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EXTRAPOLATED ITERATIVE METHODS FOR LINEAR SYSTEMS* 

P. ALBRECHTt AND M. P. KLEINt 

Abstract. In this note, we present results on extrapolated iterative methods, especially the extrapolated 
successive overrelaxation (ESOR). We show that they converge even if the original iteration diverges which 
increases considerably the scope of application of iterative schemes. The ESOR method is discussed under 
this aspect for consistently ordered systems and complex eigenvalues of the Jacobi iteration matrix. 
Comparison theorems are given to show that the ESOR is particularly useful if the SOR diverges or its 
optimum parameter d)b cannot be determined; but even if &)b is known the ESOR may be faster than the 
SOR method. Further insight into the structure of the method is obtained by relating it to Euler's integration 
method. 

AMS (MOS) subject classifications. primary 65F10 

1. Introduction. In a recent paper in this Journal [5], Missirlis and Evans discuss 
an extrapolated version of the successive overrelaxation (SOR) for the solution of 
linear algebraic systems. Based upon a different approach to these methods we present 
further results on this and on related iterative schemes. 

Let the system be given by 

(1.1) Ax =b 

where b E Rn and where the real (n, n) matrix A is nonsingular and, without loss of 
generality, has all diagonal entries equal to 1. 

Any splitting of A, A =M -N, M nonsingular, defines an iterative scheme 

(1.2) 
~Mx ('+ ) = Nx (')+ b, j= O, 1, ....9 

(1.2) x (f+li)= Sx +c, S =M-1N, c=M-lb 

which converges, for arbitrary x (0) e R , to the solution u of (1.1) if the spectral radius 
p (S) of the iteration matrix S satisfies p (S) < 1. If p (S) < P(S2) < 1, the iteration with 
Si is called asymptotically faster than the iteration with S2 [6]. 

With A = I -L - U, where I is the identity matrix, and L and U strictly lower 
and strictly upper triangular matrices, respectively, the iteration matrices of the three 
classical iterative methods are given by 

J := L + U, Jacobi, 

R1= (I -L)-1U, Gauss-Seidel, 

R, :=(I -wL)-F'(U + (1 -w)I), successive overrelaxation. 

To any iterative method of the form (1.2) an extrapolated method can be associated 
by replacing, at each step j, x (+?1) by the extrapolated value f3x + 1) + (1 -,8)x(i): 

(1.3) x(j+1) <-fx(i+i) + (1 - P)x U) S?00 d P R. 

This requires only a small additional computational effort and corresponds to the 
iteration 

(1.4) xi+l' =S(f8)x ' +3c, j=0, 1, . . . 
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with the iteration matrix 

(1.5) S(d) =PS +(1 -3)1. 

DEFINITION 1.1. The iteration (1.4) is called 13-extrapolation of the scheme (1.2). 
We may generalize the above approach by replacing, at each step of the scheme 

(1.2), x "+" by Bx (+1" + (I - B)x (': 

x(i+) <-Bx('+1) +(I -B)x(') B $0 a real (n, n) matrix. 

Thus we obtain the iterative scheme 

(1.6) x0+1) =S(B)x(j) +Bc, j=0, 1,* 

with the iteration matrix S(B) = BS + (I - B). 
DEFINITION 1.2. The iteration (1.6) is called B-extrapolation of the scheme (1.2). 
Remarks. 
(1) The ,BI-extrapolation of an iterative method is a 13-extrapolation as defined 

in (1.3). 
(2) In (1.3), x (f+1) was replaced simultaneously by the extrapolated value; equally 

well we may replace it successively (componentwise) in step j. The successive 13- 
extrapolation thus obtained is identical with a f3 (I - ,3L)'-extrapolation and 
represents a particularly simple B-extrapolation. 

(3) Several B-extrapolations may be performed consecutively with different 
B = Bi, i = 1(1)r, yielding a large variety of methods. In the literature the special 
case Bi = aiI is also known as the semi-iterative method (e.g. [6], [7]); its basic idea 
is already discussed in [1]. 

Examples. 
(1) S =J, B = wI yields S(w) = I - wA. The w -extrapolation of Jacobi's method 

thus generates the Jacobi overrelaxation1 (JOR) which has been introduced by 
Young [7]. 

