y ™ 4 R |
N ke .Ast 7 < \M m), =t s.\ju) T _
KkLbe ;\Qw, i Cv/\ -t & H00. JRU 4

Y £,
4)@“\@?@?3? é x_;\zﬁ., N }J? __%34}3

i] ﬁw
u.. (\ s e Yok bl L L wsn\/.ﬁ\.f. w2 W .,\,.s.[e

hS %ﬁ,ﬁ @}é ne

2 o

QO PART. -2~
=P 1 |

<l B

& m.w;@

oy (D,

[st

(U
TSTIC

¥
& E
e

005.106
E61
V.2

Entity-Relationship Approach to Software Engineering 637
C.G. Davis, S. Jajodia, P.A. Ng and R.T. Yeh (eds.)

Elsevier Science Publishers B,V. (North-Holland)

© ER Institute, 1983

VIEW CONSTRUCTS FOR THE SPECIFICATION
AND DESIGN OF EXTERNAL SCHEMAS

P.A.S. Veloso
A.L. Furtado

Departamento de Informatica
Pontificia Universidade CatGlica do Rio de Janeiro
22453 Rio de Janeiro RJ
Brasil

A view construct is proposed which consists of derived ob-
jects and operations defined on them. Attention is focussed
on the update operations, for which the conditions, effects,
and side effects must be specified. This construct is a
template, appropriate both for abstract specification and
concrete realization. A simple data base environment is de-
scribed and used to illustrate the suggested approach, at
three levels: informal description, formal specification and
representation in terms of (a simplified version of) the
entity-relationship model.

1. INTRODUCTION

End-users interact with data bases by posing questions relative to facts contained
in the data base or by modifying such facts as a consequence of actions occurred
in the real world. Thus a user interface to a data base can be characterized by
the query and update operations that he is authorized to execute.

In the ANSI/X3/SPARC architecture [11, user interfaces correspond to external
schemas. In most cases an external schema does not encompass the entire data base
as described by its conceptual schema. In Tine with the considerations above, we
characterize external schemas by the respective query and update operations. The
mapping between an external schema and the conceptual schema is indicated, in turn,
by the facts (or queries interrogating them) at the conceptual schema corresponding
to or affected by the external schema operations.

From the algebraic approach to abstract data types we know, as a general principle,
that updates and queries are mutualTy reTated in the sense that updates can affect
the result of queries, whereas queries may constitute pre-conditions for the execu-
tion of updates. As shown in [13] updates can be defined in terms of pre-conditions
and effects (on queries) so as to enforce the declared integrity constraints: the

definition should contain for each update

a. pre-conditions for its execution;
b. the intended effect;

c. possible side-effects (i.e. effects not directly intended or
even seen by the user invoking the update).

The name and parameters of updates constitute their syntax, whilst itens a, b, ¢
above give their semantics. A third constituent shouTd be added: an algorithm or
program able to eventually lead to the execution of the update in a computer-based
environment. This algorithm should work on some abstract structure if we want to
stay at the very high level required at this stage. Such an abstract structure is
provided by a suitable data model, which in our research has been the entity-

638 ‘ P.A.S. Veloso and A.L. Furtado

relationship [2] model or some variation thereof.

Proponents of abstract data types have been divided into the following two cate-
gories: those who specify a data type by way of axioms or equations (6,71 and
those who make the concept useable by providing language constructs [81]. We
contend that it is not the case to give preference to one or the other category
since they are both useful and in fact complement each other.

In this paper we propose a language construct which takes both positions into
consideration. The construct may serve as a paradigm for the design of appropriate
constructs in specific languages supporting the entity-relationship model. We call
it a view, 1in consonance with the usual terminology for the external schema level;
however, as noted in [4], views should act not only as windows but also as shades
and screens, hiding unauthorized information and disallowing illegal manipulations.

Views consist of virtual objects derived from actual objects pertaining to the
conceptual schema. They should be designed by the enterprise administrator in
consultation with the application administrators (TTin charge of the various ex-
ternal schemas.

In the next section a view construct is introduced and commented upon. Section 3
presents a simple example of a data base environment, which is used in section 4
to illustrate the design of views and their representation in (a simple version

of) the entity-relationship model. Finally, section 5 contains some concluding
remarks.

