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ABSTRACT 

This paper presents a new programming method,called 

the data transform programming method.ln part iculaG 

we present a spec ia l izat ion of data transform pro- 

gramming to deal with f i l e  processing appl icat ions.  

Direct comparison is made with Jackson's approach z 

by the presentation of uniform solut ions to problems 

that cannot be solved through his basic method. The 

new method consists of the appl icat ion of data 

transformations to the abstract problem statement, 

fo l lowing the formal notions of problem reduction 

and problem decomposition. Data transformations are 

expressed in programming terms through a basic set 

of data type constructors. 

INTRODUCTION 

I t  has been observed that many of the changes in 

typical  data processing appl icat ions,  often cal led 

f i l e  processing programs, are caused by the changes 

in the structure of the data to be processed or to 

be output as the resu l t  of processing and by the 

accompanying actions which must occur to r e f l ec t  

these changes in the structure of the input/output 

data. Thus, i f  a program or system of programs can 

be designed to r e f l ec t  the structure of the data 

that is being processed, then modif icat ions to the 

data might more eas i l y  be ref lected in the modi f i -  

cations of the program necessitated by these chan- 

ges. The above ideas were captured by experienced 

prac t i t ioners  who have formulated programming meth- 

odologies that have considerably influenced today's 

programming practices in industry.  The work of 

Jackson z, Warnier 2 and Yourdon and Constantine 3 are 

often quoted as some of the most important in th is  

area. 

As in many engineering areas, also in the area of 

software engineering, most of the research work in 

theory ( in  par t i cu la r  in programming theory) takes 

a long time to inf luence industry.  In fac t ,  most of 

the work in formal program der ivat ion has had l i t t l e  

or no impact in everyday data processing ap l l i ca -  

t ions programming. On the other hand, since f i l e  

processing programs have not b e e n  s u f f i c i e n t l y  

studied from the formal point of view, experienced 

prac t i t ioners  lack the tools to express the i r  ideas 

about programming methodology in a rigorous way. E- 

ven the very successful proposit ions by Jackson,War 

n ier ,  and Yourdon and Constantine could only be 

made precise through exhaustive exempl i f icat ion.Ver 

y of ten, subtle aspects of these methodologies have 

not been expressed at the precision level  that is 

achieved, for  instance, in most of the l i t e r a t u r e  a 

bout program synthesis. 

Data transform programming deals with the class of 

problems that can be solved by the basic Jackson 

method. I t  can also solve, through a uniform ap- 

proach, problems that Jackson can handle only 

through major departures from his basic method. The 

formal izat ion of data transform programming wasma~ 

possible through the association of the notion of 

data abstract ion to f i l e  processing programming and 

through the u t i l i z a t i o n  of formal de f in i t i ons  for  

concepts such as program decomposition and program 

reduction borrowed from the areas of logic and prob 

lem solv ing. In order to put the or ig ina l  Jackson 

basic method on a more formal basis, Hughes" estab- 

l ished a correspondence between the class of prog- 

rams avai lab le  to treatment by his method and the 
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formal language concept of generalized sequential 

machine. I t  turns out that Jackson's basic method 

gives r i se  to transformations which are gsm comput- 

able ( in  the sense that the required transformation 

can be performed by a generalized sequential ma- 

chin).  That, of course, explains why Jackson's ba- 

sic method cannot solve backtracking problems (mul- 

t i p l e  passes over the input) and problems that he 

ca l l s  structure clashes problems. Jackson solves 

the l a t t e r  problems by using ad hoc solut ions and 

the technique of program inversion (pReparation of 

a program to be used, for  the same funct ion,  as a 

subroutine to another program). 