(2) S = J, B = w (I - wL) 
- 

yields S(B) = R,,. Hence, successive w -extrapolation 
of Jacobi's method generates the SOR. 

(3) S = R1, B = I3 yields S(3) = (I -L) Y'(U + (3 - 1)L + (1 -1)I). This is the 
extrapolated Gauss-Seidel method (EGS). 

This paper will be primarily concerned with the case S = R,,, B =,BI which 
generates the extrapolated successive overrelaxation (ESOR) method and also with the 
JOR scheme. These methods are interesting for two reasons: 

(1) Their convergence can be analyzed from the eigenvalues of J which are more 
easily estimated than those of any other iteration matrix (see ? 4). 

(2) The JOR is a good general purpose method, and ESOR is a good general 
purpose method in the class of consistently ordered systems, as explained next. 

It is not possible to indicate a "best" general purpose iteration method for the 
solution of linear systems (in the sense of converging faster than any other method). 
However, we try to find methods that are best in the sense of being at least convergent 
for a maximum set of problems (if necessary, from a restricted class). In order to 
specify this we define: 

DEFINITION 1.3. Let ytk (k = 1(1)n) be the eigenvalues of the Jacobi matrix 
J =I -A. A region G in the complex plane is called region of convergence of an 

1 This name is well established by Young's book; therefore we use it instead of "extrapolated Jacobi 
method," which would be more consistent with our presentation. 
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iterative method M1, if, by adjustment of its parameters, M1 can be made convergent 
for any problem with .t k E G, k = 1(1)n. 

This definition enables us to compare two methods by their regions of convergence 
(which does not say anything about their efficiency for a particular problem). If 
G1 G2, we may consider method M1 the better scheme for general purposes or 
within a restricted class of problems (e.g. the class of consistently ordered systems). 

Young [7] considered the JOR method for irreducible A with weak diagonal 
dominance and for positive definite A. A convergence theorem for arbitrary A will 
be given as Corollary 2.2. Dispersed in the literature, the ESOR method can be found 
under various names [1], [3], [6]. In recent years it has been studied systematically 
by Hadjidimos [2], Niethammer [8] and Missirlis-Evans [5] and, earlier, in the thesis 
of Klein [4]. Generalized forms of the latter's results on consistently ordered matrices 
are presented in ? 4. 

In [2] and [5] the convergence of the ESOR has been shown for the following cases: 
(1) A is irreducible with weak diagonal dominance; 
(2) A is positive definite; 
(3) A is an L-matrix and p(J) < 1, w E (0; 1]; 
(4) A is consistently ordered with real eigenvalues and p (J) < 1. In all four cases, 

the classical SOR method converges also (though frequently slower). 
As a complement, it will be shown here that the ESOR scheme converges also 

in cases where the SOR method (as well as Jacobi's method) diverges (? 2); this 
represents a major advantage of the method. The choice of the parameters w and Jo 
will also be discussed. 

Additional insight into the structure of extrapolated methods is gained by relating 
them to Euler's method for the solution of linear systems of ordinary differential 
equations (? 6). 

2. Comparison theorem for extrapolated methods. In this section, the conver- 
gence of a given method and its ,B-extrapolation is compared, and the result is applied 
to the JOR and ESOR methods. 

THEOREM 2.1. Let S be the iteration matrix of the iterative scheme (1.2) and 
r = p (S) its spectral radius. 

(a) Let (1.2) converge (r < 1). Then its (3-extrapolation (1.4) converges 
asymptotically faster for some (3 = g3o, if all eigenvalues A of S satisfy, exclusively, either 
(1) ReA <r2 or (2) ReA >r2; in case (1) we have (3o < 1 and in case (2) 30 > 1. 

(b) Let (1.2) diverge (r_1). Then its (3-extrapolation (1.4) converges for some 
/3 = 3o with I(3ol < 1 if and only if all eigenvalues A of S satisfy, exclusively, either (3) 
Re A < 1 or (4) Re A > 1; in case (3) we have f3o > O and in case (4) go < 0. 