2. CONSTRUCTS FOR VIEWS

As indicated, a view consists essentially of derived objects together with derived
operations on them. For instance, a view may consist of employees not currently
assigned to projects together with the operations of hiring and firing. (This
example will be developed in more detail in the following sections).
Accordingly,’in order to describe a view we must specify how this derived sort is
obtained from the basic ones and we must specify the derived operations. More
formally, this amounts first to the construction of a virtual sort mgx...xm: in

terms of the primitive sorts md.. ,m: and then the selection of those objects

that satisfy a property, called the view invariant, Thus, in set-theoretical nota-
tion, this virtual view sort may be described as

S = AAmg.....mzvm Amdx...xm:v\oﬁmd.....msz

where p(-,...,-) is the view invariant. More generally, we might have a term t
in Tieu of S5 but we shall not employ this extra generality here.

As mentioned, views are to be designed by the enterprise administrator in con-
sulation with the application administrators. Thus, a first step towards describ-
ing a view might use the following format

view NAME

{comment describing the view}

Displays

“obJjects nzmes of the basic sorts involved
{comment describing the view invariant}
operations for each derived operation
name (parameter list)
{comment describing the operation}

end

View Constructs for External Schemas : 639

The reader may at this point wish to refer to section 4 for a specific example.

The above format of view specification is.oriented towards syntax. Indeed, only
the syntactic aspects of the derived sorts and operations are formally described,
the semantic ones being informally expressed by comments in natural language.
After designing all the views it is necessary to verify that the update operations
indeed preserve the constraints, are mutually compatible, and are sufficient to
handle the data base [11]. For this purpose a more formal specification of the

views is more appropriate. Accordingly we propose a second format for the specifi-
cation of a view as follows

view NAME
Specification
objects mdnwd.....m:"mz ; oﬁmd,....msv

operations for each operation .

name w(parameter 1ist)
conditions eﬁmd,....msvhqu

effects eama.....m:vﬁo.Au
side effects 8(sy,...,s;)(0,1]

end

Hsﬁ:mmco<m~:m objects - part describes the virtual view sort using a stylized

set-theoretical notation (reminiscent of the relational calculus [31). For the
operations - part some explanation is in order.

Let us assume that the current state of the data base is o and operation w is to
be executed with parameters S ERERRL N The resulting state will be a"nsAmg.....

mzvau. In the current state the view invariant must be satisfied by the parame-
ters, i.e. oﬁmd,...,msvmou holds. Now the conditions - part describes the pre-

condition of the operation; if it fails the state will not be altered and we
have t=0. If, on the other hand, the precondition does hold then the operation
will be successfully executed yielding a new state T, whichwill be related to o
via the formulas in the effects and side effects parts of the specification. Thus,

the specification given Tor the operation w is equivalent to the following logical
axiom

AauEAmd yoes “m::ﬂau >0Am~ yes ..msv_nouv +
¢.mA9Amd 5 ..om:vauquAm._u.. .wm:va..nu >®Am._... . .m::”Q-.n”: A
>A19Am4,...,m:vmqu.vauovu

After the verification phase come the phases leading to an implementation. These
phases do not require the participation of the above administrators, except that
the implementors verify (and convince the administrators) that the views as final-
ly programmed correspond to the design. (Also the data base administrator might
be consulted with respect to the efficiency of the implementation,)

For these phases the implementors may receive the views specified in the second
format above and proceed to represent them in a data model. Thus, the logical de-
scription of the derived objects and operations will be refined to one in terms
of the primitive operations of the chosen model. Accordingly we have a third
format for the view on this level, namely

640 . ' P.A.S. Veloso and A.L. Furtado

view NAME
" Representation
objects expression, in the language of the model, describing how the objects
of the view are obtained from the basic objects
operations for each operation

3 program describing the operation in terms of primitive operations of
- the model

end

Notice that these three formats follow the same template, In the course of a
process of top-down refinement it might be useful to consolidate some of these
several formats. Of course for the user only the Displays and Specification for-
mats should in principle be visible. Accordingly, the end-user sees

view NAME
" Displays
objects ...
operations ...
Specification
objects ...
operations ...
end visible part

This corresponds to the specification of an abstract data type in a query-oriented
formalism [13].

On the other hand, the implementor would produce a documentation consisting of the
Displays format together with the Representation format, perhaps followed by other
aveTs of refinement, all of them, but the first one, hidden from the end-user.

