; sirice file processing programs have

not been sufficiently étpdied from the formal point

-of view, experiencéd pra¢titioners lack the’tcols vro

express their idéaéxabout_programming methodology in

— 144 —



a rigorous way. Even the very successful propositions
by Jackson, Warnier, and Yourdon and Constantxne could
only be made precise thrcugh exhaustive exemplifica-
tion. Very often, subtle aspects of these methodolo —
gies have not been expressed at the precision level
that is achieved, for instance, in most of the lite-

rature about program synthesls.

Data transform programming deals with the class of

problems that can be solved by the basic 'Jackson

method. It can also solve, through a unifonuépﬁroach‘

problems that Jackson can only handle through major-

departures from his basic method. The formaligation

of data transform programmingwasnmde90551319through
the association of the mnotion of data abstraction to
file processing programming and through the utiliza-
tion of formal definitions for concepts such as program
decomposition and program reduction borrowed from the

areas of logic and problem solving.

In order to put the original Jackson basic method on
a mofre formal basis, Hughes [5] establishes . a corre-
spondence between the class of programs avajlable to
treatment by his method and the formal language coﬁ—
cept of generalized sequential machine. It turns out
that Jackson's basic method gives rise to.transform-
ations which are gsm computable (in sense that thé
required transformatlon can be performed by a gener—
alized sequential machine). That, of course, explains
why Jackson's basic method cannot solve backtracking
pfoblems (multiple passes over the irput)and problems
that he calls structure clashes problems. Jackson
solves the latter problems by using ad hoc solutions
and the technique of program inversion (preparation
‘of a program to be used, for the same function, as a

subroutine to another program).

Cowan énd Lucena [6], by introducing a mnew factor
(abstract levels of specificationfordataandprdgram
and the subsequent implementatiﬁn thereof in terms
of more concrete levels of abstraction)  intsd
Jackson's method have solved the sqrting problem tg;
illustrate how the exercise of thinking abstractly‘
about a problem can 1ead to novel solutions or solu-
tions which were thought to be unavailable due to
shortcomings of a given method. We were left with
the problem of showing that the many aspects of: the

structure clash problem, namely COnfllCt of order,

multithreading and boundary conflict problems [1]
could be solved uniformily through the same or a
similar approach. The idea was to consider that since
these form an important class of typical data pro-
cessing problems they should be solved tﬁ;ough a set
of prescribed rules which are common to the whole
class data processing of ‘problems and not through ex—

ceptions to the rules of a basic method. We have also

" investigated the problem of whether or not the ori-

ginal approdch by Cowan and Lucena [6] could be gen-—
eralized and formalized as a method. The informal
notion of data-flow design by Yourdon and Coﬁstanpine
rs1, together with the formal notion of problem solv—
Lng by Veloso and Veloso [7] were instrumental for
the formulatlon and improvement of the orlglnalldeas

in Cowan and Lucena [6].

Some authors have proposed a progtamming»gpﬁrqach
where the traﬁsition between successive versionms of
a program is done according to formal rules called
program transformations (see, for instance, (131,141,
[15] and [161). According to this approach programs
are considered as formal objects which can be manip-
ulated by transformatlon rules. The data transform
method involves the application of data transform-
ations to the abstract problem statement, following
the formal notions of problem reduction and problem
decomposition. Data transformations are expresséd in
programming terms by using the basic set of data type
constructors proposed by Hoare (see séction.Z and
[81). The method reduces the original problem to a

set of sub—problems that can be solved through the

" direct .application of Jackson's method. It produces

a solution which is correct by construction.

The present paper formulates the data prqgramming
method and applies it to the sorting problem (upsolv=
able by the basic Jackson method) and to other exam-
ples_proposed by Jackson to illustrate the shortcom—
ings of his method. These other examples are particu-
lar cases of the structure clash préblem. The tele-
gram problem illustrates a bounda&y ciash situation,
the system log problem is an example-of 2 multiread-
1ng problem and the matrix transposition problem il-
1ustrates an ordering clash. Since the preSent paper
aims at bridging some of the gap between theory and
practice in programming, we have tried not to write

it as a mathematical paper. In Section .2 where we

— 145 —



describe the method in a somewhat formal way, may be
skiped in a first reading, Further formalizations and

proofs are to be found in accompanying papers.
2. THE DATA TRANSFORM METHOD

‘The General Method

Programs solve problems. According to Veloso and Ve-
1oso [7] a problem is a structure P=<D,0,q> with two
sorts, where

the elements of D are the problem data,

the elements of O are the solutions (outputs)

and q is a binary relation between D and O.