Proof. Due to (1.5), an eigenvalue A of S is mapped to an eigenvalue T of S(f) 
by r = PA + (1 -fl). This map C -? C-has the fixed point A = 1, and straight lines through 
A = 1 are mapped onto themselves. Consequently, for r < 1 the arc A (t) = r e it, 

2. Re A (t) ' a < r,is mapped into the disc HT| < r for some (3 = (o < 1 as well as the arc 
with Re A (t) _ a > r2 for some P o > 1 (see Fig. 1). For (3 = 1 we have p (S(j3)) = r. This 
proves part (a) of the theorem. 

For r > 1 any set of values Ak with Re Ak < 1 or Re Ak > 1, exclusively, can be 
mapped into the unit circle for sufficiently small l(3I = f,oI and Po >0 or o <0, 
respectively (see Fig. 2). This proves part (b). 

COROLLARY 2.2. For properly chosen w, the JOR method converges if and only 
if all eigenvalues of A lie, exclusively, either in the complex left half-plane C- or in the 
complex right half-plane C?. 
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ImAA Im A 

FIG. 1 FiG. 2 

Remarks. 
(1) The JOR converges especially if A is positive or negative definite. 
(2) Corollary 2.2 is useful since algorithms exist to decide whether or not all 

eigenvalues of a matrix belong to C?. 
(3) The half-planes G 1 = {u: Re A <1} and G2 = {u: Re,u > l} are regions of 

convergence of JOR in the sense of Definition 1.3. 
,B-extrapolation of the SOR method yields 

x +1)= (R,, + (1 - P)I)x G) +,Bc, j=0, 1** 

with 

R= (I -wL)1 (wU + (1 -w)I) and c = w(I -wL)1b. 

For convenience we take 3 =v/c and thus obtain the ESOR scheme in the following 
form 

(2.1) x 0+1) = R.,(^y)x U) + d, j =0, 1, .. 

(2.2) R,(v) (I-cLY1[(y -c)L +yU + (1 -y)I]; d = y(I -wL)1b. 

For y = wwe have R. (w)=R R. 
Computationally, in the fth step, an ordinary SOR step is performed followed by 

the replacement 

x(j+l) F Y XQ+1) +(1-7)X(i) 

For this method we obtain the following corollary to Theorem 2.1. 
COROLLARY 2.3. For properly chosen w E (0; 2) and y = y(w) with I Yw, the 

ESOR method converges if and only if all eigenvalues A of R. satisfy, exclusively, either 
Re A < 1 or Re A > 1. 

In general, R. is not known explicitly, so much the less its eigenvalues; thus it 
is not easy, at times, to verify the assumptions of Corollary 2.3. Consequently we find 
ourselves in the same situation as with the SOR method, not being able to decide 
whether the ESOR converges, except in special cases (see ? 1). 

However, similar to Young's theory of the SOR, the convergence of the ESOR 
scheme can be deduced from the eigenvalues of J = I-A in the case of consistently 
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ordered matrices. For this and other purposes we need more results on the eigenvalues 
A of R,, in the case of consistent ordering than those given by the classical 
theory. 

3. On the eigenvalues of R,0, for consistently ordered systems. 
DEFINmIION 3.1 [6]. The matrix J = L + U (as well as the matrix A) is called 

consistently ordered if the eigenvalues of the matrix (aL +a -'U) are independent of 
a, a $ 0. We then also say that the linear system Ax = b is consistently ordered. The 
following theorem of Young is classical [7, p. 142]. 

THEOREM 3.2. Let J be consistently ordered. If A is any eigenvalue of J and if A 
satisfies 

(3.1) (A +W -1)2 = W A 2A 

then A is an eigenvalue of R,,. If A is an eigenvalue of R. then there exists an eigenvalue 
.t of Jsuch that (3.1) holds. 

Relation (3.1) can be written as 

(3.2) Z z +-) Z = /4 

showing that if A $o0 is an eigenvalue of R., so is A2 = (w - 1)2/A1. Equation (3.2) 
establishes a one-to-one mapping between the two-sheeted Riemann surface over the 
,i-plane (slit between , = c := 2oW71 and , = -c) and the two-sheeted Riemann 
surface over the A -plane (slit along the negative real axis). The first part of (3.2) is 
known as "Joukowski mapping". 