It would have the following aspect

view NAME
~ Displays
T objects ...
operations ...
Representation

objects ...

operations ...
end hidden part N

The similarity with programming language constructs such as CLU's clusters [8,9]
is apparent and not surprising as this corresponds to a representation of an
abstract data type in terms of a more concrete one, the data model. (Accordingly
protection can be achieved by requiring that a procedure call involve both the
view and the operation name, thus NAME § w).

In a separate paper [12], a modular strategy for data base design, including the
construction of views, is proposed. Theoretical aspects are investigated as well
as how to pass from a specification to a representation on some data base man-
agement system.

3. A SIMPLE DATA BASE ENVIRONMENT

As an example data base environment, we consider the personnel segment of a small
manufacturing enterprise. While the example is intended to suggest realism, it is
highly simplified, and certainly does not cover the breadth of situationsthat may
arise in more detailed enterprise descriptions.

A. The basic sorts
The sorts treated in our example are:

View Lonstructs ror exrernai Scnermas L2}

- name of employee

- salary

- job title

skill

- task

- project

- leader of a project

ro—AXGn=Z
)

The basic queries are:

emp(n,s,j) - employee's name, salary and job title

req(t,k) - requirement of a skill to do a task

assn(n,t,p)- assignment of an employee in a project to a task
mng(p,1) - management of a project by a leader

cap(n,k) - capabilities (skills) possessed or acquired by employees

Figure 1 indicates the arities of these queries, regarded as predicates, Teaving
implicit an argument sort, the data base state

emp \\\\\\nmu assn req \\\\\asm
m\ ,_ﬁ/z _A\W%v /r

Figure 1
Basic queries .and sorts

B. The users

The users authorized to perform update operations are the employees holding the
positions '
personnel manager,
engineering manager,
training manager,
and Tleader of some project.

Query emp does not give information about these special employees.

C. The activities of the enterprise

The personnel manager hires employees by associating a salary {at least the min-
imum wage), and a job title with their name, and may fire employees, but only if
they are not currently assigned to any project.

The engineering manager initiates new projects by specifying their names and the
name of the initial leader of each. He may replace the leader of a project, or
suspend a project by leaving it with no leader. No employees may continue to be
assigned to a project that is suspended. A suspended project may be permanently

terminated by the engineering manager, or may be restarted by assigning a new
leader.

Various tasks compose each project, and the engineering manager is responsible
for indicating what skills are required of an employee to perform each task. The
engineering manager also associates employees with projects (but not suspended
ones), and terminates such associations.

Employees acquire new skills through training, but lose old skills through Yack
of use or changing technology. The training manager is responsible for recording
the skills currently possessed by each employee.

Each leader of a project determines how employees associated with his project are

e Y RIUOU QM e 1 T AU
i

assigned to tasks. An employee must possess all the skills 1mn=¢1mn for each task
assigned to him.

D. Constraints

From the description of the activities of the enterprise, we can reasonably for-
mulate a number of constraints

Salaries must be at least equal to the minimum wage min. -

. A hired employee must have exactly one salary and job title at a time.

Only hired employees can be associated with projects.

Only hired employees can have their skills recorded in the data base.

A project can have at most.one leader at a time.

. Employees can only be associated with projects that currently have a leader.

To perform a task an employee must have.all the skills required for the
task.

8. A project must have an initial leader when it is created.
9. Only projects without a Teader can be terminated.

10. Only employees that are not currently associated with any project can be
fired. .

~N oY oW N

Notice that constraints 1 through 7 are static constraints, They refer only to
the current data base state, which we leave implicit, for legibility, in the
Hm“wwzm:m formalization. Also implicit are leading universal quantifiers, as

. emp{(n,s,j)~>s=min

emp(n,s,j) aemp(n,s',j') +s=s'Aj=j'

. assn(n,t,p) » (3s:S)(3j:J) emp(n,s,J)

. cap(n,k)+(3s:5)(3j:d) emp(n,s,j)

. mng(p,1) Amng(p,1') >1=1"

assn(n,t,p)~(31:L) mng(p,1)

. assn(n,t,p) > (Yk:K)(req(t,k) - cap(n,k))

1
2
3
4
5
6
7

On the other hand, constraints 8, 9 and 10 are transition constraints, in that
_they involve both the current data base state ¢ and the next state t resulting

from the application of an update. A possible formalization for them is as
follows .