A program P solves 'a problem if P defines a total
function between D and O such that

(¥d:D) q(P(d),d) 1)
holds. To derive a program through the data method
.consists of, given an inﬁut specification for deD
and an output specification for 0e0 to‘construct a

program P such that formula (1) holds.

Certain data-directed design approaches, such  as
Jackson's, proceed as ébove by trying to find at the
beginning of the derivation process a direct mapping
between the input data structures and the output data
structures (a mapping from a representation of deD
to a representafion_of 0¢0). For some situations it
is not possible to solve some problems through Jackson's
basic method (problems which are not gsm computable).
The data transforﬁ method proposes a canonical form
for the expression of programs that include "trivially
problems which are solvable through the Jackson basic
method and that is amenable to simple transformations
which lead to solutions to problems which are not

Jackson solvable.

The data transform method starts by expressing the
abstract notions of deD and ©eO, instead of tryiné to
"look for data representations for these two entities.
This approach, of course, became a standard procedure
in many programming methodologies but is mnot very
common in the context of data-directed programming.
The strategy for program derivation through the data
transform method consists of applying the concept of
problem reduction and decomposition while using Hoareb

general data type construction mechanisms. Problem

reduction and 4ecomposition is applied in a way which
willsleave us with alset of Jackson solvable problems
in hand. In ﬁhé process of decomposing the problem

the method bears . some similarity with Yourdon and

‘Constantine's datz flow design.

We say a problem Pl—<D o] > is a reduction of

o179
=<,0,q> and write PEP if we can define a unary
function insert, ins: D+D1 and a unary function re-
trieve, retr: 0,7 such that the program defined by

P(d) = retr(Pl(ins(d)) (2)

_solves P when P. solves Pl'

1

In Figure 1 below we illustrate this situation. Note
that q is a subset of DxO, 4 is a subset of Dlel »
P is a solution to P (a total funmction between D and
0), P1 is a solution to P1 (a total function between
D1 and ol) and that the functions ins and retr need
to be defined in such a way that the composition ex-—

pressed in (2) is satisfied.

ins

retr

Figure 1: PLPl

The first step of the data transform method, consists
of defining D1 and 0l as the cartesian product of D
and 0; ins such that ins(d)=(d,00) for some oon :
retr such that retr(d,pn)=0. In other words, the. re-
duction through ins and retr makes use of the data
type constructor cartesian product (record) which is
one of the three basic constructors proposed by Hoare
[8]. Intuitively it avoids the problem of structure
clashes between the input and output spaces which some-
times occur when the basic Jackson method is directly
applied. The imput and output data of Py have now,tri-

vially, the same structure (independently of any chosen

.representations for d and o). Figure 2 below further

clarifies the previous considerations.

This first step is clearly an intermediate step in the
reduction process and is basically motivated by the
existence.of the structure clash type of problems in

146 —



dep ==~ B smw0
ins retr
Pl .
(d,00) €DX0 ~ =+« F = o W Dx0
Figure 2

a data-directed programming type of soiution.»A triv-
~ial case, in practice, would be the ome for which it
is po%sible to define compatible data structures for
d and 0. That is, a situation in which P is gsm solv—

able.

The method requires a second step whenever Pl is not
a simple problem, but requires for instance, modular-
ization or the treatment of backtracking or recursive
situations. The second step of the data transform
method consists of defining a new reduction P2 =
;<D2,02,q2> of Pl' In this step we will make use of
the sequence (file) data type constructor. We will
define D, as Dl*; 0, as Ozf and the function ins from
D, to D and retr from Ol to O as being, respectively,

tie functions make and last which have the normal
meaning of these operators when applied to sequences,
that is, make: builds an unitary sequente froma given
argument; and last: returns the last element of the
sequence. Figure 1 would now be replaced by the sit-

uation pictured in Figure 3.

