ADVANCES
IN
DATA BASE THEORY

Volume 2

Edited by
Hervé Gallaire

CGE—Laboratoire de Marcoussis
Marcoussis, France

Jack Minker
University of Maryland
College Park, Maryland

and

Jean Marie Nicolas
Centre d’Etudes et de Recherches de Toulouse
Toulouse, France

PLENUM PRESS : NEW YORK AND LONDON

005.74
A244
V.v.2

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS

P. A, S, Veloso and A. L. Furtado
Pontifica Universidade Catélica do Rio'de Janeiro.

Rio ‘dé :Janeiro, Brasil

ABSTRACT

A multistep methodology for the formal specification of data
base applications, entirely within the algebraic approach to
‘abstractrdata types, is presented.. Towards this end the concept
‘of traces is extended :to several levels, which: gives a useful tool
‘to obtain formal specifications in a systematic and constructive
way. TIn-addition, the concept of traces-has familiar simple ana-"
:I6gues. The presentation. is based on a simplified example of a
.database, which is successively specifiéd in three’ formats:: proce-
dural notation, -systems of term-rewriting rules and: conditional
equations.

INTRODUCTION

A multistep‘imethodology, entirely within the algebraic: approach,
for obtaining: formal specifications of abstract data types~ and,
in particular; database applications ‘is proposed.. The main tool -
proposed .to aid in the systematic construction of these algebraic :
specificatlons is the- concept of traces extended to several levels,

‘'The algebralc approach to abstract data types has been advocated
widely as” a useful tool for the formal specification of data struc-
tures ‘and, in particular, databases (Ehrig et al. [1978], Paolini
[19811). However,’fcrmal‘speCifications in general are not noted
for their legibility or easé of .construction. In fact, due to-the
difficulties . in obtaining an algebraic specification dlrectly from
a‘model (given formally or, worse, informally) some methodologies

321

322 : VELOSO AND FURTADO

have been suggested. Canonical term algebras, used to verify the
correctness of specifications (Goguen et al. [1978]), have been
used also as an aid in constructing an algebraic specification
(Pequeno and Veloso [1978]), and are more helpful if used in con-
junction with rewrite rules (Veloso [1982]). Helpful as they are,
these methodologies still leave room for improvement. On the other
-hand, some multistep methods have been proposed (Ehrig and Fey
[1981], Veloso et al. [1981]). These methods usually involve inter-
mediate formalisms other than the algebraic one, which' is one of
their main disadvantages. For instance, one such method (Veloso
et al., [1981]) dinvolves specifications by means of logical axioms,
abstract models, pre- and post-conditions, in addition to the alge-
braic specification.

We propose here a multistep methodology where, in contrast,
each step can be carried out entirely within:a single formalism,
.in this case, the algebraic formalism itself. The main advantage
stems from being both multistep and within a single forma%ism.
The usage of a single formalism avoids the problem of having to
translate from one formalism to another. Rather, and that is where .
the multistep aspect comes in, what has to be done is to refine
specifications within a single formalism. This feature of stepwise
refinement is, we believe, a major advantage. S ‘

The algebraic approach views each--object of a data type as-
(represented by):a variable-free: term, so: that the abstract data
type is (the isomorphism class of) a homomorphic image of the free

_algebra of terms, the specification' pinpointing which homomorphic
image. - In. particular, a database state can be represented by a
‘sequence of update operations capable of generating the' state. One
may ‘regard such a term as.a trace (Bartussek and Parnas :[1977])..
of how the database has actually evolved on its way to the present
state. As such, these terms may contain some extra information,
which may be redundant if one is interested in the state per se
rather than in a particular way of geneérating it.

The proposed methodology starts at a level where all ground
terms are taken as representatives of states-and gradually proceeds
via a series of intermediate levelsi-until reaching the desired - -
level, e.g., one with a unique representative for each state. On
the intermediate levels the specifications progress towards smaller .
sets of representatives by considering fewer sequences of updates.
As a consequence; the specifications gradually .shift their main
orientation from queries to updates. . Nevertheless, each level
specification 'is consistent and sufficiently complete, in ‘the
sense défined in the next section. " Furthermoreé, at each level,
three kinds of algebraic formalisms can be employed to express the
specifications: (conditional) equations, systems of term-rewriting
rules, and procedural notation, the latter leading to executable

TEPW!
peci
RELTI

n the
o be

'STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 323
‘specifications.

The structure of the chapter:is as' follows. The next section,
'PRELIMINARIES, reviews mathematical terminology and notation used
‘in.-the: chapter. TIn AN ILLUSTRATIVE EXAMPLE, an illustrative example
‘to: be used throughout the paper is introduced. -This simple example
ds employed in'THE. IDEA: OF TRACE LEVELS to convey the basic: ideas
iof trace levels. : In TRACE LEVELS AND ALGEBRAS, trace levels are
formalized- in. terms of- canonical term algebras and some of their
properties are presented. = These ideas are-illustrated in TRACE
LWHSMHH%HWSWPW%MMg%m%wml@mﬁuummfw
wvarious trace levels of our running example, which are translated
into the procedural formalism: in PROCEDURAL SPECIFICATIONS.

REWRITE RULES we consider and illustrate.the methodology as couched
in the context of systems of term-rewriting rules. These ideas are
further developed in EQUATIONAL SPECIFICATIONS, where we outline
the process of deriving an equational specification, again using
our running exwmple.f Finally, CONCLUSION presents some general
conclusions.~' w0 :

) Th1s structure is modular in that one can skip PRELIMINARIES
and TRACE LEVELS AND ALGEBRAS on a first reading to obtain the main
intuitive ideas.

PRELIMINARIES ‘

The usual notation and terminology for abstract data types is
employed (Goguen et al. [1978], Guttag and Horning [1978]). For a.
clear presentation we refer to Pair [1980], whose main concepts of
interest here are outlined below.

A‘§ignature L consists of:

° a nonempty set S of sorts

° a set I of operation symbols

° a profile declaration 1l assigning to each operation symbol
o € T its functionality; H(o) (s +es.S_; 8), denoted
by o sl...sn > 8. n

Terms are defined as usual and collected according to their
target sorts. In general, we call such families of sets indexed
by S an S-set.

. An L-algebra A consists of an assignment of nonempty domains
to the sorts of -S and of operations to op Xatlon symbols respecting
their profiles. . In other words, A = (A, I where A is an S-set
of domains A; # @ for s € S.and for o € & withvprofile '

H(U) = (Sl---SnsS)’ 0.: Asl X 6o ?(ASn “)'AS. .