Cowan and Lucena s, by introducing a new factor  

(abstract levels of spec i f icat ion for  data and pro~ 

ram and the subsequent implementation thereof in 

terms of more concrete levels of abstract ion) into 

Jackson's method~have solved the sort ing problem to 

i l l u s t r a t e  how the exercise of thinking abst rac t ly  

about a problem can lead to novel solut ions or so- 

lu t ions which were thought to be unavailable due to 

shortcomings of a given method. We were l e f t  with 

the problem of showing that the many aspects of the 

structure clash problem, namely con f l i c t  of order, 

mult i threading and boundary con f l i c t  problems I cou~ 

be solved un i fo rmi ly  through the same or a s im i la r  

approach. The idea was that since these problems 

form an important class of typ ica l  data processing 

problems they should be solved through a set of 

prescribed rules which are common to the whole c la~ 

of data ~rocessin.gproblems rather than through ex- 

ceptions to the rules of a basic method. We have 

also invest igated the problem of whether or not the 

or ig ina l  approach by Cowan and Lucena s could be ge~ 

eral ized and formalized as a method. The informal 

notion of data-f low design by Yourdon and Constanti 

ne 3, together with the formal notion of problem sol 

ving by Veloso and Veloso 6 were instrumental fo r  

the formulation and improvement of the or ig ina l  i -  

deas in Cowan and Lucena S. Some authors have pro- 

posed a programming approach where the t rans i t ion  

between successive versions of a program is done ac 

cording to formal rules cal led program transforma- 

t ion (see, for  instance, 12 13 14 and Is , , ). Ac- 

cording to th is  approach programs are considered as 

formal objects which can be manipulated by t ransfor  

mations ru les.  

The data transform method involves the appl icat ion 

of data transformations to the abstract problem 

statement, fol lowing the formal notions of problem 

reduction and problem decomposition. Data t ransfor -  

mations are expressed in programming terms by using 

the basic set of data type constructors proposed by 

Hoare ~. The method reduces the or ig ina l  problem to 

a set of sub-problems that can be solved throught~ 

d i rec t  appl icat ion of Jackson's method, thereby pro 

ducing a solut ion which is correct by construction. 

Since the present paper aims at bridging some o f t ~  

gap between theory and pract ice in programming, we 

have t r i ed  not to wr i te  i t  as a mathematical paper 

and fur ther  formal izat ions and proofs are to be 

found in accompanying papers. The present paper 

formulates the data programming method and applies 

i t  to the sort ing problem (unsolvable by the basic 

Jackson method). The data transform method is pres- 

ented through some concepts in problem solving the- 

ory and theory of data types, associated with in-  

formal arguments. 

THE DATA TRANSFORM METHOD 

Programs solve problems. According to Veloso 6 a 

problem is a structure P = <~,O,q> with two sorts,  

where the elements of D are the problem data, the 

elements of 0 are the solut ions (outputs) and q is 

a binary re la t ion  between D and O. 

A program P solves a problem i f  P defines a to ta l  

function between D and 0 such that 

(Vd:D)q (P(d),d) ( I )  

holds. To derive a program through the data method 

consists of ,  given speci f icat ions for  D,for 0 and 

for  q, to construct a program P such that ( I )  hold~ 

Certain data-directed design approaches, such as 

Jackson's, proceed as above by t ry ing  to f ind at 

the beginning of the der ivat ion process a d i rec t  

mapping between the input data structures and the 

output data structures (a mapping from a represent 

at ion of d D to a representation of o 0). As i t  was 

pointed out in the introduct ion,  for  some s i t u a t i o n  

i t  is not possible to solve some problems throuqh 

Jackson's basic method (problems which are not gsm 
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computable). The data transform method proposes a 

canonical form for  the expression of programs that 

include t r i v i a l l y  problems which are solvable 

through the Jackson basic method and that is amena- 

ble to simple transformations which lead to solu- 

t ions to problems that are not Jackson solvable. 