T

Figure 3: P—FrP1 —>P2

The outcome of this step is a program P, which, we
want to decompose into simpler programs. Let us be
more precise about what we mean by decomposition [7].
If we take the problem P2=<D2,02,q2> , a n—ary decom—
position A of P,, P2+A, consists of

i)+ n functions decmpi:D2+D2 , i=1l,.00,0;

ii) a(n+l) ary fumction merge:szog-»Oz;

iii) a unary function immd:D,>0,

iv) a unary relation easy< D2

We call items (i) to (iv)va good n—ary decomposition
of P, iff
immd(dz)_if easy(dz)

P, (d,) = . 3
2( 2) comblne(dz,soll[decmpl(dz)],... 3

...,soln[decmpn(dz)]) otherwise

where sol stands for the part of the solution of P2
contributed by each decomposition. Intuitively, if the
problem is simple (easy), that is, gsm computable, de-
composition is not necessary and we have a direct
(immd) solution. Otherwise the solution for P2 is
obtained through the combina?ion (combine) of the sol-
utions ﬂsol's) to the programs P21,P22,...,P2n which v
correspond to the solutions. The decomposition process
is guided'by a data flow design type of analysis while
we try to identify as many gsm solvable problems as
possible. If one or more of the identified programs

are not gsm computable, steps 1 and 2 and decomposi-

. tion are applied to all programs at hand and applicar

tions of steps 1 and 2.

3. THE DATA TRaNSFORM METHOD FOR FILE PROCESSING
PROGRAMMING

We are mainly interested here in an important special-
ization of the data transform method to deal with file
processing programming. These problems are identified
in associa/tion with the data transformmethod as problems
for which the inputs for P are always entities of the
general type (files) and as problems for which the
constitutive programs of P2 (obtained by decomposi-

tion) are always similar, in the sense that a while

-statement can drive a copy of them by changing the

necessary inputs through its parameter. The program
schema below defines the family of programs (in the
sense of [9]). that can be obtained by the data trans-
form method as specialized for file proceésingprogram
ming, when we have one application of the first step
of the method followed by dng applic;tion of the second

step.

The notation used in Figure 5 below is Pascal-like.
The prograﬁs that constitute Schema are presented in
the order of their derivation, therefore violating a
Pascal syntax rule. In the program Schema the select-
ors 1 and ; simulate the function ins and retr and the
symbol A stands for the null sequence; The program

schema only creates an instance of the input data to

— 147 —



finished

Figure 4 - Diagram for file processing problems

solution by the Data TransformMethod

allow the application of the method.

The function update for the class of file processing
problems, has been defined as update(x3)=append(x3,
transform(last(x3))) where transform is a function
from DxO to DxO which contributes to the solution of
the problem. Refer to definition of PZ(dZ) ‘in

equation (3).

The function append has the usual meaning of the op-
erator with the same name, normaily associated to the
type sequence that 1s append: (px0) * .X (Dx0) -> (Dx0)*;
where append (pl',---,pn),p)=(p1,---,pn,p)

A Correctness Criterion for the Method

We define initially the termination condition for the

program schema, displayed in Figure 5. We have:

i) update(XB)=append(x3,transform(last(xé))?

ii) - Vx3e (DxO)*,smllr(transform(x3).i,xa.i)

iii) smllr is a well founded relation in DxD such any
deD is in a finite smllr chain starting at A:
smllr(A,dl) smllr(dl,dz)... smllr(dﬁ,d) that is
usual for file processing program)

iv) 1ast(X3).i=A<—> finished(x3)=true

Transform and finished must be specified -so- as to
satisfy the above conditions. We can now state the

partial correctness condition for the class of programs.

v) Vx4 € (Dx0) ™, finished(xB) = qz(x3,make(d.i.A))
vi) Vx3 e(DxO)*,qz(x3;ﬁake(d.i,A))=>q(1ast(x3).y,d)