324 VELOSO -AND FURTADO

The S-set of all (ground) terms T of L can be given a .natural
structure of L-algebra, called the term-algebra T of L, which is
initial in the category of L—algebras (with: L—homomorphisms)
(Goguen et al..[1978]). 1In fact,.given an algebra A the mapping
assigning to-each t € T its denotation (or value): tA in A is the:
unique: hgmomorphism b of T into A. We call A finztxly‘generated
(Wirsing and Broy [1980]) iff this denotation map is onto:A.
Then, by the isomorphism theorem of . Gritzer [1968], ‘the assignment
A b =[A] (where tl =ty ,[A] iff. tlA = to"\) gives a one-to-one
correspondence between the finitely generated algebras and the
complete lattlce of congruences on T : :

The algebra; T: of terms has: the advantage of having syntactical
domains. Other such algebras will’ also be of interest here

A canonical form F is an’ S—set of- terms (called canonlcal terms)
that is closed under the formation of subterms, i.e:. whenever - ..
(o) = (87 vs.:8 38).and ot wv. t € Fy' -then’ t; € Fg seve st € Fg
A canonical ter% algebra (cta, for short). is an algebra .C whosE
domains constitute a. canonical form and their operations consist of
syntactical manipulatlons on canonical’ terms in the sense <that when-
ever :Nl(c) = (sl... sn,s) and otl... t, € C5 then'o [tl,...,t] =
O‘tl... th : . :

Canonical forms have their origin in the normal forms of term
rewriting systems (Huet and Oppen [1980]). ‘A cta adds to the advan-
tage of having syntactical domains that of ease in carrying out
inductive arguments, since being. "closed under’the: formation of sub-
terms" generally is.what one needs in: the inductive step. Notice:
that ‘a cta isunot a subalgebra of " the algebra of terms T, but we-
have the following useful property proved: by Goguen, Thatcher and
Wagner [1978].

Lemma 1 (Goguen et al. [1978]) If C is a cta and
hC is the denotation homomorphism from T to’ C, then. hC -is onto and
for each t €C h (t)

As noted above, a f1n1tely generated algebra is characterized
by a congruence on T. In order to describe such' congtuences we
resort to some speciflcation formalism, which consists of a finite
number of schemas involving terms with variables and generating the
desired'congrnence,

In many cases it is convenient to single out certain sorts as
of special interest . (cf. the "type of interest", TOI, of Guttag
and Horning [1978]), viewing the others as, ‘say, parameters, ‘In
particular for'databases, .a domain of special interest is that
consisting of ‘database. states or: instances: Operations with
values in this domaln are updates, -the others — with 'values in .
other sorts — are queries (Veloso et al. [1981], Dosch et al. [1982]){

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 325

This leads to the notion of hierarchical signature, which is
a signature, as before, with a specified subsignature called
basic subsignature,,-consistiqg;bf basic sorts and basic opera=
tions whose profiles involve -only basic sorts. The terms generated
by the basic ‘operationsare called primitive terms. Notice that
the set Pg, of primitive terms of a basic sort s is a subset of Tg.
Call an operation symbol whose target sort is basic an external
operation. ' ’ R e :

A hierarchical data type consists of a hierarchical signature
together with an algebra, B, called basic algebra, for the basic
subsignature.’ This basic algebra induces a congruence EP’ called
primitive congruence, on P. ' :

A hierarchical algebra_ is an algebra of the signature, whose
reduct obtained by restricting the sorts and operations to the sub-
‘signature coincides with the basic algebra. The congruences
corresponding to hierarchical algebras with a given basic algebra
B form a complete sublattice .0f the lattice of all congruences
‘on T (Pair [1980]). ’

Two important bropertiés of a congruence 6 on T are the
following: ‘ s

¢ 0 is consistent iff any‘claSsiof;e contains .at most one .
class of Zp, i.e. whenever (p,p') € 0, for p,p' € P, also
PSP -

* 9 isfbufficiently complete iff any class of 6 contains at
least one class of =p, i.e. for any term t of a basic sort
there exists a primitive .termp € P, such that (t,p) €6 .

The above terminology is generally employed in connection with
specifications. ’ :

We deal with' three specification formalisms: equational,
(Goguen et al.: [1978]), rewriting systems (Huet and Oppen [1980])
and procedural . notation (Furtado and Veloso [1981]). A'set E of
equations (pairs of terms with variables) describes the least
congruence =[E] on T containing all ground instarces of the equa-
tions (Goguen et al. [1978]). Similarly, a rewriting system R
consisting of rewrite rules (ordered pairs of terms with variables)
describes the relation E[R] on T (relating two terms that can be
converted into a common one), which is a congruence on T if R is
confluent, i.e. has the Church-Rosser property (Huet and Oppen
[1980]). A procedural specification is a CLU-like cluster (Liskov
et al. [1977]), consisting of ‘a symbol-manipulating procedure for
each operation symbol. It can be regarded as a deterministic imple-
mentation of a rewriting. system obtained by = superimposing some

326 . IR VELOSO AND.FURTADO

order of application for the rewrite rules (Furtado and Veloso
[1981]). ' . - ' i

‘A”sﬁecification I in one of the above formalisms geﬁérates a

syntactical congruence = [T'] on T'as follows: t = t'[T] iff the
equality. t = t' can be derived from T. o '

Given an algebra A, by means of its congruence =[A], a speci-
fication T is (see Figure 1)

U (one block congruence)

.. complete
.specifica-

. correct
specifica-
' tions

I (identity)

Figure 1. ‘Correct and Complete Specificétiohs with Respect to A..

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 327

.+ correct for A iff =[r] C =[A], i.e., any equality t = t'
derivable from T is true in A.

. complete for A iff —[A] z[T], i.e., any equality t = t'
“holding in A is derlvable from T.

‘ The specification problem (in a given formalism, as above)
for a given algebra A consists of finding a specification I' (in the
‘given formallsm) that is both correct and complete with respect

to A.

" In the following sections we shall show how the notion of
./traces, in particular, several levels of traces, can ‘be used in a
~methodology for the stepwise construction of specifications. for
_abstract data types. ' »

AN ILLUSTRATIVE EXAMPLE -

As ‘a simple example to illustrate the discussion we use the
database of a company, called Acme, marketing a machine. Acme can
either lease or sell a machine to a customer. In both cases the

_customer will use the machine, but only in the latter ‘case will he
‘own it. If a machine has been leased to a customer he may later
decide to buy it or else he may choose to return itfto Acme. On
the other hand if a machine has been sold to a customer he cannot
return it. For simplicity we ‘dssume that there is only omne kind
of machlne and at any time a customer will have at most one machine.

The operation symbols here correspond to the words 1ta11c1zed
“in the preceding paragraph together with the usual update phi which
initializes the database to an "empty state. More specifically.
we have threée ‘sorts state, customer and Bool(ean), the TOIL is ‘
state and the other two are basic sorts, in the sense of the prev1ous
sectlon.

Operation symbol. phi has a profile ()\,state); it is a constant
for initialization. On the other hand, lease, sell and return all
have profile (customer state,state), and thus are updates. Also,
uses and owns have profile (customer,state,Bool) and are queries.

In addltlon ion the basic sorts have some basic operation symbols. Bool
_has two constant’ symbols True and False and customer is assumed

‘to be supplled with opération symbols that ‘allow the generation of
variable-free terms as names of customers. Finally, we also have
operation symbols = and # of profile (customer customer, Bool) °
compare these customers.