The data transform method s tar ts  by expressing the 

abstract notions of d~D andocO, instead of t ry ing 

to look for  data representations for  these e n t i t i e ~  

This approach, of course, became a standard proce- 

dure in many programming methodologies but is not 

very common in the context of data-d i rect  program- 

ming. The strategy for  program der ivat ion through 

the data transform method consists of applying the 

concepts of problem reduction and decomposition to- 

gether with Hoare's general data type construction 

mechanisms 7. Problem reduction and decomposition 

are applied in a way which w i l l  leave us with a set 

of Jackson solvable problems at hand. In the pro- 

cess of decomposing the problem the method bears 

some s i m i l a r i t y  with Yourdon and Constantine's data 

flow design. 

We say a problem PI=<DI,OI,ql > is a reduction of P 

=<D,O,q> and write P ~ P1 i f  we can define 

a unary function insert, ins: D ÷ D l and 

a unary function retr ieve, retr :  01 ÷ 0 

such that the proqram defined by 

P(d) = retr(Pl( ins(d))  (2) 

solves P when Pl solves Pl" 

In Figure l below we i l l us t ra te  this situation.Note 

that q is a subset of DxO,ql is a subset of DlXO l ,  

P is a solution to P Ca total function from D to 

0), Pl is a solution to Pl Ca total function from 

D l to Ol), and that the functions ins and retr  need 

to be defined in such a way that the condition ex- 

pressed in (2) is satisf ied. 

ins 

q ' P P1 ~ ql 
re t r  

P~PI  

Figure l 

The f i r s t  step of the data transform method con- 

s is ts  of def ining both D 1 and 01 as the cartesian 

product of D and O; ins such that ins(d)=(d,oo) for  
/ 

some oocO; re t r  such that retrCd,On)=O n. In other 

words, the reduction through ins and re t r  makes use 

of the data type constructor cartesian product ( re-  

cord) which is one of the basic constructors pro- 

posed by Hoare °. I n t u i t i v e l y  i t  avoids the problem 

of structure clashes between the input and output 

spaces which sometimes occur when the basic Jackson 

method is d i r e c t l y  applied. The input and output da 

ta of P1 have now, t r i v i a l l y ,  the same structure 

Cindependently of any chosen representations for  D 

and 0). Figure 2 below fur ther  c l a r i f i e s  the pre- 

vious considerations. 

P 

d cD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/J 

/ /  __ins P1 ~ ~retr 

(d,oo)cDxO . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  D~O 

Figure 2 

This f i r s t  step is c l ea r l y  an intermediate step in 

the reduction process and is bas ica l l y  motivated by 

the existence of the structure clash type of prob- 

lems in a data-directed programming type of solu- 

t ion.  A t r i v i a l  case, in pract ice,  would be the one 

for  which i t  is possible to define compatible data 

structures for  D and O. That i s ,  a s i tua t ion  in 

which P is gsm solvable. 

The method requires a second step whenever P1 is 

not a simple problem, but requires for  instance,mo- 

du lar iza t ion  or the treatment of backtracking or 

recursive s i tua t ions .  The second step of the data 

transform method consists of def ining a new reduc- 

t ion P2=<D2,02,q2 > of PI" In th is  step we w i l l  make 

use of the sequence ( f i l e )  data type constructor.We 

w i l l  define D 2 as DI; 02 as 01 and the function ins 

from D 1 to D and re t r  from 01 to 0 as being, res- 

pec t ive ly ,  the functions make and las t  which have 

the normal meaning of these operators when applied 

to sequences, namely, make: builds an uni tary se- 

quence from a given argument; las t :  returns the 

las t  element of the sequence. Figure 1 would now be 

replaced by the s i tua t ion  pictured in Figure 3. 
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ins make 

q J P ql i Pl q2 ~ P2 
i I 

Figure 3: P ~ Pl ~ P2 

The diagram in Figure 2 can now be expanded in the 

fol lowing way 
P 

.~cD . . . . . . . . . . . . . . . . . . . . . . . .  0 
o~/ ins P1 ~ re t r  

(d] )~DxO . . . . . . . . . . . . . . . . . . . . . . . .  DxO 
, make P2 ~ , l as t  

<(d,Oo)>c(DxO ) ----~-- . . . . . . . . . . . . . . . . . . .  (DxO) 