Intuitively, the relation smllr guarantees that in
each step the transform function contributes some more
for the solution of the problem. The smllr relationm,

which is a well founded relation, characterizes the

— 148 —

Program schema;
type D = seq of objectél;
type O = objectsz;
type DxO = record i:D;
r:0
type(DxO)* = seq of Dx0;
var x,d:D;
var y,0:0;
begin
%« copy(d);
P
o« copy (¥)
end {schemal.
Procedure P;
var xl,yl:DXO;
begin

Jix; %, .r <A

*1
Pl;

1

y*Y
end {P};

Procedure Pl;

1.1‘

var x2,y2:(PxO)*;
begin
*
PZ; . .
vy last(y,)

end {Pl};

+make(x1) 3

Procedure Pz;
" var x3:(DxO)*;
begin
¥3€ X3
while not finished (x3)do

x, +update (x3);

3
Yy %3
end {P,};

Figure 5 - Program Schema for File Processing
Programming through the Data Transfor
Method

empty element as a distinguished element that will

necessarili be reached to accomplish the termination

" of the program.

Condition (v) guarantees that when the program stops

X, is the solution of the problem for which the input

3
is obtained from d bx the application of ins and make

and condition (vi) ensures that the reduction from the



original problem P to P, is good, i.e., that the ele-
ment from X, obtained by the application of retr and
last is the solution to the originaiyproblem with in-

put d.
4, THE SORTING PROBLEM

We have selected the sorting problem as our first ex-
ample for a number of reasons. First of athheproblem
is very well known and therefore the reader can con-
centrate all the -attention in the problem solving
method and compare it with the many available solu-
tions to the problem. Second, since sorting exempli-
fies a situation of backtracking (or at least ‘some
backtracking) it illustrates a case where Jackson's

basic method cannot be directly applied [1].

Let A be a totally ordered set, d=<a;,2,,...,a > eD
1272 >’n

a finite sequence of elements from A and 0=<bl,b2,;.”

bn> €0 a finite sequence of elements from A. Tosort

means to solve a problem SORT=<D,0,q> such that

q(0,d) is defined by {al,..ﬁ,an}={b1,...,bn} and

(¥i,¥j,l<i<jsn) = >bi >bj' For simplification pur-

pose we assume that ai#aj for all i#j and d#A.

As in Figure 5 we will define a Program Sort that
w@ill create an instance of the data thatwill be used
for the application of the data method. Program sort

can be define as follows:

Program sort;
type D = seq of Aobjects;
0 = seq of Aobjects;
(Dx0 = record 1:D;
r:0
end;
(Dx0)* = seq of (Dx0)*;
var x,d:D;' )
y,0:D;
begin
x+ copy(d);
P;
0+ copy (¥)
end {sort}.

Of course, identiiiers such as (Dx0) and (DxO)* are
not available in standard Pascal syntax. They are

used here for compatibility with the mathematical

notation. The notation seq of Aobjects stands for' a

sequence of objects.

We are now ready to aﬁply the first step of the method.

Procedure P can then be expressed as:

Procedure P;

var X ,yl:on;

1
begin
xl.i<-x;‘
xl.r<—l\;
s
y+yl.r
end {P};

Note that the selectors i and r simulate the functions

ins and retr.

We now apply step 2 expressing P1 as follows:

Procedure Pl;
var xz,yz:(DxO)*;
begin
*2
PZ;
yl*-last(y2
end {Pl};

<+ make (xl) H

Funqtions make‘and last need to be expressed in PASCAL
notation, following their usual definitions for files.
Note that so far we have only organized the solution
of the probleﬁ so as to put it in our canonical form.
Later we will indicate how the above stxucture for
the. problem solution will actually help establishing
the correction of the program (iﬁ particular terminat-
jon). Next step is a first decomposition of P2. Re-
menber we are only interested in this paper to solve
problems that can be classified as file processing

applications. For that purpose the following decom-—

position can be proposed. The notation we use is

w@dely applied in the litgrature about abstract data
types [10]. It bears a natural similarity with Yourdon
and Constantine's data flow graphs because when décom~
posing we are detecting the transformations to be

applied on the data. We are now ready to express pro-

cedure P2 and update as follows:

