PR
e

i

-
=

A

T

e

S

R

T

SrRE
SEE

O S O e A o

SR

A

S

AR

=1

PROCEEDTINGS

THE SEVENTEENTEH ANNUAL
CONFERENCE
0N

INFORMATTION SCIENCES AND SYSTEMS

PAPERS PRESENTED

March 23, 24 and 25, 1983

PROGRAM DIRECTORS

Howard L. Weinert

Robert C. Melville

Department of Electrical Engineering and Computer Science
The Johns Hopkins University

Baltimore, Maryland 21218

TABLE-DRIVEN TOP-DOWN PARSERS WITH AUTOMATIC ERROR RECOVERY

Henrique M.G. de Aguiar and Michael A. Stanton

Departamento de Informatica

Pontificia Universidade Catolica do Rio de Janeiro

22453 - Rio de Janeiro - RJ, Brazil

ABSTRACT

A.C.Hartmann's automatic error recovery method
for recursive descent parsers is adapted for use
in a table~driven top-down parser based on syntax
graphs. The automatic generation of table-driven
parsers with error recovery is shown to be possi-
ble given only the grammar as input.

1. INTRODUCTION

In his book [HAR77] Hartmann described a
recursive descent parser with built-in error. re-
covery for an LL(1) grammar, and showed how the
error recovery scheme could be generated direct-
ly from the grammar, expressed in the form of
syntax graphs (see, for example, [WIR76]).
Hartmann's method has been analysed by Pemberton
[PEM80], who suggested a number of improvements
to the original formulation. As was shown by
Wirth [WIR76], one alternative to a recursive
descent parser derived from a syntax graph is a
table-driven parser, in which all the dependence
on the grammar is contained in the driving tables,
which are, in this case, a direct representation
of the syntax graph.

It is natural to enquire whether Hartmann's
error recovery scheme may not also be applied to
table-driven parsers, and further, if this
application may not be generated automatically,
by an extension of Wirth's parser gemerator. The
main objective of this paper is to reply affir-
matively to these two questionms.

2. TABLE-DRIVEN TOP-DOWN PARSERS

Wirth [WIR76] discussed the problem of
parsing programming languages, and showed the
equivalence of extended BNF (also known as Regu-—
lar Right Part, or RRP) grammars and syntax graphs
and derived recursive descent and table-driven
top-down parsers directly from the grammar. In
practical terms, the table-driven parsers offer
the advantage of more easily being able to adapt

" to changes in the grammar, since all the grammar-—
dependence is concentrated in tables, parametrized
for each grammar, whereas for a recursive descent
parser a change in the program structure is
necessary. Thus, for a parser generator, the
table—-driven form is clearly superior. In his
book, Wirth suggested a concrete representation
of the syntax tables and presented a recursive
algorithm for the parser, which traverses the
syntax graphs, matching the input to the grammar.
Setzer [SET79] has shown that this recursive
algorithm can be transformed into an iterative
one provided we introduce a stack for recording

508

which non-terminals of the grammar are currently
active. The two formulations of the parsing
algorithm are completely equivalent and use the
same representation of the syntax tables, as
described in [WIR76] and briefly summarised here.

Each element in the syntax graph is repre-
sented by a structure of type node where, using
Pascal as a definition language, we have

type pointer=+tnode;
node = record suc,alt:pointer;
case terminal:boolean of
true: (tsym: termsymbol);
false: (nsym:pointer)

end;

where termsymbol is an enumeration type corre-
sponding to the terminal symbols of the grammar.
We may represent the node graphically by a box
with three fields: a value sym and two pointers,
suc and alt, which point, respectively, at the
successor element or at a list of alternative
elements.

sym

alt suc

(Note that sym has two variants, tsym and nsym) .

The
terminal

elements in the syntax graphs are either
symbols, or non-terminal symbols. A
terminal symbol is represented by its value,
whilst a non-terminal symbol is represented by
(a pointer to) a syntax graph.

It is easily shown that the three construc-
tors of regular expressions (concatenation, al-
ternation and closure) have their correspondents
in terms of syntax graphs (sequence, alternation
and iteration), and thus in the representation
considered here. (see figure 1).