Figure 4 

The outcome of th is  step is a program P2 which we 

want to decompose into simpler programs. Let us be 

more precise about what we mean by decomposition ~ 

I f  we take the problem P2=rD2,02,q2 >, a n-ary de- 

composition A of P2' P2 ÷A' consists of 

i )  n functions decmPi: D 2 ÷ D2, i= l  . . . . .  n; 
n i i )  a (n+l) ary function merge: D2x 02 ÷ 02; 

i i i )  a unary function immd: D 2 ÷ 02 

i v )  a unary re la t ion  easy D 2 

We cal l  items ( i )  to ( i v )  a good n-arydecompositim 

of P2)iflimmd(d2)~ i f  easy(d2) 

P2(d2 = (3) 

combine(d2,sol I decmPl(d2) . . . .  

. . . .  sol n decmPn(d2) ) otherwise 

where sol stands for  the part of the solut ion of P2 

contributed by each decomposition, defines a solu- 

t ion for  problem P2" I n t u i t i v e l y ,  i f  the problem is 

simple (easy), that i s ,  gsm computable, decomposi- 

t ion is not necessary and we have a d i rec t  (immd)so 

lu t ion .  Otherwise the solut ion for  P2 is obtained 

through the combination (combine) of the solut ions 

(sol 's)"  to the programs P~ ~ T  n 
' P2 . . . . .  P2 which corres- 

pond to the solut ions. The decomposition process is 

guided by a data flow design type of analysis while 

we t r y  to i den t i f y  as many gsm solvable problems as 

possible. I f  one or more of the i den t i f i ed  programs 

are not gsm computable, steps 1 and 2 and decompos~ 

t ion are applied to a l l  programs at hand. 

THE DATA TRANSFORM METHOD FOR 

FILE PROCESSING PROGRAMMING 

We are mainly interested here in an important spe- 

c i a l i z a t i o n  of the data transform method to deal 

with f i l e  processing programming. These problems 

are iden t i f i ed  in association with the data trans- 

form method as problems for  which the inputs for  P 

are always en t i t i es  of the general type ( f i l e s )  and 

as problems for  which the cons t i tu t i ve  programs of 

P2 (obtained by decomposition) are always s im i la r ,  

in the sense that a while statement can dr ive a 

copy of them by changing the necessary inputs 

through i t s  parameters. 

The program schema below defines the fami ly  of pro- 

grams ( in the sense of 8) that can be obtained by 

the data transform method as special ized for  f i l e  

processing programming, when we have oneappl icat im 

of the f i r s t  step of the method followed by one ap- 

p l i ca t ion  of the second step. 

~ transform 

Figure 5: Diagram for  f i l e  processing problems so- 

lu t ion  by the data transform method. 

The notation used in Figure 6 below is Pascal- l ike.  

The programs that const i tute Schema are presented 

in the order of the i r  der ivat ion,  therefore v i o l a t -  

ing a Pascal syntax ru le.  From now on, any stand- 

ard function not defined in the text  is explainedin 

the glossary of functions in the Appendix. In the 

program Schema the selectors i and r simulate the 

function ins and re t r  and the symbol A stands for  

the nul l  sequence. The program schema only creates 

an instance of the input data to al low the appl ica- 

t ion of the method. 

The function update for  the class of f i l e  process- 

ing problems, can be defined as 

update(x3) = append(x3, t ransform( las t (x3) ) )  

where transform is a function from DxO to DxO 
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Program Schema; 

type D = seq of ob jec ts l ;  

type 0 = objects2; 

type DxO = record i :D; 

r:O 

end ; 

type (DxO) = seq of  DxO; 

va___Erx,d:D; 

va ry ,o :O ;  

begin 

x :=copy(d); 

P; 

o :=copy(y) 

end {Schema}. 