The above exposition is a desc¢ription of our hierarchical
signature L. So far, we have a formal description of the syntax
‘of our example. The meaning of the operatlons has been glven only

328 “VELOSQO AND FURTADO
informally in natural language.

It is assumed that each state can.be identified by the results
it yields to queries. Also in the initial state all queries yield
False and the only way to reach a state where a query yields True
is by, applylng some sequence of updates.

So, the effect. of an update is to cause changes in the answer
to querles.‘ Conversely cértain answers to queries may be precondi—
tions for an update; if the preconditions fail the application of"
the update will not change the state. For instance, if in state s
customer c owns a machine then return(c s) = s.

A specification for the updates of our example 1n terms of
preconditions and effects is as follows:

t := phi
preconditions : none
effects : Y e Tlusesteyt) A Towns(ce,t)
"~ t := lease(c,s) S e N
preconditions : Tluses(c,s)
effects: uses(c,t) :

‘t':= sell(c s)
vprecondltlons Wowns(c s)
. effects : uses(c TY A owns(c t)

t :='return(c,s): :
precondltlons : uses(c s) A '10wns(c s)
effects Tuses(c t) .

‘This spec1f1catlon, together w1th the exp11c1t statement of
the underlying assumptions (Veloso et al. [1981]), such as the
well-known frame assumption:. properties not expllcltly mentloned
are preserved under the application of an update, constitute a
formal description of the semantics of our example.v However, it
is not an algebralc spec1f1catlon. :

_ THE IDEA QF TRACE LEVELS

In the. algebralc approach each database state is denoted by a
ground term representing.a sequence of update operations capable of
generating it. One.may regard guch a term.as a log or trace =~ |
(Bartussek and Parnas [1977]) ‘of how the database. has been mani-:
pulated to attain this particular state. 'As .such, these terms may
contain extra information that can be discarded if one is 1nterested
in the state per se rather than in a particular. way, of generating 1t,

In order to clarlfy “these 1deas, assume that our. example data—
base is inltlally in the empty state and the follow1ng ‘sequence of

STEPWISE CONSTRUCTIONOF ALGEBRAIC SPECTFICATIONS 329

transactions is performed:

.. .. a machlne is 1eased to customer D

2. a machine is leased to customer Bj. .
3. D returns a machine;

4, customer C buys a machine;

5. customer B buys a machine'

6. “C returns a machine; '

7. ' a machine is leased to customer Aj

8 a machine is leased to customer B.

The list of (the symbols of) the above nine updates (beginning
~with phi and ending with the last lease would be a log of this
:sequence of transactions."It is often more convenient, however, to
represent this'trace in an appllcative format as

~(i) lease(B, lease(A return(C sell(B sell(C, return(D lease(B lease
‘ (D Phl))))))))

The execution of these updates w111 cause the databasé to
evolve from the initial empty state, through a series of inter-
mediate states, to a state P where customers A, B and C use machines
and B and C own-machines.. This state:can be'represented by the two

-sets Up = {A,B, C} and Op = {B,C}. Similarly, each intermediate
state s can.be. descrlbed by its ‘'set Ug of customers using machines
and its set Og of customers owning machines (notice that 05 € Uy
is a static 1ntegr1ty constraint of our example) The next: table
~shows thls evolution

s U 0
) s S
’ 0) 9
1 {D} 1)
2 {B,D} ‘9.
3 {B} 8
4 {B,C} {c}
5 {B,C} {B,C}
6 {8,c} {B,C}
7 {A,B,C} {B,C}
8 {A,B,C} {B,C}

Some points are worth remarking upon in connection’ with this
trace and corresponding evolution. - :

330 R . v+ ... VELOSO AND FURTADO

(a) States 5 and 6 have 1dent1ca1 sets O and U, and are the
same. Likewise for states 7 and 8. If we delete from trace (1)
the updates return(C,-) and lease(B,-) causing these repetitions
we obtain the evolution: : .

update U Ou
phi ’) ¢
lease(D,*) (o} ¢
lease(B,") {B,D} ¢
return(D,) {B} _ o
sell(C,*) B,c} |
‘sell(B,+) | - {B,c} {B,C}
lease(a,) | {A,B,C} {8,C} .

correspondlng to the repetltion—free trace

2) 1ease(A sell(B sell(c, return(D lease(B lease(D,phl)))))) -
denoting the same flnal state P as (1)

(b) In going from state 2 to 3, the set U decreases from {B,D}
to {B}. This is due to the fact that the update return(D,-)
cancelled the effects of a previous lease(D,:). If we eliminate
these two updates from trace (1) we obtain the follow1ng evolution:

update ' U 0‘
phi 6 9
lease(B,:) | ' {B} - ¢
sell(c,’) | (B,c} {c}
sell(B,-) {B,C} . {8,C}
return(C,-) “{B,c} "~ {B,C}
lease(s,*) | {A,B,c} | {B,c}
lease(B,:) | {A,B,C} _ {B,C}

STEPWISE CONSTRUCTION: OF ALGEBRAIC SPECIFICATIONS 331

corresponding to the following nondecreasing -(albeit, not repeti-
tion-free) trace denotlng ‘the same state P: o

.(3) lease(B 1ease(A return(c sell(B sell{(C, lease(B E__))))))

(¢) In state 2 we have B € 0 because of the update lease(B,*)
and subsequently we have in state 5 both B € U and B € 0 because
of update sell(B,+). So the effects of sell(B,*) subsume those of
the previous lease(B,+). Now, replace in trace (1) the first
lease(B,*) by sell(B,*) to obtain the trace:

(4) lease(B lease(A,return(C, sell(B sell(C,return(D,sell(B,lease(D,
Phl))))))))

which is subsumption-free (but neither repetition-free nor non-
decreasing). The evolution corresponding to (4). is the same as (1)
‘except that states 2 and 3 now have 0 = {B} ‘dnd state 4 has 0= {B,Ch

(d) We can view the aim of executing the original sequence
of updates as attaining a state P where Up = {A,B,C} and Op = {B,C}.
From this viewpoint traces (1) through (4) achieved this aim in a
somewhat roundabout way. If we want to increase (U,0) from (0,0)
to ({A,B,C},{B,C}) via as few" intermediate states as p0331ble we
may con51der the following evolution:

update U 0
phi) 9
sell(B,*) |{B} {B}
sell(C,) |{B,C} -{B,C}
lease(A,-)|{A,B,C} {B,C}

a

correspondlng to the trace:

(5) lease(A, sell(C sell (B, phl)))

If we eliminate from trace (5) aﬁy‘one of the updatés we fail to
achieve the same final state P. So we call (5) a reduced trace.