Procedure Pz;
var ¥gt (DxO)*;

begin

— 149 —



X3 Xy;
while not finished(x3) do
X, <« update(xB? H
Yy ¥y s
end {PZ};
Procedure update(xB:(DxO)*){(on)*;
var xa:on;
¥4 (Dx0) *
begin
Y3*'X35
xA*-last(x3;
%
update<~append(y3,x4)

+-transform(x4);

end {update};

For the next level of decomposition we will separate
the input structure from the output structure and will
remove one input element, "transform' it and place it
in the output. This idea can be expressed graphically

through the following diagram

_f_project
)

ltransform
) .

recombine

Figure 6

This decomposition step can be throught of as being
coupled to the diagram: - Figure 4 (ﬁote the dots to
the left of the diagram in Figure 6). The function
project stands for the first and second projection of
the cartesian product (simulated by the selectors i
and r in the»followiﬁg transform program). The func--
tion recombine constructs an ordered pair from two
given elements. It should be clear that project, re-
combine and append are gsm solvable. We need now to
define process in such a way that in each pass of its
execution process reduces the input and expands the
output while contributing to the solution of  the
problem. Hopefully we will be able to define process
so as to be gsm solvable (otherwise we would need to
further decompose process). Since the sortingproblem
is very well.known it is simple to identify the cen-—
tral operation of process so as to make it gsm solv-
able. This operation consists of selecting the mini-

fal element of the input seguénce and append it to

the end of the output sequence. The operation then
dgtermines a sequence of one pass scannings over the
input, leading therefore to a gsm solvable problem.
We can at this point present the code for transform

and process.

Procedure transform(x4:Dx0):Dx0;
var xs,xézD;
y5,y6=0;
minimum:Aobjects;
begin
x5«5x4.i;
V5 X,.T;
Process;
Yo * append (y ;minimum) ;
transform < recombine(x6,y6)
end {transform}

Procedure Process;

begin
minimum4~first(x5);
X, =+ tail(xs);
Xg <~ N

while not (x5=A) do
if minimum<first(x5)then
begin

X64-éppend(x6,first(x5))

%o+ tail(xy)
end '
else
begin
x64~append(x6,minimum);
minimum*—first(xs);
X5 tail(xS)
end

end {Process}

The functions first and tail have their usual ~mean-—
ing when applied to sequences. We need now to specify
the predicate finished so as to satisfy the correct-
ness conditions defined in 3. For that we note that
process reduces in each pass the length of the first
component of the ordered pair which is being “trans—
formed". It naturally suggests that this process
terminates whenever the length of the first component
becomes zero. We can now define finished as:
Vx3e(DxO)*,finished(x3)<—ﬂength(last(x3).i)= 0

3
To satisfy the correctness criterion expressed in 3

we need to define a well-founded relation smllr. We

— 150 —



propose the fellowing:
(vql ,d2) €D, sml 1r (d1 »d,)<>length (dl) < 1ength(d2)

An informal argument can be expressed as follows.
Given the way process was constructed, length(trans—
form(x3).i) <1ength(x3.i) and that proves condition

(ii) of 3. We also have that smllr has been defined

as "<" which is a well founded relation, which proves

condition (iii). The definition of finished matches
condition (iv) and finally the condition (v) for

partial correctness can be shown by induction on the
way the output seqﬁence is‘constructed (in each step

we introduce the next possible smallest element).

The reader miust have noticgd that in the probiem soT
lution the first reduction which seemed artificial,
sence the sorting problem cannot be characterized as
a structure clash problem, has in fact been instru-
mental for proving the termination of the program. In
fact, recall that finished and smllr have been de-
fined on the first component of an input-output or-—

dered pair.

5. THE TELEGRAM ANALYSIS PROBLEM

The classical telegrams analysis problem, often used
as an example of structure clash, boundary clash in
Jackson's [1] terminology, has been defined in his

book (page 155).

As before, we will define a program TELEGRAM that
will create an instance of the data that will be used
for the application of the reductions and decomposi-

tions that will take us to our canonical form.