3. HARTMANN'S ERROR RECOVERY SCHEME

The basic idea is to recover from a syntax
error by skipping input tokens until we encountex
a token which belongs to a set of admissible
symbols, called recovery points. After resyncro-
nising the parser with the input at this token,
parsing proceeds normally. The crux of the scheme
is the choice of the recovery points, which are
derived directly from the syntax graphs of the
grammar. In a sense which we shall make clearer
in the next section, the recovery points consist
of terminal symbols which may be derived from
elements in the syntax graph which can be reached

regular syntax graph
expression

\|a !

a a a a a

parsing table

allazl...’an ~

1]

a* or {a}

e¥9—

Figure 1: The correspondence between regular expressions, syntax graphs and parsing tables.

from the present position. Some of these points
may be obtained statically from the current
syntax graph. Others, contained in other syntax
graphs, are determined dynamically through the
current parser state. These latter recovery points
form what Hartmann calls the context.

A syntax error is detected when the next
token in the input cannot begin a string derived
from the current graph position. In this event,
we invoke error recovery as described above:

Hartmann introduced his error recovery scheme
in the context of a recursive descent parser, and,
in this form, his method was improved by Pemberton
[PEM80]. It seems natural to apply the scheme to
table-driven parsers derived from syntax graphs.
In the next section, we describe the modifications
to a table-driven parser needed to incorporate
Hartmann's ideas.

4. HARTMANN'S SCHEME APPLIED TO TABLE-DRIVEN
PARSERS

Before presenting the table-driven parser
with error recovery, it is convenient to introduce
some notation in order to facilitate the dis-
cussion, and represent clearly our ideas.

Suppose that at a given point in a parse we
have reached the element (or component) N, We
define T(N), the tail of N, as consisting of
those portions of the set of syntax graphs which

509

may be reached from N. We should note that T (N)
is composed of Typca1(N), the local tail of N,
consisting of that part of T(N) contained in the
current syntax graph, which corresponds to the
non-terminal element on the top of the stack,

and Tgy6ha1 (N), the global tail of N, which
consists of the union of the local tails of all
the non-terminal elements on the stack. Tlocal (N)
is determined statically from the grammar, whereas
Tglobal(N) is determined dynamically in the
parsing process.

For a given element (or component) N we are
interested principally in two sets of tokens
associated with N: the director set, and the
recovery set. The director set (also called
FIRST(N) by Aho and Ullman [AHO77]) contains those
tokens which may introduce strings which are
derived starting from the component N of the
syntax graph. The recovery set consists of the
union of the director set of N, with the director
sets of all elements (or components) in the tail
of N.

Let D(N) be the director set of N, and R(N)
the recovery set of N. Thus we have

R(N) =D(N) + R(T(N)) (4.1)

_where

RO = R(Ty M) + R(T, L)),

and + indicates set union.

R(T1oca1 (M) is defined to be the union of
director sets for all elements contained in the
local tail of N,
R(T10calM) = U

METlocal(N)

Note that

D (M)

€ = R(T ()

global
is what Hartmann calls the context of the current
syntax graph.

Let us consider now the different alterna-
tives for N.

(a) N a terminal element

"In this case D(N) is the set consisting of
just the corresponding terminal symbol.

(b)

N a non-terminal element

D(N) is the set of terminal symbols that
begin strings derived from the corresponding
non-terminal.

(c)

N a sequence

. sNp of elements
= D(Nl) .

Let N be the sequence Ny,No,..
or components. Then D(N)

N an alternation

(@

N corresponds to a set of altermative
quences, Nl,Nz,...,Nm, one
possible empty. Then we have

se-
of which is

D(N) = U D(Ni;T(N))

1<i<m

(4.2)

where ; indicates the sequencing operator.

Note that if N; is empty, then D(Nj;T(N)) =

= D(T(N)), and otherwise D(Nj;T(N)) = D(N;).
(e)

N an iteration

Suppose that the iteration contains a
quence L in the loop. Then we have

D(N) = D(L) + D(T(N))

and in this case, since the loop itself
be traversed one or more times, we have

se—

(4.3)

can

I

R(N) = D(N) + R(L) + R(T(N))
R(L) + R(T(N)),

because of the definition of D(N).

1

We are now in a position to explain how
Hartmann's method may be incorporated in a table-
driven parser. With each terminal and non-ter-
minal element, we associate the director and re-
covery sets as defined above. With each alter-
nation we associate an alternation element, and
with each iteration, an iteration element, as
shown in figure 2.