(e) The effect of lease(B,:) at a state is the insertion of
B into the corresponding set U. Likewise lease(C,*) causes the
insertion of C into U. 8o, lease(B, *) and lease(C,*) commute,. the
net effect of their execution in any order being the insertion of
both B and C into U.. This gives us the freedom to reorder occur-
rences of the same operation symbol according to their customer
parameters. We can choose an order among customer names (say

‘

332 VELOSO .AND FURTADO

A < B.< C < D) and reorder. adjacent occurrences.of the same opera-
tion symbol so that A is more external than B, and so forth.. For
instance, trace (2) 1s already ordered according to this criterion.
Ordered traces corresponding to the previous traces.shown. above are:

;. correspondlng to (1):

(6) lease(A, lease(B return(C sell(B sell(C return(D lease(B lease(D;
: L / Phl))))))))

* corresponding to (3):

(7) lease(A,lease(B,return(C,sell(B,sell(C,lease(B,phi))))))

. corresponding to, (4): -

(8) lease(A, lease(B return(C sell(B sell(C return(D sell(B lease(D
' Phl))))))))

o correspondingrto (5):

v (9) lease(A sell(B sell(C,phl)))

(f) Other poss1ble trace 1evels are comblnatlons of the pre-
ceding ones. For instance, an-increasing :trace (i.e. repetition-
free and nondecreasing) is:

(10) lease(,sell(B,sell(C,lease(B,phi))))

causing the evolution:

0.] U

) 1)

{B} N
{B,C} {C}
{B,C} {B,C}
{A,B,C} | {B,C}

where each transition causes a strict incrément in O or U.

€3] of special interest are trace levels where each state has
a unlque representatlve, for then we have ‘a one~to-one correspon—
dence between states’and traces denotlng them. A systematlc way
to achieve this uniqueness consists of proceeding via a series of
traces, each one "closer" to uniqueness than the precedlng one.
For instance:

STEPWISE: CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS : 333

* startlng at the actual ‘trace 1evel, containing traces such
as (1), :

* - pass to the repetltlon—free level, w1th traces such as (2),
‘s then move on to the increa31ng level, with traces such as (10),

* and proceed to "more definite" levels by adding successively
the conditions of being subsumption-free, reduced, etc. - and
finally ordered:

TRACE LEVELS AND A.LGEBRAS

A subterm of a trace corresponds to a past portlon of a 1og.,
For instance, trace (5) is a reduced trace and its subterm
sell(B,Egg) is & reduced trace, as well. Moreover, sell(B,phl)
‘is a reduced trace for an intermediate state’ in the .evolution cor-
respondlng to trace (5). :

So it is natural to define a trace level as a canonical form
and a trace algebra as a canonical term algebra (cta). Thus, a
trace level is a set of representatives for the congruence classes
of the correspondlng trace algebra.

Trace levels can be ordered .naturally by.inclusion. Also, it
is easy to see thatthe property of being a canonical form is closed
~under arbitrary unions and intersections: Thus we have the follow-
ing proposition-illustrated in Figure 2. ’ -

Proposition 1. The set of all trace levels of a signature L, under
~inclusion, forms a complete lattice. Its least upper bound or
supremum is the actual trace level and its greatest lower bound or
~infimum is the empty canonical form. .

- Notice that an empty canonical form is permitted but it
correspofids to no cta. -The least trace levels corresponding to ‘ctas
are those consisting of a single term for each sort. Moreover, a
given congruence can have, in general, many sets of representatives.
In fact the proof of the following lemma due to Goguen, Thatcher
and Wagner [1978] indicates ‘some ways of choosing canonical repre-
sentatives.

Lemma 2 (Goguen et al, [1978]). Any finitely generated
algebra is isomorphic to a canonical term algebra (cta)

In addition this lemma shows that one can always work w1th
trace algebras w1thout losing any finitely generated algebra.

In using trace levels as a tool’for methodical specification
we are interested only in canonical forms that can be refined so as

334 VELOSO AND FURTADO

to represent a given algebra A, 1In other words, we are interested
in ctas C with =[A] D =[C]. ©Now the corresponding canonical forms
are no longer closed under intersection. But we ;still have the

following theorem illustrated in Figure 3.

Theorem 1. -The set of. trace levels of ctas w1th congruences
included in a given congruence 6 on T is a complete upper sub-
semilattice of the lattice of all trace levels. Its lub is the
actual trace level and its minimal elements are the trace levels
of the ctas isomorphic to the quotients T /6 .

Proof: The set of all congruénces on T included in 6 forms a com-
plete sublattice of the lattice of all congruences on T (Gritzer
[1968]). Thus the result follows from Prop031t10n 1 and Lemma 2 in
view of the preceding remarks. -

trivial
trace levels

8 SR -(trivial algebra)~

Figurelz. Correspondence between the Lattices of Trace Levels and
of Finltely Generated Algebras.

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 335

) In THE IDEA OF TRACE LEVELS we introduced the. concept of trace
~‘levels by means of an illustrative example. Some of the trace levels
presented therein have wide applicability, therefore deserving

. general definition and comments.

'First the actual trace level is the canonical form consisting
- of all (syntactically correct) (ground) terms without any further
restriction. It corresponds to the term algebra T.

’ The repetltlon—free level deserves. further clarification, in

“view of .a distinction not clearly stressed in THE IDEA OF TRACE
LEVELS. A trace level P is free from adjacent repetitions iff
whenever otl...ti...t € Pg and t; € P then their values. in the

given algebra A are distinct: t, # ¢ [t ,...,tnA]. A trace level

Q is free from (arbitrary) repetitions 1ff it satisfies the stronger
‘requlrement that whenever a term t € Qg has one of its proper sub-
terms t also in Q then t # tA,

unique representation
levels

I]
Figure 3. Sublattice of Congruences Included in 9 and Corresponding
Upper Sub-Semilattice of Trace Levels.

336 VELOSO -AND FURTADO‘

Now a trace level R is said to be reduced iff whenever a term
t'is in'Rg and one of its 2ubterms t" has- the form Oty .o tyene bty
with t, € e® Ry then t # ty

Flnally, a trace level U is said to be on the unigque-represen-
tative level iff for each a € A there ex1sts exactly one trace
tevw denoting a, i.e. with t = a.

The following-implications are easily seen to hold:
unique-representative = reduced = free”frbm adjaceht repetitioni

Moreover, they cannot be reversed, in general. Also, notlce that
while the property of being a canonical form is purely syntactic,
this is no longer true for trace levels. A trace level is free
from adjacent repetitions, reduced,:ete, only with respect to

a given algebra A. ' ' '

The precedlng discussion of trace levels and trace algebras
concerns finitely generated algebras in general. TIn the case of
hierarchical data types we are given a basic algebra B. We can
then relativize our concepts to the mnonbasic sorts, as follows.
For the basic sorts we -choose one primitive term to represent each
‘equivalence class of the;brlmltlve congruence. . For the mnonbasic
sorts we proceed as before. 'Thus we obtain hierarchical trace
levels and algebras. ‘More formally, a hlerarchlcal trace algebra
is a cta, whose reduct to the'basic subsignature is isomorphic
to the basic algebra. Also, we call a hierarchical trace, level
actual, nondecrea51ng, reduced,‘etc iff viewed as a trace level
it satisfies the corresponding: restriction.