Let C be the circle {A: A I=1w - l1}. If co t 1, the segment of the real axis 
A = t, -Ic I- tI [cl} is mapped onto C; if w < 1, the segment of the imaginary axis 

{Z: A = it, -Ic I t _ Ic |} is mapped onto C. One sheet of the Riemann ji -surface is 
mapped onto the inside of C, and the other sheet onto the outside of C. 

For c E(0; 2), representing the straight line Re A = 1 by A1(t) = (1 +ish 2t), 
-00 < t < 00, one can see that the half-plane Re A < 1 is mapped onto the open region 
G1 in the complex ,u -plane (see Fig. 3) that is bounded by 1(t) and -p, 1(t) with 

tL(t) = Rl(t) =a alt) + i,(t), 

(ai(t) = as-1(1 + h2)ch t; p3(t) = w-(1 ch 2t) ; 

for cl = 1, (3.3) reduces to the hyperbola a2-82 = 1. 
For co E (1; 00), representing the imaginary axis Re A = 0 by A2(t) = ?i(co -1) e2t, 

-00< t <00, it can be seen that the half-plane Re A <0 is mapped onto the open 
region G2 c G1 bounded by the hyperbola ,u (t) = A2(t) = a2(t) +$2(t) 

a2 2 dl2 c = 2w'Vc-1. 

For co = 1, Re A < 0 is mapped onto the open region G * c G2. 
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For cv E (0; 1), Re A = 0 is mapped onto the hyperbola 

(3.4) -2 a2= IC| 

and G2 is the part of G1 which is bounded by (3.4) and contains ,u = o (see Fig. 4). 

Im / 

12 

V2 

+1 

FIG. 3 

\ 1'~~~~~Im, Gl ft 

-1 / ~~ +1 Re ji 

/\ // 

FIG. 4. CO< 1. 
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4. The convergence of the ESOR for consistently ordered matrices. The conver- 
gence of the ESOR method for consistently ordered Jacobi matrices J with real 
eigenvalues and p (J) < 1 has already been treated in [2]; Niethammer [8] also considers 
eigenvalues i,u (g real). In this section, convergence theorems for consistently ordered 
J with arbitrary (complex) eigenvalues will be given, including the case p (J) _ 1. 

THEOREM 4.1 [9], [4]. Let J be consistently ordered. If g is any eigenvalue of J 
and if r satisfies 

(4.1) (r+y - 1) = t2( +T y-w) 

then r is an eigenvalue of R. (y). If r is an eigenvalue of R. (y) then there exists an 
eigenvalue , of J such that (4.1) holds. 

Proof. As any eigenvalue r of R,, (y) is related to an eigenvalue A of R. by 
r = yA/w + (1 -y/w) and vice versa, (4.1) follows from (3.1). 

Young proved in [7, p. 194] that the SOR method converges for consistently 
ordered J and properly chosen w E (0; 2) if and only if all eigenvalues ,u of J satisfy 
IRe u I < 1. The following theorem shows that the ESOR method converges under a 
less restrictive assumption: 

THEOREM 4.2. Let Jbe consistently ordered and G, as defined in ? 3. The ESOR 
method converges for some W e (0; 2) and fy = y(w), o<'y sw, if and only if all eigen- 
values ,t of Jsatisfy yt E G1. 

Proof. ,u e G1 implies Re A < 1 (see ? 3); hence it is sufficient for convergence 
due to Corollary 2.3. ,u E ,u 1(t), t E R, implies A = 1; hence the ESOR diverges (Corol- 
lary 2.3). If ,u XG, ,u A A1(t), an eigenvalue A1 = re"L, r > 1, exists with Re A1 > 1 
(? 3). As A2 = (1/r)(w - 1)2 e-"' is also an eigenvalue of R. and Re A2 < 1 for w e (0; 2), 
the ESOR diverges due to Corollary 2.3. Thus, ,I E Gl is necessary for convergence. 

The following theorem gives sufficient (but not necessary) conditions for 
accelerated convergence of the ESOR scheme. 