Procedure P; 

v a r x  I ,  Yl:DXO; 
begin 

x l . i : =  x; x l . r :=A ;  

PI; 

Y:= Yl . r  
end {P}; 

Procedure P1 ; 

v a r x  2, y2:(DxO) ; 
begin 

x2:= make(Xl); 

P2; 

yl := las t (y  2) 
end {P I } ;  

Procedure P2; 

var x3:(DxO ) ; 
z 

begin 

x3:= x2; 
while not f in ished (x3) do 

x3:= update(x3); 

Y2 := x 3 
en____d {P2}; 

Figure 6: Program Schema for  F i le  Processing Pro- 

gramming through the Data Transform Meth- 

od 

which contr ibutes to the solut ion of the problem. 

(Refer to de f i n i t i on  of P2(d2) in equation (3) . )  

The funct ion append has the usual meaning of the 

operator with the same name, normally associated to 

the type sequence, that  is 

and 

append: (DxO) X(DxO) ÷ (DxO) 

append ((Pl . . . . .  Pn ) 'p) = ~Pl . . . . .  Pn 'p> 

A Correctness Cr i ter ion fo r  the Method 

We f i r s t  state a termination condit ion fo r  the pro- 

gram schema displayed in Figure 6. We have: 

i )  update(x3)=append(x3,transform(last(x3)))  

i i )  Vx3:(DxO ) , sml l r ( t ransform(x3) . i  , x3. i  ) 

i i i ) s m l l r  is a well founded re la t ion  in DxD such 

that any dcD is in a f i n i t e  sml l r-chain s ta r t -  

ing at A: 

sm l l r (A ,d l ) ,Sml l r (d l ,d  2) . . . .  sml l r (dn,d) ,  

( that  is usual fo r  f i l e  processing proqrams) 

iv)  l as t ( x3 ) . i  = A<-> f in ished(x3)  = true 

Transform and f in ished must be speci f ied so as to 

sa t i s fy  the above condit ions. We can now state the 

par t ia l  correctness condit ion fo r  the class of pro- 

grams. 

v) Vx 3" (DxO) , f i n i shed (x3 )~q2 (x3 ,make (d . i~ ) )  

v i )  Vx 3" (DxO),q2(x3,make(d. i ;A) )~ q( las t (x3) . r ,d  ) 

I n t u i t i v e l y , s m l l r  guarantees that in each step 

transform contr ibutes some more fo r  the solution.The 

smllr re la t i on ,  which is well founded,character iz~ 

the ~ as a dist inguished element that w i l l  necessa- 

r i l y  be reached to accomplish the termination of 
the program. Condition (v) guarantees that when the 

program stops x 3 is the solut ion of the problem for  

which the input is obtained from d by the appl ica- 

t ion of ins and make and condit ion (v i )  ensuresth~ 

the reduction from the or ig ina l  problem P to P2 is 

good, i . e . ,  that the element from x 3 obtained by 

the appl icat ion of re t r  and las t  is the solut ion to 

the or ig ina l  problem with input d. 

THE SORTING PROBLEM 

We have selected the sort ing problem as our example 

fo r  a number of reasons. F i rs t  of a l l ,  the problem 

is very well known and therefore the reader can con 

centrate a l l  the a t tent ion  in the problem - solving 

method and compare i t  with the many avai lab le so- 

lu t ions to the problem. Second, since sort ing e- 

xempl i f ies a s i tua t ion  of backtracking (or at  least  

some backtracking) i t  i l l u s t r a t e s  a case where 
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Jackson's basic method cannot be d i r e c t l y  applied I .  

We w i l l  also take advantage of the conciseness of 

the sort ing problem statement to i l l u s t r a t e  through 

i t s  development via the data transform method a l l  

the deta i l s  of the' theory presented in Sections 2 

and 3. I t  would be harder to do the same in a short 

paper with a problem with a more complex d e f i n i t i o ~  

Let A be a t o t a l l y  ordered set, d=<al,a 2 . . . .  ,an>ED 

a f i n i t e  sequence of elements from A and 

o=<bl,b 2 . . . . .  bn>c 0 a f i n i t e  sequence of elements 

from A. To sort means to solve a problem 

SORT=<D,O,q> such that q(o,d) is defined by 

i )  {a I . . . . .  a n} = {b I . . . . .  b n} 

i i )  (Vi,Vj,l~i<j~n) => b i < bj 

For simplification purposes we assume that a i # aj 

for all i # j and d # A. 