TRACE LEVEL SPECIFICATiONS

We now use our running example to illustrate various hierarchi-:
cal trace level specifications and. their usage. We describe, in a
semi-formal way, the following ctas:

* .the cta T of the actual (hierarchical) trace levels;

®* the cta P of the repetition-free (hlerarchlcal) level

* the cta U of the reduced (hierarchical) level;

* the cta U of the unlque representatlve (hlerarchical) level.

It will ‘become clear that what we call for short, repetlon—
free level should more properly be called "free from}adJacent repe~
titions", as defined in TRACE “LEVELS AND ALGEBRAS.

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 337
Actual (Hierarchlcal) Trace Level

On this level the traces/ rof .sort state.are: all (syntactlcally
correct) terms, .that represent the actual sequences ‘of all updates
actually invoked in their chronological order. This is suggestive
of the so-called audit ‘trails... Indeed; for auditing or for sta-
tistical purposes. these actual traces may be useful. As an example
consider:

(il) lease(C, return(A return(B lease(C sell(B 1ease(A lease(B phi)
))))))

‘A semi-formal specifiéation_for this level consists'of:

lease(c, t)

1easeT[c t] =
sell [c t] = sell(c, t)
ownsr[c, £] = True - 'if t contains sell(c,...)

False otherw1se

of course, ‘this specifies the cta T of all- terms of sort state.
(Bool(ean) is assumed to have the constants True and False as traces
and the sort customer. is assumed to have constants as representa-
tives for customers.) Notice that- the’ spec1f1cat10n is sufficiently
complete (one can determine the results of queries; for instance,
with_t denoting trace (11), as it contains sell(B,...), we have
owns [B,t] = True), and correct ‘with respect to:the’ intended model
but is not complete.. Indeed, the.value of trace (11, as-any other
trace, is 1tse1f on thlS 1eve1 in the sense

lease [C return' [A,...,lease [B, phl]...] 1
= lease(C, return(A,...,lease(B phi) cee))
Repetltion—Free (Hlerarchlcal) Trace Level
Here, a trace con31sts ‘only of the operation symbols that
actually caused state changes. For 1nstance ‘a repetition-free
trace. correspondlng to (11) is :

(12) return(A lease(C sell(B 1ease(A lease(B,phl)))))

v Agaln, this: 1evel is suggestive of” logs kept, 1n thlS case,
for recovery:purposes.

‘ A'semi-formal.specification for this level is as follows:

338 o VELOSOQ. AND FURTADO

AL I I IR R S

- S i oven?)
leasep[c,t] = [lease(c,t) if uses [C{t] = False
: L l t otherwise.
return(c,t) if usesp[c,t] True

and owns"[c,t] = False

returnp[c,t] = {

t otherwise
True if t contains éell(c,...)

or t = u3(cy,u,(cyyes.,u (c_,
© lease(c,£')’) 2.2 7yy’ i m
and whenever u, = return, then ci#c

usesP[c,t]

False otherwise
ownsp[c,t] - True if t contains sell(c,...)
- False . otherwise.

~

Again, this is a sufficiently complete specification, correct
with respect to the intended model and it is a.refinement of the
preceding one. :

On this level, the valué’of théwﬁrace (12) is itself, in ;hé
sense - . . .

returnP[A,léaéeP[C,;Q.,lease?[B,égi?] eoel

= return(A,lease(C,...,lease(B,phi) ...)y,

as can be seen from the above speéifiéafion. However, the value of
trace (11) can be obtained as follows. First, the specification
gives ' o
1easeP[C,sellPtB,leaseP[A,leaseP[B,phiP]jj]
= 1ease(C,sell(B,lease(A,lease(B,phi))))

Call this term t'. Then, as t' contains sell(B,...), we have

ownsP[B,t'] = True, whence returnP[B,t'] =t', Now,'aspt' contains
lease(A,...) with no later return(A,...), we have uses [A,t'] ="

True. Also owns'[A,t'] = False. So return [A,t'] = return(A,t').

Now uges [C,return(A;t')] = True, which implies- , :
leaseP[C,return(A,t')] = return(A,t'). Hence the value of trace ' Ev

(11) on this level- is trace (12). As this equality could not be .
derived on the' actual trace level, we now have a' .proper refinemerit,

i.e. =[P] $ =[T].

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS

339

Reduced (Hierarchical) Trace Level

On the preceding levels the length of the traces increased

with time.

were not later cancelled or subsumed by others.

Now we keep only those operation symbols whose effects

(In this example

this is enough to guarantee that the trace is reduced.) * A reduced

trace corresponding to (12) is

(13)

lease(C,sell(B,phi))

A semi—formal specification for ‘this level is

DI RO SRS AP AP RPN S 7Y

sell(c,t'), where t' is
the result of removing

D _ any occurrence of.
sell’[e,t] = lease(C,...) from t
t
t

the result of removing

returnv[c,t]=
: lease(c,...) from t

D R A A N N IR I A

: True
usesv[c,t] =
: False
) True
owns [cet] =

False

if'ownsv[c,t] = False
otherwise
. D _ ‘
if owns [c,t] = True
or usesY[c,t] = False

otherwise

if t contains. lease(c,...)
or .sell(e,...)

otherwise
if t contains sell(c,...)

otherwise.

This specification is sufficiently complete, a proper refine-
ment of the preceding one and still consistent with the intended

model.

Unique—Represerntative (Hierarchical) Trace Level

Even on ‘the reduced level a state can be represented by more

than one trace.

If, however, we decide to order the customers and

the corresponding updates as illustrated in THE IDEA OF TRACE LEVELS,
we obtain the desired uniqueness. But since we have on the reduced

340) ‘ VELOSO AND FURTADO

trace level only two updates with customers as parameters, we prefer:
to reorder the trace so that A appears before B, and so forth,
independeént of the associated updates. So, a trace cqrresponding

to (13) on this level is:

sell(B,lease(C,phi))

A semi-formal specification for this level is:

the result of removing any if ownsu[c,t]= False
occurrence of lease(c,...)

u _ and inserting sell(c,...)
sell [e,t] = in the appropriate position
t otherwise
True if t contains sell(c,...)
usesu[c’t] _ - or lease(C,ess)

False otherwise.

Now, as_ each state is represented by a unique trace, we have a
correct and complete specification for the intended model, i.e.

u=A.

This sequence of four hierarchical trace levels is illustrated‘
in Figure 4, where the values of traces (11), (12), (13) and (14)
are shown on each level.

PROCEDURAL SPECIFICATIONS

As noted previously, the execution of the operations of a cta
involves inspecting and manipulating traces. A procedural specifi-
cation regards a trace as a sequence of symbols and "implements"
the operations by means of procedures. for symbolic manipulations....

Here we describe such procedures by means of a procedural notaZ
tion of Furtado and Veloso [1981],‘Whose~main features are as
follows. Each procedure (op) has a heading and a body. Within
the latter, statements are sequentially executed and -the -value
returned is that of the first expression on the right of a '=!'.
whose - left-hand side has the value True. " The match statement is:

a case-like construct for pattern-matching, its value is that of
the right-hand side of the expression whose left-hand side mathces

the trace.