Program Telegram
type D=seq 6f,Telegrams;
0 =seq of Telegram—-analysis;
(Dx0) =record 1:D;
r:0
end;
(Dx0)* = seq of (Dx0);
var x,d:D;
y,0:0;
begin
x «copy(d);
Ps
y +copy (y)
end {Telegram}.

The solution of the problem follows exactly the same
steps used in the sq;ting example up to the point
where we need to define the procedures Transform and
Process. The change in the ‘Transform function isminor
and the procedure can be expressed as follows:
Procedure Transform(xé:DxO):DxO;
var xs,x6:D;
V517705 :
report:telegram—analysis;
begin
x5<—x4.i;
Vg €Yy T3
Process;
yéf—append(ys,report);
Transform*—recombine(x6,y6)

end {Transform};

We are now going to derive Process. According to the
data transform method we need Process tobe gsm solv—
able or decomposable in gsm solvable programs. Recall
that the method makes use of the notion of data ab—
straction. In ﬁarticular, Process will deal with seq
of telegrams. It means, in practice, that we are
focusing in the concept of a Telegram instead of rea-
soning at the\block "level” as Jackson does. The core
of the program Process, which is dealing with the car-
tesian product of the sequence of telegrams with se—
quence of telegram analysis can be represented graph—

ically by the following picture.

1
T7222° | 0B | 'zzzz' | EOB |'z227' ‘2222 EOE |

T

figure‘T
To implement Process, it is mnecessary to scan the tape
block by block. Within each.block‘Process must anal-
yse word by word and compute each one for report pur-
poses. When finding the end of a telegram before the
end of a block, Process places the rest of the block

as the first block in the output tape. The processing

— 151 —



of -words through this épproagﬁ involves no prediction
and therefore Process is gsm solvable. One possible

‘schematic version for Process could be the following:

Procedure Process;
begin ‘
x644A;
get(first block in x5);
if first word in block is '22zz'
thenirgport < A
else
begin
initialize report;
wbile(telegram not empty)do
begin
while(telegram not empty and
block not empty) do
analysis of a word in report;
while (block not empty) do
construct the first block
in %o
get (another block in x5)
end;
while(xsnot empty)do
begin '
append(xé,block from x5);
get (block in x5)
end
end

end {Process};

As in the sorting problem we need now to characterize
.the predicate finished. It so happens that it takes
the same form as in the sorting example, that is:

¥x3s(Dx0)*,finished(x3)<—>1ength(1ast(x3).i) =0

That, of course, is so because we are dealing with a
standard file processing problem, as defined by the
data transform method. We reach this standard form'
for the termination proceduré because the first problem
reduction (cartesian product) leaves us with the in-
put data to be processed as the first component of the
product. The input data is always reduced (each ex-
_ecution of Process has at least an operation get)and
saved and therefore the program terminates when the
input part of product is empty. For the proof of cor-
rectness .of the program we proceed as in the sorting
example "after verifying the inner simple details of
the operations "initialize report” and "analysis of

words" in the Process program.

6. CONCLUSIONS

We have presented in this paper the daﬁa transform
programming method and applied it to the solution of
some classical programming problems. The choice of the
examples was meant to compare clearly our approach
with Jackson's method, since his method cannot solve
directly the problems we have dealt with. Our method
also sqlves Jackson's system log and matrix trans—

position problems [17]. When choosing this criterion

for exemplification we realized that although the

_examples used are not solvable through Jackson's basic

method they are trivial applications of file process-
ing programming, which often deals with far more com—
plicated situations. This could have probably given
the impression to the reader that we are.using a theory
that is too general to deal with the present problems.
Note that the full power of the method can better be
left felt through its. applications. When we deal with
large problems such as making verification accessible
to practitioners, providing programming standards fof
large programming teams and enhancing documentation
and maintenance can be assessed. We plan to design
other publications meant to gvaluate data transform
programming as applied to real problems. On the other
hand, we are confident that starting with éituations
even simpler than the ones that appear in séctions 4
to. 7 we are able to illustrate the potential of data

programming for teaching purposes.