As in Figure 6 we wil l  define a Program Sort that 

wi l l  create an instance of the data that wi l l  be 

used for the application of the data method. Program 

Sort can be defined as follows: 

Program Sort; 

type D = seq of Aobjects; 

0 = seqof Aobjects; 

(DxO) = record i:D; 

r:O 

end; 

= seq of (DxO) ; (DxO) 

var x,d:D; 

y,o:O; 

begin 

x := copy(d); 

P; 
o := copy(y) 

end { so r t } .  

Of course, i d e n t i f i e r s  such as (DxO) and (DxO) are 

not avai lab le  in standard Pascal syntax. They are 

used here for  compat ib i l i t y  with the mathematical 

notat ion. The notation seq of Aobjects stands for  

a sequence of objects. Graphical ly,  what we have 

done so fa r  leaves us with the s i tua t ion  shown in 
. . . . . . . . . . . . . . . . . . . . . . . . .  

*That i s ,  we w i l l  apply steps 1 and 2, therefore 
placing the problem in our canonical form,and then 
examine the solut ion at hand to see i f  fu r ther  re- 
ductions or decompositions are necessary. 

Figure 7: 

I p sort 

Figure 7: Sort 

We are now ready to apply the f i r s t  step of 

method. I t  is graphica l ly  represented in Figure 

We want now to model the s i tua t ion  expressed 

Figure 8, through a program P. 

the 

8. 

in 

:P sort  s ° r t l  II P1 
r e t - r - ~ ~  

Figure 8: SORT +? SORT 1 

P can then be expressed as: 

Procedure P; 

va___rr x I ,Yl :DxO; 
begin 

x I .i := x; 

x l . r  :=A; 

Pl; 

Y := Yl . r  
end' { P} ; 

Note that the selectors i and r simulate the func- 

tions ins and retr. We now apply step 2 which cor- 

responds to the abstract notion introduced in Figure 

3J 
i n s make ~(DxO) ~ 

/ i Pl SORT2 SORT ~ P SORT 1 

r e t r ~ ~  l a s t ~  

Figure 9: SORT ~ SORT l ~ SORT 2 

Pl can be expressed as follows: 

Procedure Pl ; 

var x2,Y2: (DxO) ; 
begin 

x 2 := make(x I ) ;  
P2; 
Yl := last(Y2) 

end-- { Pl } ; 
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Functions make and last need to be expressed in 

PASCAL notation, following thei r  usual def in i t ions 

for f i l es .  Note that so far we have only organized 

the solution of the problem so as to put i t  in our 

canonical form. Later we wi l l  indicate how the a- 

bove structure for the problem solution wi l l  ac- 

tua l ly  help establishing the correctness of the 

program (in part icular  termination). 

The next step is a f i r s t  decomposition of P2.Recall 

that we are only interested here in solving pro- 

blems that can be c lassi f ied as f i l e  processing ap- 

pl icat ions. For this purpose the following decom- 

posit ion can be proposed. The notation we use is 

widely employed in the l i te ra tu re  about abstract da 

ta types 9. I t  bears a natural similari ' ty wi'ty Your- 

don and Constantine's data flow graphs because when 

decomposing we are detecting the transformations to 

be applied on the data. For didactic purposes we 

shall add the f i r s t  decomposition to the diagram i'n 

Figure 9. I t  should be noted that Figure I0 contains 

a diagram which is typical of f i l e  processing pro- 

grams. 

fi'nished 
ins make z ~ ~  ,Q - , Q  - 

SORT :P SORT l ~ Pl SORT2 P2~b'----~xO.~ 

~ ] ~ r e t r  ~ last ~ ' ~ ~ s ~ r m  

Figure I0: SORT~SORTl~SORT2~(last,transform,append ) 