STEPWISE. CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 341

. Actual (Hierarchical) Trace Level

For the actual trace level, the symbolic execution of an update
is trivial; it suffices to add to the trace the symbol of the new
operation. On the other hand, in order to know whether B uses.a
machine at the state denoted by (11) it is neither enough to find
return(B,...) (and answer False) nor to answer True simply because
we found lease(B,...). It is necessary to check whether the
corresponding updates caused state changes. and were not later
.cancelled.

A procedural specificationvfor this: level consists of proce-
dures such as the following: :

(1) (12) (13 14) : T

o . e an

)

(14) us=A

Figure 4., Sort state of Four Hierarchical Trace Algebras

342 ' VELOSO AND FURTADO

op sell(c:customer, t:state) : state
= gell(c,t) .
endop

eses s e s e s sss s s e

op uses(c:customer, t:state) : Bool

var x:customer, sistate

match t
phi = False
lease(x,s) = if ¢

r

II

sell(x,s) =if c

return(x,s)= if c

owns(c,s)
else uses(c,s)

endmatch
endo

Repetition-Free (Hierarchical) Trace Level

Now the execution of updates is still relatively simple, for
any addition will be at the left end of the trace; we only have to
take care in adding only those operation symbols whose precondi-
tions for state change are satisfied. The execution of queries
becomes slightly simpler than on the actual level. For instance,
if the trace contains return(A,...) without later occurrences of
lease(A,...) or sell(A,...), we can guarantee that at this state
customer A does not use a machine.

A procedural specification for the repetition-free level
consists of procedures with the following form:

sesessreessss s

op sell(c:customer, t:state) : state
owns(c,t) = t; ’
= gell(c,t)

endop :

mesassessesss e

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 343

op. uses(c:customer, t:state) : Bool
var x:customer, s:state

match ¢
phi = False
-lease(x,s) = dif ¢ = x
then True
else uses(c,s)
sell(x,s) = if ¢ =x
then True

else uses(c,s)

return(x,s) = if ¢ = x
‘ n False
else uses(c,s)

endmatch
endo

Notice that the. body of the above procedure sell has a pre-
condition. S . -

Reduced (Hierarchical) Trace Level

Now the execution of updates becomes somewhat more complex,
as somé manipulation within the trace may be necessary. On the
other hand, the execution of queries becomes simpler as traces are
more "compact" and contain no 'negative" updates. <

Procedures for the reduced trace level have the following form:

op sell(c:customer,. t:state) : state. .
var x:customer, s:state
owns(c,t) = t;
1 uses(e,t) = selle, t)
match t
lease(x,s) = if

=x
then sell(c,s)
else lease(x,sell(c,s))
sell(x,s) = sell (x,sell(c,s))
endmatch
endop

0

344 VELOSO AND FURTADO

op uses(c:customer, t:state) : Bool
var x:customer, s:istate

match t
phi = False
lease(x,s) = if ¢ = x
then True.
else uses(c,s)
sell(x,s) = if ¢ =x
then True
else uses(c,s)
endmatch

endop

e e s evssreser e

Unique-Representative (Hierarchical) Trace Level

On this level the execution of updates involves more internal
manipulations than on the preceding one, since the addition of an
operation symbol is to be performed at an appropriate position. The
execution of queries, however, is just as simple; in fact they can
become more efficient if one takes advantage of the ordering.

_ A specification for this trace level in our procedural nota-
tion, employing the order '<' among customer names, looks like:

seseer s e s e e neie s

op sell(c:customer, tistate) : state
var x:customer, s:state
owns (c,t) = tj- i
match t ‘
phi = sell(c,t)
lease(x,s) = i

I
Fh
X
|
¢

- v
then sell(x,t)
’ else lease(x,sell(c,s))
sell(x,s) = if ¢ <'x
then sell(c,t)
else sell(x;sell(c,s))

endmatch
endop

D R .

STEPWISE .CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 345

RN R I A A R R N A

~op uses(c:customer, t:state) : Bool
var x:customer, s:state

match t
phi = False .
lease(x,s) = if c=x
: - then True
else if c < x
then False
i else uses(c,s)
sell(x,s) = if '¢=x L :
. ‘then True
~ else if ¢ <'x
~then False = -
Ry else uses(c;s)
endmatch ?

endog.

A procedural specification actually'converts a.sequence of
operations into the corresponding trace. For 1nstance, consider

>(15) 1ease(C return(A,return(B, lease(C sell(B lease(A lease(B,ph;)
s)))))) '

If we execute expression.(15) with the procedures of the repetition-
free level we obtain'as result, trace (12) whereas the same expres-
sion (15) executed on the reduced trace level ylelds trace: (13)

On the other hand the result of executing

: return(A lease(C sell(B lease(A 1ease(B,ph1)))))
on the unlque—representatlve level is
sell(B,lease(C,phi))

Some remarks concerning these specifications are. in order.
First, notice that, as we progress from the actual trace -level to
that. of unique representatives, the syntactical complexity of the
procedural specifications shifts from queries ‘towards updates.

Also the cluster-like module of a given level will generate exactly
the traces of thlS level.

It is worthwhile'mentioning that a procedural specification
is not only formal but also executable. This allows the designer
to experiment with the specification to determine whether the
original intentions were actually captured before being committed
to the costly and arduous task of machine implementation. Besides,
it is relatively straightforward to translate a procedural specifi-
cation into actual programs written in some symbol-manipulation

346 . : VELOSO AND FURTADO

language such as SNOBOL, as in Furtado and Veloso [1981].

REWRITE RULES

As mentioned above, a procedural specification can be regarded-
as a device for transforming sequences of operation symbols into
the corresponding traces. Such transformations can also be des-
cribed in another formalism, namely that of term rewriting rules
(Huet and Oppen [1980]).

We illustrate the derivation of rewrite rules by means of a
simple example. Consider again trace (1l). It denotes a state
where customer B uses a machine, as can be seen from any of the
preceding specifications:. the informal, the semiformal or the
procedural. We consider the problem of transforming the term
uses(B, (11)) into True.

We may start by trying to convert uses (B, (11)) into “simpler
terms by moving uses inwards until the transformatlon is immediate.
We are led to the follow1ng rules:

‘(16) uses(x,lease(y,s)) > uses(x,s) , whenever x # y
A7) uses(x,seli(x,s)) + True.

These rules correspond to two possible paths in the execution.of
the procedure, uses, on the actual trace level, the first one
corresponding to the path. where t matches lease(y,s) and y is
different from the customer parameter.

