THE DATA TRANSFORM PROGRAMMING METHOD:
AN EXAMPLE FOR FILE PROCESSING PROBLEMS

C.J.Lucena, R.C.B. Martins ,

P.A.S. Veloso*,

D.D. Cowan+

*Departamento de Informatica, PUC/RJQRio de Janeiro,Brasil

+Department of Computer Science,University of Waterloo,Ontario -

ABSTRACT

This paper presents a new programming method,called
the data transform programming method.In particulan
we present a specialization of data transform pro-
gramming to deal with file processing applications,
Direct comparison is made with Jackson's approach!
by the presentation of uniform solutions to problems

that cannot be solved through his basic method. The

new method consists of the application of data
transformations to the abstract problem statement,
following the formal notions of problem reduction

and problem décomposition. Data transformations are

expressed in programming terms through a basic set
of data type constructors.

INTRODUCTION
It has been observed that many of the changes in

typical data processing applications, often called
file processing programs, are caused by the changes

in the structure of the data to be processed or to
be output as the result of processing and by the
accompanying actions which must occur to reflect
these changes in the structure of the dinput/output
data. Thus, if a program or system of programs can
be designed to reflect the structure of the data
that is being processed, then modifications to the

data might more easily be reflected in the modifi-
cations of the program necessitated by these chan-
ges. The above ideas were captured by experienced
practitioners who have formulated programming meth-
odoTogies that have considerably influenced today's
of
Jackson!, Warnier? and Yourdon and Constantine® are

often quoted as some of the most important in this

programming practices in industry. The work

0270-5257/84/0000/0388%01.00©1984 IEEE

388

studied from the formal point of view,

Canada

area,

of

in

As in many engineering areas, also in the area
software engineering, most of the research work
theory (in particular in programming theory) takes
a long time to influence industry. In fact, most of
the work in formal program derivation has had little
or no impact in everyday data processing apllica-
file
sufficiently

tions programming. On the other hand, since
processing programs have not been
experienced
practitioners lack the tools to express their ideas
about programming methodology in a rigorous way. E-
ven the very successful propositions by Jackson,War
be
made precise through exhaustive exemplification.Ver

nier, and Yourdon and Constantine could only

y often, subtle aspects of these methodologies have
not been expressed at the precision level that
achieved, for instance, in most of the literature a

is

bout program synthesis.

of
Jackson

ap-
only

Data transform programming deals with the class
problems that can be solved by the basic

method. It can also solve, through a uniform
proach, problems that Jackson can handle

through major departures from his basic method. The
formalization of data transform programming was made
of
data abstraction to file processing programming and

possible through the association of the notion
through the utilization of formal definitions for
concepts such as program decomposition and program
reduction borrowed from the areas of Togic and prob
lem solving. In order to put the original Jackson
basic method on a more formal basis, Hughes" estab-
lished a correspondence between the class of prog-

rams available to treatment by his method and the

formal language concept of generalized sequential
method

gives rise to transformations which are gsm comput-

machine. It turns out that Jackson's basic

able (in the sense that the required transformation

can be performed by a generalized sequential ma-
chin), That, of course, explains why Jackson's ba-
sic method cannot solve backtracking problems (mul-
tiple passes over the input) and problems that he
calls structure clashes problems. Jackson solves
the latter problems by using ad hoc solutions and
the technique of program inversion (preparation of

a program to be used, for the same function, as a
subroutine to another program).

factor
(abstract levels of specification for data and prog
ram and the subsequent implementation thereof