THEOREM 4.3. If, in addition to the assumption of Theorem 4.2, the SOR method 
converges for some wO then, for some y = y(wo), the ESOR scheme converges 
asymptotically faster if all eigenvalues ,& of Jsatisfy ,u E G2. 

Proof. As it e G2 implies Re A <0p2(R.) (see ? 3), the theorem follows from 
Theorem 2.1 (1). 

For w o E [1; 2), la I < 1t I implies = a + i/3 E G2 (see ? 3); hence we obtain the 
following simplification of Theorem 4.3. 

COROLLARY 4.4. Let J be consistently ordered, and let the SOR method converge 
for Wo E [1; 2). Then there is a 'y = 'y(wo) such that the ESOR scheme converges faster 
if all eigenvalues ,t = a + i, of J satisfy la I < 1 1. 

Remarks. 
(1) Comparison of the region of convergence G1 with that of the JOR method 

(Corollary 2.2) shows that the JOR scheme may have advantages over the ESOR 
scheme even for consistently ordered systems. 

(2) If laI < 1, the ESOR method also converges for w e [2, cc), y = y(w); this 
choice, however, does not seem to offer any practical advantages. 

(3) Theorem 4.3 and its corollary imply that the ESOR scheme may converge 
faster than the SOR with optimum w. An example is given in ? 5. 

The region of convergence G1 of the ESOR method is largest for w = 1; in this 
case, its boundaries are given by the hyperbola a 22 = 1. For general problems, we 
therefore suggest the choice w = 1, i.e. the EGS scheme. If the eigenvalues ,uk of J 
(or good estimates) are known, the eigenvalues Ak of R,, can be obtained (or estimated) 
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from (3.2). For given c (e.g. Co = 1) the best parameter -y is such that 

(4.2) max J' IAk+(1-) j =Min ! 
1_-k'-n W w 

As is the case for the determination of an optimum relaxation factor Wb for the SOR 
method, there is, up to now, no theory that permits to find the optimum pair of 
parameters (o, Yo) in the general case of complex eigenvalues A. One can see from 
examples that &oO $ Wb, in general. 

If all eigenvalues of J are real the ESOR method converges only if the SOR 
converges that is, if p (J) <1. However, in certain cases, it is possible to obtain 
accelerated convergence as specified in the following theorem [4]. Niethammer [8] 
obtains more sophisticated results under the additional assumption of symmetric, 
positive definite J. 

THEOREM 4.5. Let J be consistently ordered with real eigenvalues gk such that 
0 <M := Ilk1 11 < 

* * * I|n I= M <1. Let 

(4.3) (1m)v1M 

and 

2 2-co 
(4.4) cob - < 

Then 

(a) p(R. (,y))<p(R.) for co<-y< 2' 
1 _2-mc 

(b) p (R.(,yo)) < p (R.(y)), 1Y#^?R7 2 
W 

m 

Proof. Formula (4.3) implies cb <2(2 -_m2) . For co0 -co the eigenvalues Ak Of 
R, are conjugate complex pairs (except for o = cb whenA = (cOb -1) is a double 
eigenvalue), and lie on the circle |A I = r with r = (w -1) (see [7, p. 204]). Let A 1 and 
A2 be the pair associated to g 1, then we have from (3.1) 

ReAk ' Re Al= ico2m2_(C-) > r2 if c <2(2 - m2)1 

Hence, condition (2) of Theorem 2. 1(a) is satisfied, which proves (a). Some calculation 
shows that ftyo) <f(y) for -y $ yo with 

f(y):=max[YAk+(1-y) =| 1 1 

which proves (b). 

5. Example. Let 

1 -1.49 0 0 

A -1.49 1 -5.41 0 
0 1.49 1 -1.12 

L0 0 -3.43 1 

A is tridiagonal and hence consistently ordered. The eigenvalues of J=I-A are 
p1,2= 0.98 + 1.40i; 13,4 = -0.98+1 .40i. As I Re ,uk < 1, the SOR method converges 
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for properly chosen w E (0; 2) (see ? 4). The best choice is (0b 0.15261 which yields 
p(Rw,b) 0.99779 (see [7, Table 4.1, p. 199]). 

Rw0b has the eigenvalues 

A1,2 0.7004 P 0. 1654i A3,4 0.9711 ? 0.2293i. 