Each alternation and iteration element also
has associated with it a director set and a re~
covery set. In fact, as both Hartmann and
Pemberton pointed out, we must associate with an
iteration element a third set of terminal symbols,
used to exit from an iteration after a syntax

error, which we shall denote by E(N), the exit
set of N, which is defined by
E(N) = R(T(N)) - D(L) 4.4)
The parsing algorithm is now reasonably
simple. In a Pascal-like language the main 1oop
may be described as follows:

while stack is not empty and input is not empty
do while not (nexttoken 1 in D(N))
(*check for error*)

do begin while not (nexttoken in R(N))

(*read input until we find a recovery point¥).
do get (nexttoken);

(*we may also issue an appropriate error
message here*)

case elementtype(N) in (*and resynchronize
input*)
iteration: if nexttoken in E(N) then N:=alt(N)
else N:=suc(N);
else : while not (nexttoken in D(N))
do 1f suc(N)—nll then pop (N)
‘else N :=suc(N)

end (*case*)

end; ;5 (%while¥)

case elementtype(N) in

terminal: begin get(nexttoken) ; N :=suc(N) end;
non-terminal: begin push(N) ; N :=nsym(N) end;
alternation: begin N:=alt(N);while not nexttoken

in D(N) do N:=
alt(N) end;
iteration: if nexttoken in D(suc(N))
- T then N :=suc(N)
else N:=alt(N)
end (%case¥®)
EEE (*main loop¥*)

5. IMPLEMENTATION CONSIDERATIONS

The formulation of the parsing algorithm
given in the previous section hides some of the
implementation details. These are discussed in
this section.

Node representation

The functions suc, alt, elementtype, tsym
and nsym are all statically determinable functions
of N, the current node. All are thus ideal candi-
dates for table representation. The functions D,
R and E have a static part and a dynamic part
(see equations (4.1) to (4.4)). The static part
can be determined once and for all and inserted
in the parsing table, whereas the dynamic part
is determined by the parsing algorithm, which
unites the two parts whenever this is required.
Thus we include in our parsing table the three
fields, director, recovery and exit, correspond-
ing to the static parts of D, R and E respective-
ly. Additionally, we need to associate with the
iteration elements, and alternation elements
with an empty alternative, a boolean field called

510

syntax graph parsing table

7 —|altern

]
1) e
—7_%

—{ 22— 2

t

a
(a) alternation pL R
syntax graph . parsing table
Iter. a
I — ——
empty

(b) iteration

Figure 2: Parsing table structures for error recovery.

lasti and lasta, respectively, which indicate if pointer = + node;
T1oca1(N) contains a null path. node record

A possible alternative representation for suc, alt: pointer
the node is as follows: director, recovery: symbols;
case elementtype: nodetype of
terminal: (tsym: termsymbol);
non-terminal: (nsym: pointer);

]

type symbols = set of termsymbol;

nodetype= (terminal, non-terminal
alternation, iteration);

511

iteration: (exit : symbols;

lasti:boolean);
alternation : (lista : boolean)
end

More efficient use of space can be achieved
by noting that the director sets of terminal
elements contain only one member, and that the
director sets of all instances of the same non-
terminal symbol are equal.

The director, recovery and exit sets

As we have noted above, these sets have a
static component and (possibly) a dynamic compo-
nent (see equations (4.1) to (4.4)). The dynamic
components may be written

D(Tglobal(N)) and R(Tglobal(N))
and may be obtained as follows:
D(Tglobal(N)) =D(M)

where M is the successor element (or component)of
the non-terminal element on top of the stack. If
there is no such successor element, then we look
at the previous stacktop, and so on, until we
find one.

We have already shown that R(Tg10bal (M)
(Hartmann's context) is obtained by uniting
R(T(M')), where M' is the non-terminal element on
top of the stack, with the previous value of the
global context.

Note that in both cases, we should stack the
old values of D(Tglobal) and R(Tglobal) when we

stack a non-terminal element, in order to restore
their values when this non-terminal element is

popped.
Thus, whenever we need the value of R(T(N)),

we must unite R(T10ca1M)) to the current context.