We are now ready to express programs P2 and update 

as follows: 

Procedure P2; 

var x3: (DxO) ; 
begin 

x 3 := x2; 
while not fi'nished(x31 do 

x 3 := update(x3); 

Y2 := x3; 
end {P2}; 

Procedure update(x3:(DxO)*):(DxO)*; 

var x4:DxO; 

y3:(DxO)*; 
begin 

Y3 := x3; 

x 4 := last(x3) ;  

x 4 := transform(x4); 

update := append(Y3,X4) 
end {update}; 

For the next level of decomposition we wi l l  separate 

the input structure from the output structure and 

wi l l  remove one input element, "transform" i t  and 

place i t  in the output. This idea can be expressed 

graphi'cally through the following diagram (Figure 

l l ) .  
project 

~ ~ r o c e s s  

/ _transform ~><. ~ A ) 

" ~ ' ~  1 J ~ a p p e n d  
recombine 

Figure II  

This decomposition step can be thought of as being 

coupled to the diagram in Figure I0 (note the dots 

to the l e f t  of the diagram in Figure I I ) .  The func- 

t ion project stands for the f i r s t  and second pro- 

jecti 'on of the cartesian product (simulated by the 

selectors i and r in the following transform pro- 

gram). The function recombine constructs an ordered 

pair from two given elements. I t  should be clear 

that project,  recombine and append are gsm solvable. 

We need now to define process in such a way that 

in each pass of i ts  execution process reduces the 

input and expands the output while contributing to 

the solution of the problem. Hopefully we wi l l  be 

able to define process so as to be gsm solvable, o- 

therwise we would need to further decompose process. 

Since the sorting problem is very well known i t  is 

simple to ident i fy  the central operation of process 

so as to make i t  gsm solvable. This operation con- 

sists of selecting the minimal element of the input 

sequence and append i t  to the end of the output se- 

quence. The operation then determines a sequence of 

one pass scannings over the input, leading there- 

fore to a gsm solvable program. We can at this poi 

present the code for transform and process. The 

functions f i r s t  and ta i l  have the i r  usual meaning 

when applied to sequences (see glossary in the Ap- 

pendix). 
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Procedure transform(x4:DxO):DxO; 

var x5,x6:D; 

Y5,Y6:0; 
minimum:Aobjects; 

begin 

x 5 := x4 . i ;  

Y5 := x4"r ;  
Process; 

Y6 := append(Y5'minimum); 

transform := recombine(x6,Y6) 

end {transform} 

Procedure Process; 

begin 

minimum := f i r s t ( x 5 )  ; 

x 5 := t a i l ( x 5 ) ;  

x 6 := A; 
while not ( x5~)  do 

i_ff min imum<f i rs t (x5)  then 

begin 

x 6 := append(x6, f i rs t (x5) ) ;  

x 5 := t a i l ( x 5 )  
end 

else 

begin 

x 6 := append(x6,minimum); 

minimum := f i r s t ( x 5 ) ;  

x 5 := t a i l ( x 5 )  
end 

end {Process} 

We need now to speci'fy the predicate f in ished so as 

to sa t i s f y  the correctness cendi'tions presented in 

section 3. For that we note that process reduces in 

each pass the length of the f i r s t  component of the 

ordered pair  which is being "transformed". I t  na- 

t u r a l l y  suggests that th is  process terminates when- 

ever the length of the f i r s t  component becomes zero. 

We can now define f in ished as: 

Vx3:(DxO)*, f in ished(x3)<->length( last(~3) . i=O ) 

To sa t i s f y  the correctness c r i t e r i on  expressed in 

section 2 we need to define a well founded relat i 'on 

sml l r .  We propose the fo l lowing:  

(Vdl,d2):D,smllr(dl,d2)<->length(dl)<l.e.n.gt_hh(d2) 

An informal argument can be expressed as follows.Giv 

en the way process was constructed, length 

( t rans form(x3) . i )< length(x3 . i )  and that proves con 

d i t i on  ( i i ) .  We also note that sml l r  has been de- 

f ined via "<", thus being well founded, which 

proves condit ion ( i i i ) .  The de f i n i t i on  of f in ished 

matches condition ( i v )  and f i n a l l y  the condition 

(v) for  par t ia l  correctness can be shown by induc- 

t ion on the way the output sequence is constructed 

( in each step we introduce the next possible smal- 

les t  element). 