As Re Ak <p2(R Wb), the ESOR scheme converges faster than the SOR for properly 
chosen -y (see Theorem 2.1). From (4.2) we obtain the best choice 
'Y, 0.5414 (b 0.0826 which yields 

P (Rwb (QY)) 0.9921. 

If we choose c =1 we have A1,2 -0.9996 ? 2.7740i, A3,4=0. From (4.2) we 
obtain Y2 0.1899 which yields 

P (R 1(^Y2)) -0.8101 <P(R1-b(Y1))' 

This ESOR method is about 100 times faster than the SOR with optimum cW = CWb! 

This also confirms our previous observation that the best parameter cv for the SOR, 
in general, is not the best for the ESOR method. 

6. JOR and ESOR as integration methods. In this section we complete our study 
by showing that the above methods can be interpreted as integration methods for 
certain systems of linear differential equations. 

Consider the system 

(6.1) x=b-Ax, x(to)=xo. 

We assume (6.1) to be stable, i.e., the eigenvalues r of A to have positive real parts. 
Applying Euler's integration method to (6.1) yields 

(6.2) xi,, = xj + h (b - Ax1) = (hJ + (1 - h)I)xi + hb. 

This is the JOR scheme with w = h. Hence, the JOR method may be used for the 
solution of the linear algebraic system Ax = b or the system of differential equations 
(6.1), the only difference being the choice of c. In the first case, c is chosen such that 
p(J(cw)) =Min!, J(cw) :=cwJ+(1-cw)I, and in the latter according to the required 
precision. 

The ESOR method with y = wh has the form 

(6.3) x?j1 =xj+hcv(b-Axj)+cvL(x?j1-xj), 

which may be interpreted as a modification of (6.2). However, it is seen from the 
representation 

xi+ -=xj+hcv(I-cL)-'(b -Axj) 

that (6.3) is identical with the application of Euler's method to the problem 

x6c=(I-cvL) 1(b -Ax), x(to)=xo 

=(R.,,-I)x +c, c := w(I - L)- lb. 

Hence, for small y = cwh, the ESOR method yields approximations xi of the solution 
x(t) of (6.4) at t = t4. If all eigenvalues of (R,, -I) have negative real parts, (6.4) has 
a steady state solution u (with Au = b) that can be obtained with (6.3) using the 
optimum stepsize h = y/cl defined by p (R. (y)) = Min ! The same is true for the differen- 
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tial equation 

65=co(I-L) -'(Ax -b), x(to) xo 

=(I -R R)x +c 

if all eigenvalues of (Re., -I) have positive real parts. (6.3) then corresponds to the 
ESOR method with y = -wh. 

All eigenvalues of (R. -I) have, exclusively, negative or positive real parts if 
1 E G1 (see ? 3). This shows the relation between the region of convergence of the 
ESOR scheme and the stability region of the Euler method. 

TIhe interesting point is the fact that Euler's method makes sense for large 
stepsizes, yielding then the steady state solution. The interpretation of iterative 
methods as integration methods for linear differential equations is not new, however, 
and can be found in Varga [6, ? 8.4]. It seems promising to investigate this aspect 
further for nonlinear problems or multistep methods. 

Conclusion. Taking into account the small additional computational effort 
involved, it seems advisable to add to any iterative scheme its extrapolated form as 
an option. Not only does this provide the possibility of accelerating the original 
iteration, but convergence is achieved for a considerably larger class of problems. The 
question of further enlarging the area of convergence has not been considered here 
and needs more extensive investigation. 

In the important special case of consistently ordered systems, the ESOR method 
is particularly useful if the SOR diverges or its optimum parameter (0b cannot be 
determined; but even if Wb is known the ESOR may be faster than the SOR method. 

For given parameter cv it is simple to determine the associated optimum yo = y(co) 
if good estimates of the eigenvalues ,u of J are available. So far, there is no theory 
that permits one to find an optimum pair of parameters (w0, yo) in the general case 
of complex eigenvalues ,u. We conjecture that such a pair is not unique. In many 
cases, good results are obtained with cl = 1 and the associated optimum Yo. 
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