Cowan and Lucena®, by introducing a new

in
into
Jackson's method,have solved the sorting problem to

terms of more concrete levels of abstraction)
illustrate how the exercise of thinking abstractly
about a problem can lead to novel solutions or so-
lutions which were thought to be unavailable due to
with
the problem of showing that the many aspects of the
structure clash problem, namely conflict of order,
multithreading and boundary conflict problems® could

shortcomings of a given method. We were left

be solved uniformily through the same or a similar
approach. The idea was that since these probtems
form an important class of typical data processing

problems they should be solved through a set of
prescribed rules which are common to the wholeclass
of data processingproblems rather than through
ceptions to the rules of a basic method. We have
also investigated the problem of whether or not the
original approach by Cowan and Lucena® could be gen
eralized and formalized as a method. The

ex-

informal
notion of data-flow design by Yourdon and Constanti
ne®, together with the formal notion of problem sol
ving by Veloso and Veloso® were instrumental for
the formulation and improvement of the original i-
deas in Cowan and Lucena®. Some authors have pro-
posed a programming approach where the transition
between successive versions of a program is done ac
cording to formal rules called program transforma-
tion (see, for-instance, ', '3, 1% and %), Ac-

cording to this approach programs are considered as

389

formal objects which can be manipulated by transfor
mations rules.

The data transform method involves the application
of data transformations to the abstract problem
statement, following the formal notions of problem
reduction and problem decomposition. Data transfor-
mations are expressed in programming terms by using
the basic set of data type constructors proposed by
Hoare?. The method reduces the original problem to
a set of sub-problems that can be solved through the
direct application of Jackson's method, thereby pro
ducing a solution which is correct by construction.

Since the present paper aims at bridging some of tle

gap between theory and practice in programming, we
have tried not to write it as a mathematical paper
and further formalizations and proofs are to be
found in accompanying papers. The present paper

formulates the data programming method and applies
it to the sorting problem (unsolvable by the basic
Jackson method). The data transform method is pres-
ented through some concepts in problem solving the-

ory and theory of data types, associated with in-
formal arguments,
THE DATA TRANSFORM METHOD

Programs solve problems. According to Veloso® a
problem is a structure P = <D,0,9> with two sorts,
where the elements of D are the problem data, the
elements of 0 are the solutions (outputs) and q is
a binary relation between D and 0.

A program P solves a problem if P defines a total

function between D and 0 such that

(¥d:D)q (P(d),d) (1
holds. To derive a program through the data method
consists of, given specifications for D,for 0 and

for g, to construct a program P such that (1) holds

Certain data-directed design approaches, such as
Jackson's, proceed as above by trying to find at
the beginning of the derivation process a direct
mapping between the input data structures and the

output data structures (a mapping from a represent
ation of d D to a representation of o 0). As it was
pointed out in the introduction, for some situatiors
it is not possible to solve some problems through

Jackson's basic method (problems which are not asm

computable). The data transform method proposes a
canonical form for the expression of programs that
solvable
through the Jackson basic method and that is amena-

include trivially problems which are
ble to simple transformations which lead to solu-
tions to problems that are not Jackson solvable.

The data transform method starts by expressing the
abstract notions of deD andoec0, instead of trying
to lTook for data representations for these entities.
This approach, of course, became a standard proce-
dure in many programming methodologies but is not
very common in the context of data-direct program-
ming. The strategy for program derivation through
the data transform method consists of applying the
concepts of problem reduction and decomposition to-
gether with Hoare's general data type construction
mechanisms’. Problem reduction and decomposition
are applied in a way which will Teave us with a set
of Jackson solvable problems at hand. In the pro-
cess of decomposing the problem the method bears
some similarity with Yourdon and Constantine's data

flow design.

We say a problem P1=<D],O],q1> is a reduction of P
=<D,0,9> and write P N P1 if we can define

a unary function insert, ins: D » D1 and

a unary function retrieve, retr: 01 -0

such that the program defined by

P(d) = Eggﬁ(P](ins(d)) (2)
solves P when P] solves P].

In Figure 1 below we illustrate this situation.Note
that q is a subset of DxO,q] is a subset of D]xo],
P 1is a solution to P (a total function from D to
0), P] is a solution to P] (a total function from
D] to O]), and that the functions ins and retr need
to be defined in such a way that the condition ex-
pressed in (2) is satisfied.