8. t=initiate(p,1)lo]+mng(p,1)[T]
9. t=terminate(p){c] »
+((31:L)mng(p,1)Lo] ~1=0)

10. t=fire(n)[o] »
+((3t:T)(3Ip:P)assn{n,t,p)lo] +1=0)

4. DESIGN OF THE EXTERNAL SCHEMAS

We shall now outline the design of the external schemas of the recognized users

of the simple example in the preceding section. We give only some views in detail
in order to illustrate the constructs. However, as argued before, the design of
the views is interdependent. Thus, for each user, we shall exhibit his schema by

LYY ML BV Y o e sius rr o rurrrae

means of a diagram and a short explanation of his views. In these diagrams we
adopt the convention that dotted lines lead to sorts that can only be interro-
gated but not updated.

A. Personnel Manager's Schema

V-FREE

Figure 2:
The personnel manager's schema

V-FREE(N,S,J) - employees not associated with projects
y-BUSY(N,S,J) - employees associated with.at least one project

The visible part of the view V~FREE is as follows

view V-FREE .
Temployees not associated with projects}
Displays ;
objects N,S,T {such that n:N does not appear in assn}
operations : :

mdﬁmﬁz.m,uuﬁsﬁwmmanﬁoxmmzﬁﬁssmamsuwwdm1<mm=aQQUﬁ4~_m uw
fire(n) {fire employee n} .
Specification
" objects{n:N,s:S,j:Jd);(¥t:T)(¥p:P) —assn(n,t,p)
operations :
name hire(n,s,j)
conditions ~-(3s':S)(3j':J)emp(n,s',j')lo]
szmin
effects emp(n,s,j)lT]
side effects =

end hire

name fire(n)

%ﬁﬁ :w;w:a_ (.m._:w_vma
effects(¥s':S)(¥j':d) ~emp(n,s';j')lt
side effects (¥k:K) —cap(n,k)[T]

end fire

end visibTe part
The view V-BUSY has no update operations. So its visible part is simplified to

view V-BUSY
Temployees associated with projects}
Displays
objectsN,S,T {such that n:N does appear in assn}
Specification
objects(n:N,s:S,j:d);(3t:T)(3Ip:P)assn(n,t,p)
end visibTe part

Following [14], we decided not to encapsulate query operations; we allow the

views to inherit the basic queries. That is why they do not appear explicitly in
the views. In view of this all operations in a view are updates with target sort
data base, which we leave implicit, as we omit the argument sort data state in

the name of the operations.

644 . P.A.S. Veloso and A.L. Furtado

B. Engineering Manager's Schema

V-NEED
\\\
K~
Figure 3:
The engineering manager's schema

V-NEED(T,K) - requirement of a skill to do a task
V-QUAL(N,J,K) - qualifications of employees
V-PROJ(P,L) - projects and their leaders
Y-DISTR(N,T,P)- distribution of employees to projects and tasks

The visible parts of the first two views are as follows.

view V-NEED

T {skills required for tasks}
Displays
~objects T,K

—_—

operations
require(t
remove(t,
Specification

,k) {makes skill k required for task t}
k) {makes skill k no Tonger required for task t}
objects (t:T,k:K

operations M
name require(t,k)
conditions —req(t,k)lo]
effects req(t,k)(t]
side effects (¥n:N)(¥p:P)(~cap(n,k)lc] »
+=assn(n,t,p)ltl)

end require
name remove(t,k)
“<onditions req(t,k)[o]
effects - req(t,k)Ct]
side effects -
. end remove
end visible part

view V-QUAL
Tqualifications of employees}
Displays
objects N,J,K {such that (n,k):NxK appears in cap and
(n,3):NxK appears in emp}

Specification)
objects (n:N,j:J,k:K)jcap(n,k) A (Is:S)emp(n,s,J)

end visible part

For the other two views their oﬁwvim%mnnmxﬁm are as follows.

view V-PROJ
Tprojects and their leaders}
Displays
objects P,L
operations

View CONStructs 1or EXIernal ourieiiias

initiate(p,1) {initiate project p with leader 1}
replace(p,1) {replace current leader of project p by 1}
suspend(p) {suspend project p by removing its leader}
restart(p,1) {restart project p by assigning 1 as leader)
terminate(p) {terminate project p, if possible}

end .

view V-DISTR .
Tdistribution of employees to tasks in projects}
Displays
objects N,T,P {such that n:N is in emp}

