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An  extremely simple method for set comearison is erorosed. The
method determines what relationshier holds between two sets. This
contrasts with the usual set comearison orerators, which merely

check a siven relationshis.

To compare two sets A and B, we consider the following classes of
elementss

-~ ¢clags & -~ elements belonging only to A

- clags a4 ~ elements belonsing only to B
-~ class eea —~ e¢lements belonsing to both A and B

Based on these classes, we can characterize all the possible
outcomes of the comrarison, which corresrond to the combinations
of 0, 1, 2 or 3 of the classes. A decision tree [Bel displavs
the combinations? an edse leaving the pay p and a nodes is
labelled “1° if at least one element occurs in the respective
classy and “0” otherwise.

The 8 cases c0r ClrueewrC7 are further characterized, in terms of
their Venn diasrams L[Kol.
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The 8 cases constitute an adesuate choice for “primitive” set

relationshirgs. By construction, they are mutually exclusive and
cover all situations. However, exactly because they have these
rrorerties, they are all strict and the “"trivial” empty set cases

wre distinguished. So, when we write under case 3 "A included in
B”, we assume that both sets are non-empty and that B has at
least ome element that is not in A. In practice we may need such

strict and non-trivial relationshirs? for instance, the sentence
“John can do part of the Jobs that Peter does” clearly imelies
that both sets of Jobs are non—empty and that Peter’s set is

larser than John's.

The sequence of labels alons each rath of the decision tree can

be interrreted as a binary number, corresronding conveniently to
the case number. This sugssests that we substitute a “1" or a “0°
for each member of a three~digit sequence {(r4,P,q), derending m

the occurrence of at least one element in the resrective class.

A4 PASCAL function CJWI usins this method is seiven below. The
function returns a literal belonsing to the enumeration

tyre compcase = (empi2remprlremrrdisirearincl-contoverl)

to convey the outcome of the comparison. A brief descrirtion of
how the function works is gsiven afterwards.

function SCOMP(A,B: eset): compcase?

var X.,Y I ordsets
prasPq 2 DLl
Cri 5 0.7
v ! compCcase’
beagin

X = gort(A): Y &= gort(B);
g = 07 q 3= 0} pa = 0Ff
while not null(X) and not nulldY) do

if head(X}) = head(Y) then

begin pa = 13 X f= tail(X)s Y = tail(Y) end
else if head(X) ( head(Y) then
begin p = 43 X 2= tail(X) end
else begin 4 1= 17 Y 2= tail(Y) end?

if not null(X) then p =
if not nulldY) then a4 =

en

The two sets are first ordered (usins some O0(n loa(n)) method
CAHU1Y. Variables P, a4 and pa are initialized to zero. Then, the
sets are scanned in a mergse-~wise fashion (an O0(n + wm) process) to

detect elements in the three classes.

As long as there are elements in both sets, we compare the two
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leading elements. If they are saualy, pa ig updated. Otherwise we

can conclude that the smaller element cannot be found in the
other set ~ recall that the sets were ordered - and, accordinsly,
either p or a9 is updatedy the same is done if the end of one of

the sets is reached while the other still has unscanned elements.,

At the end, a decimal number is obtained from {(ra,p,a) and then
used to find the corresronding literal in the enumeration.

The invoking program can naturally use the result of SCOMP in a
case statements

case SCOMP(A.B) of
empl2: ... ¥
emed 8 ... ¥

LR N R BN N A R ]

end

PASCAL allows to arour togsether several cases. I¥ we wish to

consider the usual “C” comparison, thus acceerting non-strict
inclusion (set eauality) as well as the trivial empty set
situations, we can write

case SCOMP(A.B) of

LA N B I B BB IR B N A B B S IR N BN

empi2remprireqarinclt sue ¥
end
or, if any other situations are irrelevant to our arelication.

if SCOMP(A,B) in [empi2,emp1,ea,incll then ...

or, finally, by introducing a variable, inclusion, of a rowerset
tyre storing the above set of cases

if SCOMP(A,B) in inclusion then ...

Other set representations can lead to other implementations. For
examprle., if A and B are represented by bit arravs and pairwise
bit orerations like AND and AND.NOT are available, testing
occurrence of elements in the three classes can be done in  a
particularly efficient way. alsor other kinds of lansuases [GJ]
and equirment susgest some interestineg possibilities:

- Extensible lansuases, 1like Ada, permitting the introduction of
new orerators, not simely throush function definition, but
as  a prorer syntactical extension, would allow us to write
something like

A7 B
which would stress the fact that the operator vields the

relationshir between A an B. Sepecial symbols could be used
instead of the literals enumerated beforer, both as result of
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the comparison and as binary comparison orerators: a possible

choice is. in the same order as the literals were presentedt
A .. B &/ 8By ANBy A1 B A =B, A&<Byr & )>B, 648 B.

Hicrocomputer software must strive for economy of space. Even
if one decides to have several set comparison orerators in a
lansuase, it is convenient to practically implement all of them

throush a sinsle riece of code, as shown here.

For serarhical communication with the user we misht display the

result of set comparison as, say, rpictures of Venn diasrams. In
this event we would count in e, a and pa the number of
QUCUFrences in each classr thereby beins able to keerp the

proportions in the diasrams.

Data base lansuages and arplicative lansuases larsely benefit
from the introduction of set processing oeperators. In  both
cases the ability to handle sets reduces procedurality by

avoiding explicit iteration.
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