Notice that the rule (16) has a precondition, which may be
incorporated into the rule if we assume the Boolean sort ‘equipped
with an if-then-else, together .with its natural specification.
Then, (16) would be merged with its companion rule into:

uses(x,lease(y,s)) + if x = y then True else uses(x,s) -

We shall not pursue the example here, as it is similar to the
equational one, treated in the next section. Some general remarks,
however, are in order. :

Consider a system R of rewrite rules and sets of terms V,WC'T.
We call V R-controllable to W, notgd V -=-> W, iff for every v€V
there exists g w € W such that v —> w. Here we employ the usual
notation v —> w.. to denote that v can be rewrittenm as w according
to the rules of R.. Given an a&gebra A, call R sound on V with
- respect.-to A iff whenever v.—> t with v € V then v/ = tf,

In order to specify a cta C.we need a system R that is

"STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFIGATLONS 347

(¢) complete, in the,sense_T»—B> C, and
(B) correct, in the sense that R is sound on T with respect to C.

:!. Such a system R must have the Church-Rosser property, but not
necessarily that of finite termination, the role of the latter being
played here by controllability.

‘Notice that each of the procedural specifications presented
‘for our running example is actually a determlnlstlc implementation
of a rewriting system with the above properties. In particular,
on.each level, T is controllable to the corresponding canonical form.
However, from the viewpoint of stepwise specification, there is a
simpler alternative: we may relativize requirements (o) and (B)
to the preceding level. For instance, for the rewriting system of
the reduced level, it suffices that
* the repetition-free canonical form be controllable. to the
reduced canonical form;
* the rules are sound on the repetition-free canonical form
with respect to D. .

In general, our stepwise methodology for specifying a given
algebra A;will‘consist of obtaining a sequence of. trace algebras
T = CO,Cl,...,Cn £ A with corresponding trace levels CO, 1,...,Cn

and a sequence of rewrltlng systems Rl""’Rn such that for each
k=1,...,n :
. Ck—l is Rk-controllable to Ck;
o . .
. R, is sound on C, ; with respect to Ck'

Theorem 2. Under the above conditions the rewriting system

R = Rl u.,.. U Rrl is a correct and complete specification for C s

and T/=[R] = = A, i.e., the quotient of T by the congruence =[R]
is 1somorph1c to the glven algebra A
& .
Furthermore,~thls‘approach leads naturally‘to a better documen-
tation for R. Namely, R {C 1 R vee RO l{cn l} R » where the

comment {C,} gives a descrlptlon of the 1ntermed1ate trace level.

It has the advantage of suggesting to a prospective user of the
.specification a good and safe way to use it; namely, first use

the rules of Rl to rewrite into Cl’ then apply the rules of RZ’ etc.

The preceding general remarks refer to an arbitrary finitely
generated algebra. In this case we have C, = T, where C, is the
actual trace. For the case of hierarchica? data types, we have
given a basic algebra B. ‘We assume that the corresponding primitive
congruence Zp on the basic sorts is given by means of a system R0

348 . VELOSO AND FURTADO

of rewrite rules that is a correct and complete specification for
the basic algebra B.- : : v

The relativization of our general methodology for the specifi-
cation of ‘the given’ hierarhical algebra A then is aS'follows v

(1) Start with a rewrite system R,, such that —[RO] is consistent
and suff1c1ently complete (w1 h respect to the given pr1m1t1ve
congruence) . .

(2) Obtain a sequence of hierarchical trace algebras C.,C:y...,C
with’ correspondlng hierarchical trace levels C.,C. ,...,C s '80
that Co is the actual hierarchical trace level an C, is'a
unique representative hierarchical trace level. - -

(3) Obtain a sequence of rewrite systems Ry,.:4sR, for the terms
‘of nombasic sorts, such that for k=1,...;n" 7"
R, is sound on C,_, with respect to‘Ck.

. R 1 -
Ck,l.ls Rk controllable to C

o

An important aspect of thls stepwise ‘methodology is its modu-
larity ‘with respect ‘to sorts as well. In dealing with hlerarchl-
cal data types we may assume ‘the aboVe'Ro‘aS‘given, which amounts
to assuming the basic algebra B already specified. But, we can
also.back up and use the same general methodology to:construct a
specification for the basic algebra B itself in a stepwise manner. .
This was illustrated in the beginning of this section when we
obtained rewrite rules to convert uses(B,(11)) into- True.

. EQUATIONAL SPECIFICATIONS

In the previous section.we tried to obtain rules to .transform,
a term into the corresponding canonical form. These rules can be .
translated easily into conditional equations. Alternatively, we
may.ask ourselves what axioms would .enable us. to derive the equal-< .
ities between terms and.corresponding canonical forms. We illustrate
this process within our stepwise approach, level by level R

Actual (Hierarchical) Trace Level

Here, the equalities between terms of sort state consist only -
of syntactic identities, no special equations-being needed for them.
All we need is a set of condltlonal equations allow1ng us’ to derlve
the correct answers for all querleS.

~The follow1ng twelve conditional equatlons obtained by the '
reasoning outlined in the preceding section, are:

’

“STEPWHISE .CONSTRUCTION :OF - ALGEBRAIC SPECIFICATIONS 349

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

- (28)

(29)

uses(x,phi) = False
owns(x,phi) =.False .
- uses(x lease(x s)) .= True
X # y -+ uses(x, 1ease(y,s)) = uses(x s)
owns(x,lease(y,s)) = owns(x, sy
uses(x sell(x,s)) = True
x # y -+ uses(x, sell(y,s))
: owns(x sell(x s)) True:.
X # y - owns(x, sell(y,s)) = owns(x s)
uses (x, return(x,s)) = owns(x s)
X # y- = uses(x, return(y,s))'- uses(x s)
x # y. > owns(x return(y,s)) = owns(x,s)

uses(x s)

Notice that'these eqdations are arrangéd accoraiﬁg to the

leading operation symbol.in the trace: .phi,- 1ease, sell, . return
and . then accordlng ‘to the query uses, owns.,. :

Repetltlon—Free_(H;erarchlcal) Trace~Leve1

In TRACE LEVEL SPECIFICATIONS we saw that (12) is a repetition-

free trace corresponding to the actual trace (11). One way to
derive the equality (11) = (12) is by means of axioms enabling the
elimination of the symbols of updates causing no net state change.
This can be done by axioms (30) to (33) below, which should be
added to. the preceding ones to give an.equational specification
for the repetition-free trace level. , ,

(30)
(31)

(32). |
(33) .

uses(x,s) = True - lease(x,s) = s°
owns (x,s) = True +>.sell(x,s).=
uses(x,s) .= False + return(x,s) =s .-
.owns(xs8) =,True > return(x s)»— s

Notice thatathe last ax1om above concerns v1olatlon of require-

ments,'ghereas.the other three refer to redundant updates.