—_— -

operations
associate(n,p) {associate employee with name n to project p,
if possible}

disassociate(n,p) {disassociate employee n from project p}

end

C. Training Manager's Schema

/

V-HU.RES V-USFL
\
J
Figure 4:
The training manager's schema

V-HU.RES(N,J,K) - human resources
V-USFL(K) - useful skills, i.e. skills required by at least one task

The Displays - parts of these views are as follows.,

view V-HU.RES
Tskills possessed by employees}

Displays :
objects N,J,K {with (n,j):NxJ from emp}
operations

acquire(n,k) {employee n acquires skill k}
Tose{n,k) {employee n loses skill k}
end
view V-USFL
Tskills required for some task}

Displays

objects K {from req}
end T

D. Project Leader's Schemas

TEAM-p _

V-
1

1

1
N

J ~K”
Figure 5:
The external schema of the leader of each project p

646 P.A.S. Veloso and A.L. Furtado

V-TEAM-p(N,J,K) - employees in project p
V-ALLOC-p(N,T) - allocation of employees to tasks in project p
V-TSK(T,K) - requirement of a skill to do a task

The Displays - parts of these views are as follows.

view V-TEAM-p
{employees assigned to project p}
Displays :
objects N,J,K {from emp and cap such that for some t:T (n,t,p) isinassn}

end

view V-ALLOC-p
Tallocation of employees to tasks in project p}

Displays
objects N,T {from emp}
operations ’
assign(n,t) {assign employee n to task t in project p, if n
has all the skills required}
end release(n,t) {release employee n from task t in project p}
view V-TSK
{skills required for a task}
Displays)
4 objects T,K {from req}
en ’

E. Representation

In order to present the views on the representation level we must choose a data
model. Here we decided to employ the entity-relatioship data model [2]. Our simple
example can be modelled by the diagram using Chen's conventions in Figure 6.

) Figure 6:
Entity-relationship diagram for the example

He represent employees, tasks, projects and skills as entities with corresponding
entity-sets EMP, TSK, PRJ and SKL. The attributes are, as indicated in the diagram,
NAM, SAL and JTL for an employee, PID and LDR for projects, TID for tasks and

SID for skills. In addition we have the relatioship sets CAP and REQ, both con-
sisting of binary relationships, and ASSN, consisting of ternary relationships.

View Constructs for External Schemas 647

Thus, we do not need the full ER model for this particular example. Rather, for
simplicity sake, we shall confine ourselves to a restricted version of the ER
model, supporting only binary and ternary relationships and allowing attributes
for entities but not for relationships.

This simplified model is a version of the S-ER data model [5]. Its primitive up-
date operations permit to initialize (phi) the data base to an empty state, create
(ent) and delete (detf) entities within.entity-sets, modify (mod) values of attrib-
utes ('*' standing for the undefined value) and link (£kZ,£k3) or unlink (ufZ,utl3)
entities via a (binary or ternary) relationship. Its primitive query operations
are predicates referring to the existence (exs) of entities within entity-sets,
values (hul) of attributes and relatedness (x£2,n£3)of entities. Similar opera-
tions were introduced in [10] whereas [5] contains a formal specification of a
version of the S-ER data model.

On the representation level, the operations of a view are described by a program.
0f course, our construct is not tied down to any specific programming language and
we employ here only self-explanatory features,

The representation of the views of the personnel manager's schema are as follows.

view V-FREE
Representation
objects e:ent; (¥t:ent)(¥p:ent)=-rL3(e,t,p,ASSN)
operations
name hire(n:N,s:S,j:J)
body if s <min v(3e:ent){exs(e,EMP)[a] A hue(e,NAM,n)lal)
~ then return o
else return mod(e,NAM,n)Emod(e,SAL,s)L
mod(e,JTL,j) ent(e,EMP){c113]

end hire
name fire(n:N)
body if ~(3e:ent)(exs(e,EMP)[a] A hve(e,NAM,n)lal)
then ‘return o
else begin
et e:ent be such that exs(e,EMP)[o] A
- A hvt(e,NAM,n)[o];
let t:=mod(e,NAM,%(mod(e,SAL,)L
mod(e,dTL,*)[011];
for all k:K such that n£2(e,k,CAP)[t]
do t:=ulZ{e,k,CAP)(t];
return del(e,EMP)[1]

end
end fire -
end V-FREE
view V-BUSY
Representation
~objects e:ent; (dt:ent)(3Ip:P)nL3(e,t,p,ASSN)
end V-BUSY ‘