The present work is a major extension of the work pu-
blished in [6]. Still, many interesting de&elopments
of the present wo;k are in sight. Partly automating
the method is one possible research direction. The
work by Coleman, Hug@es and Powellv[ll]and Logrippo
and Skuce [12] follow this general direction although
they are restricted to Jackson's basic method. We
believe, as [14], that for a large, lomglived soft-
ware project, the existence of an accurate, readable .
model or specificafion, such as the one produced by
the data transform method, can be as important as the
existence of an efficient implementation of it. We.are
presently working on a refinement procedure that wi;l
allow us to an efficient version for the solution at
hand through a set of well defined program transform-—
ations.
&

Some interesting theoretical results are currently

bging pursued. They are related to.the ‘formal char-

—152 —



acterization of the class of problems which are solv™

able through the general version of the data tr?ns—

form method (when, for instance, the recursion problém

can be contemplated) and of the class of problems de-

fined by the specialization of the data transform.

method to file processing programming, which we have

examined in this paper.

REFERENCES

N

o~

o

Jackson,M.A. Principles of Program Design. London:

Academic Prés, 1975.

Warnier,J.D. Logical Construction of Programs.

New York: Van Nostrand Reinhold, 1974.

. Yourdon,E.;Constantine,L.L. Structured Design:

.Fundamentals of a Discfplime.of Computer Program

ans System Design.'Yourdon Press, 1978.

Chand,D.R.; Yadav,S.B. Logical Construction - of
Software. CAGM; V.23, N10,. 1980.

Hughes,J.W. A Formalization and Explapation of

the Michel Jackson Method of Program Design. Soft-

ware-Practice and Experience. V.9, 1979.

.Cowan,D.D. ;Grahain,J.W. ;Welch,J.W. ;Lucena,C.J. A

Data—directedAApproach to Program»Construction.

Software-Practice and Experience. V.10, 1980.

VVeioso,P.A.S.; Veloso,S.R.M. Problem Decomposi-

_ tion and Reduction: Applicability, Soundmess,

w.

10.

11.

12.

Completeness; Trappl,R.;Klir,J.;Richler,F. (eds.)
Progress in Cybernétics and Systems Reéearch.

Vol.VIII, Hemisphere Publ. Co. 1980.

Hoare,C.A.R., Notes on Data Structuring. in Daﬁl,
0.J.;Dijkstra,E.W. ;Hoare,C.A.R. Structured Pro-

gramming. Academic Press. 1972.

Parnas,D.L. Designing-Software for Ease of
Extension;and Contraction. IEEE Trans. SE.Vol.
SE-5, n? 2, 1979.
Goguen,J.A.;Thatcher,J.w.;w?gner,E.G.;wfight;J.F;
An Initial Algebra Approachk to the Specification,
Correctness and Implementation of Abgtract Data
Types, in Yeh,R.T. (éd) Currént Trends in Pro-
gramming Methodology,Avél.IW.

Coleman,D. jHughes,J.W. ;Powell,M.S. A Method for
the Syntax Directed Design of Multiprograms.
IﬁEE Trans. on S.E., vol. SE 7, N¢ 2, 198L.

Logrippo,L.;Skuce,D.R. File Structures, Program

13

14

15

16

17.
© Cowan,D.D. The Data Transform Programming Method

— 153 —

P .
Structures, and Attributed Grammars. Technical
Report TR82-02, Computer Science Department, -
University of Ottawa, 1982.

Broy,M. :Pepper,P. Program Development as a

Formal Activity. IEEE Transactions on Software

Ehgineering Vgl SE-7, N 1, 1981.
p e B N

Cheatham,T.E. ;Holloway,G.H.;Townley,J.A. Program

Refinement by Transformation. Procgedings'of the

.5th International Conference on Software Engi-

neering, 1981.

Gerhart,S.L. Correctness-Preserving Program
Transformations. Proc. ACM Symp. on Principles

of Programming Languages, 1975.

Arsac,J.J, Syntatic Source to Source Transforms

and Program Manipulation. CACM, Vol 22, NQ 1,

1979.
N

Lucena,C.J.P.;Martins,R.C:B.; Veloso,P.A.S. and

and File Processing Problems. Technical Report
5/83." Computer Science Department. Pontificia
Universidade Cat8li¢a do Rio de Janeiro, Rio de

Janeiro, 1983,