The reader must have noticed that in the problem 

solut ion the f i r s t  reduction, which may have seemed 

a r t i f i c i a l ,  since the sort ing problem cannot be 

characterized as a structure clash problem, has in 

fact  been instrumental for  proving the termination 

,of the program. In fac t ,  recal l  that f in ished and 

sml l r  have been defined on the f i r s t  component of 

an input-output ordered pair .  

CONCLUSIONS 

This paper introduced the data transform program.- 

ming method and applied i t  to the solut ion of a 

simple and c lassical  programming problem. The ex- 

ample meant to compare our approach with Jackson's 

method, since his method cannot d i r ec t l y  solve 

problems of the class we have dealt  with. We have 

shown the solut ion ~f  a toy appl icat ion of f i l e  

processing programming, which often deals with far  

more complex s i tuat ions.  The f u l l  power of the 

method can be better assessed through i t s  ap- 

p l icat ions to larger problems. When we deal with 

aspects of real-world data processing problems such 

as making v e r i f i c a t i o n  accessible to p rac t i t ioners ,  

providing programming standards for  large program- 

ming teams and enhancing the qua l i t y  of document- 

at ion and maintenance practices of the method can 

be f u l l y  appreciated. The present work is a major 

extension of the work published in s Many in teres t  

ing developments of the present work are in s ight .  

A software environment to support the method proved 

to be an in terest ing feature. The works by Colema~ 

Hughes and Powell I° and Logrippo and Skuce 11 also 

fo l low th is  general d i rect ion although they are 

res t r i c ted  to the automation of Jackson's basic 

method, which we extend here. 

We bel ieve,  as Cheatham 13, that for  a large, long- 

l i ved software project ,  the existence of an ac- 
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curate, readable and executable model or speci- 

f i ca t i on ,  such as the one produced by the data 

transform method, can be as important as the ex is-  

tence of an e f f i c i e n t  implementation of i t .  We are 

presently working on a refinement procedure that 

w i l l  al low us to a r r i ve  at an e f f i c i e n t  version for  

the solut ion at hand through a set of well defined 

program transformations. Some in terest ing theoret ic  

al resul ts have also been produced ~ .  They are re- 

lated to the formal character izat ion of the class 

of problems which are solvable through the general 

version of the data transform method (when, for  ins 

tance, a recursive solut ion can be contemplated) as 

well as of the class of problems defined by the spe 

c i a l i z a t i o n  of the data transform method to f i l e  

processing programming, which we have examined in 

th is paper. 

APPENDIX 

Glossary of Functions 

copy - copies the arguments and producesanoth 

er instance of the type 

f i r s t  - exh ib i ts  the f i r s t  element of a se- 

quence, that i s , f i r s t ( < a  l , a  2 . . . . .  an> )= 

= a I and the ori 'ginal sequence is  not 

changed 

get exhib i ts  and removes the f i r s t  element 

of a sequence 

las t  exhib i ts  the l as t  element of a sequenc~ 

i . e . ,  last(<a l ,a  2 . . . . .  an> ) = a n 
- constructs an un i tary  sequence, i . e . ,  

make(a I )  = <al> 
t a i l  - constructs a sequence by removing the 

f i r s t  element of the or ig ina l  sequence, 

i . e . ,  

t~,il (<al ,a 2 . . . . .  an> ) = <a 2 . . . . .  an> 
constructs an ordered pair  from two 

given elements, i . e . ,  

recombine(a l , a  2) = (a l ; a  2) 
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