The above descriptions were obtained by translating the corresponding specifica-
tion into our simplified ER model. Notice that the body of each operation w has
the following general pattern

-~o{precondition for w fails}
then return o

else {9 plprogram for w {P A6}

I

We can proceed similarly with the other views. We have decided not to encapsulate
the query operations, but they should also be described in terms of the primitive

oumﬁmdAozmOﬁwrmamﬁmaoamg.Hsoc1mxmaudmﬁ:¢mﬂwncﬁﬂm straightforward, for
instance -

emp(n,s,Jj)~(3e:ent) (exs (e,EMP) A
~ hul(e,NAM,n) A hvg(e,SAL,s) A hvu(e,JdTL,j))
cap(n,k)«>(3e,f:ent)(exs (e ,EMP) A exs (f,SKL) A
A hue(e NAM,n) A hul (£,SID,k) A _
A nk2(e,f,CAP))

Then we can employ any implementation of this data model.

5. CONCLUSIONS

We have proposed a construct for the specification and design of views. This con-
struct embodies the two main approaches to abstract data types, namely implicit
specification and programming language realization. It provides a paradigm for
embedding specific versions of the constructs into languages supporting, for
instance, the entity-relationship model.

Here we have favored the decision of directly translating the views in terms of

the data model. An alternative, deserving further attention, would employ modules;

a view module, specifying the view in terms of the conceptual schema, and a
representation module, representing the conceptual schema abstract data type in

ﬁmﬁsmowwamwmaoama.4:Amm_ﬁm1:mﬁﬁ<m50cgagmmamowaoacdm1amdmwxoséﬁmnacxm
as in [5].

REFERENCES

[11 ANSI/X3/SPARC - Interim Report of the Study Group on Data Management Systems,

FDT Bulletin, ACM (1975).

[2] n:m:.n. The entity-relationship model: toward a unified view of data, ACM
TODS,1(1976) 9-36.

[31 Codd,E.F. Relational completeness of data base sublanguages, in: Rustin,R.
(ed.) Data Base Systems (Prentice-Hall, 1972) 65-98.

[4] Furtado,A.L.; Sevcik,K.C.; Santos,C.S. Permitting updates through views of
data bases, Information Systems 4 (1979) 269-283.

[5] Furtado,A.L.; Veloso,P.A.S.; Castilho,J.M.V. Verification and testing of
S-ER representations, in: Chen,P. (ed.) Entity-Relationship Approach to
- Information Modelling and Analysis (ER Institute, 1981) 125-149,

[6] Goguen,Jd.A.; Thatcher,J.W.; Wagner,E.G. An initial algebra approach to the
specification, correctness and implementation of abstract data types,
in: Yeh,R.T. (ed.) Current Trends in Programming Methodology, vol.1V
(Prentice-Hall, 1978) 81-149.

[71 Guttag,J. Abstract data types and the development of data structures, Comm.
ACM, 20 (1977) 396-404.

{ 81 Liskov,B.H.; Snyder,A.; Atkinson,R.; Schaffert,C. Abstraction mechanisms in
CLU, Comm. ACM, 20 (1977).

[91 Liskov,B. et al. CLU Reference Manual (Springer-Verlag, 1981).

(101 Santos,C.S.; Neuhold,E.J.; Furtado,A.L. A data type approach to the entity-
relationship model, in: Chen,P. (ed.) Entity-Relationship Approach to
Systems Analysis and Design (North-Holland, 1980).

[113 Sevcik,K.C.; Furtado,A.L. Complete and compatiblie sets of update operations,
International Conf. on Management of Data (Milan, 1978).

(121

(131

[141

View Lonstructs ror cxrernat Scnemas D4y

Tucherman,L.; Furtado,A.L.; Casanova,M.A. A pragmatical approach to struc-
tured database design, Proc. 9th Conf. on Very Large Data Bases (Floren-
ce, 1983). ;

Veloso,P.A.S.; Castilho,J.M.V.; Furtado,A.L. Systematic derivation of com-
plementary specifications, Proc. 7th Conf. on Very Large Data Bases
(Cannes, 1981).

Zilles,S.N. Types, algebras and modelling, SIGMOD Record, 11 (1981) 207-209.