Similarly, when we need the value of D(T(N)), we
must determine first if Ty,c,1(N) contains a null
path. If so, D(Tg1obal(N)) must be united to

D(Tlocal).

Semantic actions

In order to build a compiler, the parser

must produce output, in what are known as semantic

actions. This can be dome by introducing a new
type of element, of nodetype semantic, which has
two fields, suc and action. Action may be the

ordinal number of a semantic routine. Alternative-
ly we may add an action field to each of the other
kinds of element. Or we may do both of the previous

alternatives. One very interesting idea is to
generate the semantic elements automatically by
extending the grammar to include translation

actions, thus obtaining a syntax directed transla-

tion scheme (see Barrett and Couch [BAR791]).
Sets

A natural way of implementing sets is as bit
vectors. High level languages such as Pascal
[JEN75] and several of its derivatives implement

512

sets as basic constructs, and these may be used
for the data structures described in this paper.

6. AUTOMATIC CONSTRUCTION OF THE EXTENDED
PARSING TABLES

Wirth [WIR76] suggested an algorithm to
generate parsing tables in the representation of
section 2 using as input an extended BNF form of
the grammar. It is a straightforward task to
extend his algorithm to generate the additional
information needed to implement the scheme we
have described. Basically the additional steps
needed to reach our goal include.

(a)
(b)

generation of the alteration and iteration
elements

determination of the director sets of the
non-terminal elements. Algorithms for this
are well known. See, for example, Aho &
Ullman [AHO77]

determination of the (local) recovery sets.
This is best done by a backwards traversal
of each syntax graph, since, as we have
noticed,

R(T

(c)

W) =1u
MST1oca1

local D 1)

()

and evidently the recovery set of a null
graph is empty.

determination of alternation elements with
an empty alternative and no local successor
determination of iteration elements with
no local successor

(d)
(e)

Working in groups of three or four students,
the above extensions were successfully incorpo-
rated in Wirth's algorithm as a class project in
a master's level compiler comstruction course at
PUC/RJ.

7. CONCLUSIONS

We have shown how Hartmann's error recovery
scheme, which Pemberton has called definitive
for recursive descent parsers, may be simply
extended to table~driven parsers. The ease of
this extension is due to the simplicity of the
concepts involved, both of syntax graphs, and
of recovery points. The resulting parser is being
used in a compiler currently in development at
PUC/RJ for the Edison Language [BH81,STA82]. We
have also indicate how the additional error
recovery data structures may be -automatically
generated from the grammar, giving a measure of
the work involved. Future work will include the
development of a general parser generator based
on ‘the ideas presented here.

The authors wish to acknowledge the finan-
cial support of the Brazilian government agencies
Financiadora de Estudos e Projetos (FINEP) and
Conselho Nacional de Desenvolvimento Cientifico
e Tecnologico (CNPq).

8. REFERENCES

[AHO77] Aho,A.H. and Ullman,J.D., Piinciples of
CompilLer Design, Addison Wesley, Reading,
Massachussetts, 1977.

[BAR79] Barrett,W.A.and Couch,J.D., Compilen
Construction:Theory and Practice, Science
Research Associates, 1979.

[BH81] Brinch Hansen,P., "Edison-A Multiprocessor
Language", Software-Practice and Experi-
ence, 11 (4), 325-361, 1981,

[HAR77] Hartmann,A.C., A Concwuient Pascal Compilen
gorn Minicomputers, Springer-Verlag, Berlin
1977.

[JEN75] Jensen,K. and Wirth,N. Pascal User Manual
and Repont, Springer-Verlag, New York,
1975,

[PEM80] Pemberton,S., "Comments on an Error-
recovery Scheme by Hartmann", Software-
Practice and Experdience, 10 (3), 231-240.

[SET79] Setzer,V.W., "Non-recursive Top-down
‘Syntax Analysis', Software-Practice and
Experience, 9 (3), 237-245, 1979.

[STA82] Stanton,M.A., et al., "Projeto de um com-
pilador portatil para a linguagem Edison
(The design of a portable compiler for
the Edison Language)", Annals of the
XV National Informatics Congress, Rio de
Janeiro, Brazil, October 1982. (in Por-
tuguese).

[WIR76] Wirth,N., Algornithms + Data Structunres =
Proghams, Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

513