‘Reduced (Hierarchiéal)_Trace.Levél_v

Referring again to TRACE LEVEL- SPECIFICATIONS, we see that -(13)

is a reduced trace correspondlng to trace (12). In order to derive
the equality (12) ="(13) we need an equation like (34) below, which
states that a return cancels an immediately préeceding lease. 1In
order to treat .nonadjacent operation symbols we further introduce
commutative axioms — both conditional ones like.(40) and uncondi-
tional ones like (36), (37), (38) and (39). :

-(34)

(35)
(36)
37

- return(x,;lease(x,s)) = retﬁrn(x,s)
sell(x,lease(x,s)) = sell(x,s)
lease(x,lease(y,s)) = lease(y,lease(x,s))-

sell(x,;sell(y,s)) sell(y,sell(x,s))

350 - ' S . VELOSO. AND FURTADO

(38) lease(x,sell(y,s))

= sell(y,lease(k,s)))
(39) return(x,sell(y,s)) = sell(y,return(x,s)) -
(40) x # y + return(x,lease(y,s)) =”1ease(y,return(x,s))

Axioms (18) to (40) constitute an equational specification
for this level. . ‘

Unique—Represeutative.(Hierarchieal) Trace Level

In our example, we can already derive from the previous level
specification equalities like (13)=(14). 1In general, we may
need some extra axioms, typically of commutativity, enabling the.
reorderlng of some terms.

Thus, condltlonal equations (18) to (40) constitute a correct
and complete equational specification of our running example. We'
just remark that axioms (27), (28) and (29) are no longer necessary
and may be discarded. ® Actually; these three axioms were no longer
needed for the reduced trace level for the ‘same reason: ‘return no
longer: occurs in- the traces. : : -

'CONCLUSION -

The proposedgmethodology-provides a multistep 'strategy for,
the difficult task of obtaining an algebraic specification, noting
that every step is within the algebralc -formalism itself

The methodology starts-at a 1evel where all ground terms are
taken as representatives for states and.gradually proceeds via
a series of intermediate levels until reaching the desired level
(say, that with a unique representative for each state). On the
intermediate levels the specifications progress towards smaller
sets of representatives by considering fewer sequences:of updates’
as répresentatives.» Typical (but not exhaustlve) examples- of -
criteria for this purpose are:

*. ot addlng an update produc1ng no net effect 1n a state,

* maklng a negatlve update, ‘cancel the correspondlng
pos1t1ve update,

* making an update whose effects subsume those of another,
. replace:the 1atter° 3

* reordering some updates that commute.

Some general propertles of these level. spec1ficat10ns are- worth
mentioning: .

* each level cOrresponds to a canoniéal,term algebra;

* the set of trace levels is characterized in terms of lattices;

STEPWISE CONSTRUCTION OF ALGEBRAIC SPECIFICATIONS 351

.® .the.correctness criterion:for each level 1s given by.the
observability relation '~': we have t~t' iff, for all queries
q(t,tl,...,tn) = q(t',ty5.00,t;); and t~ t' must imply

that t and t' denote the same state;
* each level specification is sufficiently complete;

* at each level any one of the three following kinds of alge-
“ braic formalisms can be employed to express the specifications:
(condlt;onal) equations, rewriting rules and procedural
notation. ‘ ‘ o

From an application point of view, the intuitive meaning of
_traces as carrying a "history".of the database deserves attention;
the extra -information available at the different trace levels may .
be of interest during the early experimental phase, made possible
by the usage of executable spec1f1catlons

Finally we should stress that this methodology, :theoretically
proven correct, has been found quite useful in practice in the
specification of a number of examples of database applications.

‘REFERENCES

1. Bartussek, W. and Parnas, D. [1977] ‘"Using Traces to Write
Abstract Spec1fications for Software Modules", Technical
~Report, 77-012, University of North Carolina (1977)

2. Ehrig, H., Kreowski, H. J., and Weber, H. [1978] ""Algebraic
' Specification Schemes for Data Base Systems", Proceedings
Fourth International Conference on Very Large Data Bases,
Berlin, Germany (1978) 427-440.

3, - Ehrig, H. and Fey, W. [1981]. '"Methodology for the Specifica-
tion of Software Systems. from Formal Requlrements to Algebraic
Design Specifications" s Proceedings GI-1l Jahrestagung
(W. Brauer, -Ed.),. Springer .(1981) 255-269.

4, Dosch, W., Mascari, G., and Wirsing, M. [1982] "On the
Algebraic Specification of Databases'", Proceedings Eighth -
International Conféerence on Very Large Data Bases, Mexico
City, Mexico (1982).

5. Furtado, A. L., and Veloso, P.A.S. [1981] '"Procedural Speci-
fications and Implementations for Abstract Data’ Types',
ACM/SIGPLAN Notices 16(3) (1981) .53-62.

6. Furtado, A. L., Veloso, P.A.S., and Castilho, J.M.V. [1981]
"Verification and Testing of S-ER Representations', In:
Entity Relationship Approach to Information Modeling and
Analysis (P.P. Chen, Ed.) E-R Institute (1981) 125-149.

352

10.

11.
12,

13.
14.

15.

l6.

17.

Guttag, Ji V. -and:Horiing,"

'VELOSO "AND FURTADO

J.°H. [1978] "The Algebraic Speci- '
fication of Abstract Data Types , Acta Informatica 10(1) (1978)
27<52, = : o

Gridtzer, G. [1968] Universal Algebra, D. van Nostrand‘(l968).

Goguen, J. A., Thatcher, J. W. and Wagner, E G.v[l978] "An

Initial Algebra Approach to the Spec1f1cation, Correctness and

Implementatlon ‘of Abstract Data Types » In: Current Trends in PROI
Programming Methodology (R. T. Yeh, Ed.), Vol. IV, Prentice- :

Hall (1978) 80-149.

Huet, G. and-Oppen, D+ ‘C. [1980] ™MEquations and Rewrite Rules:
a Survey', Technical Report STAN-CS-80-785, Stanford University
(1980). S S 3

Llskov, ‘B. H. et al. [1977] “"Abstraction Mechanisms in CLU",
Communlcatlons of the ACM 20(8) (1977) 564~ 576 '

"Paollnl, P. [1981}--"Abstract Data.Types and Data Bases",

ACM/SIGMOD Record 11(2) (1981) 171-173.

Pair, C. [1980] "Sur les Modéles :des Types Abstraits
Algebriques", Séminaire d' Informathue Théorethue Unlver51té
de Paris VI et VII (1980). : .

Pequeno, T.H. C. and Veloso, P. A S. [1978] "Don't -Write More
Axioms than You Have to', Proceedings International Computlng

vSymp051um L Academia Sinica (1978) 487 498

Veloso; P. A.S+ Castllho, JMGV., and Furtado, A, L [1981]
"Systematic Derlvatlon of Complementary Speclflcatlons
Proceedings ‘Seventh Internatlonal Conférence on VEry Large
Data Bases, Cannes, France (1981) 409 421. :

Veloso, P.A.S. [1982] "Methodical Speclflcatlon ‘of: Abstract
Data Types via Rewriting Systems!, International Journal of
Computer and Infbrmatlon Sc1ences 11(5) (1982) 295~ 323

‘ers1ng, M. and Broy, M. [1980] - "Abstract Data Types as
‘lattices of Finitely :Generated Models";’Institut fur

Informatik, Tech, Univ: Mlinchen (1980).