¢ P p] q
retr ! 1
° ()
piop
Figure 1

The first step of the data transform method con-

sists of defining both Dy and 0 as the cartesian
product of D and 0; ins such that 1n§(d)=(d,oo) for

/
some 0050; retr such that retr(d,on)=o . In other

words, the reduction through ins and EEEE makes use
of the data type constructor cartesian product (re-
cord) which is one of the basic constructors pro-
posed by Hoare®, Intuitively it avoids the problem
of structure clashes between the input and output
spaces which sometimes occur when the basic Jackson
method is directly applied. The input and output da
ta of P1 have now, trivially, the same structure
(independently of any chosen representations for D
and 0). Figure 2 below further clarifies the pre-

vious considerations.

P
/dsD ----------------------------- Q
. ins Py v oretr
(d,00)€DX0 =====mm=mmmmmom oo Dx0
Figure 2

This first step is clearly an intermediate step in
the reduction process and is basically motivated by
the existence of the structure clash type of prob-
lems in a data-directed programming type of solu-
tion. A trivial case, in practice, would be the one
for which it is possible to define compatible data
structures for D and 0. That is, a situation in
which P is gsm solvable,

The method requires a second step whenever Py is
not a simple problem, but requires for instance,mo-
dularization or the treatment of backtracking or
recursive situations. The second step of the data
transform method consists of defining a new reduc-
tion P2=<D2,02,q2> of P|. In this step we will make
use of the sequence (file) data type constructor.We
will define D2 as D;; 02 as OT and the function ins
from D] to D and retr from 0 to 0 as being, res-
pectively, the functions make and last which have
the normal meaning of these operators when applied
to sequences, namely, make: builds an unitary se-
quence from a given argument; last: returns the
last element of the sequence. Figure 1 would now be
replaced by the situation pictured in Figure 3,

ins make
/"l' :"l'l j(;:g
q AR I T S
\t retr ﬂ last @
Figure 3: P 2, 3 7,
The diagram in Figure 2 can now be expanded in the
following way
P
deD mmmmmmmmm e 0
g ins Py \ retr
(d,oo)erO ------------------------ Dx0
o %« Mmake Py Vo« Jast
<(d,oo)>€(Dx0) ------------------------ (Dx0)
Figure 4
The outcome of this step is a program P2 which we
want to decompose into simpler programs, Let us be
more precise about what we mean by decomposition ©.
If we take the problem P2=<Dz,02,q2>, a n-ary de-

composition A of PZ’ P2+A, consists of
i)

ii)
iii)
iv)

n functions decmpiz D2 > Dz, i=l,.00,n;
a (n+1) ary function merge: sz Og > 0y
a unary function immd: 02)

a unary relation easy 02

We call items (i) to (iv) a good n-ary decompositim
of Py if
immd(dz)

if easy(dz)

Po(dy)= (3)
combine(dz,égl] decmp](dz) .

"°’§an decmpn(dz)) otherwise

where sol stands for the part of the solution of Py

contributed by each decomposition, defines a solu-
tion for problem P>. Intuitively, if the problem is
simple (easy), that is, gsm computable, decomposi-
tion is not necessary and we have a direct (immd)so
lution. Otherwise the solution for P, is obtained
through the combination (combine) of the solutions
(sol's) to the programs P;, Pg,...,Pg which corres-
pond to the solutions. The decomposition process is
guided by a data flow design type of analysis while
we try to identify as many gsm solvable problems as
possible. If one or more of the identified programs

are not gsm computable, steps 1 and 2 and decomposi

391

tion are applied to all programs at hand.

THE DATA TRANSFORM METHOD FOR
FILE PROCESSING PROGRAMMING

We are mainly interested here in an important spe-
deal

problems

cialization of the data transform method to
with file processing programming., These

are identified in association with the data trans-
form method as problems for which the inputs for P
are always entities of the general type (files) and
of

P2 (obtained by decomposition) are always similar,

as problems for which the constitutive programs

in the sense that a while statement can drive a
copy of them by changing the necessary inputs

through its parameters.

The program schema below defines the family of pro-
by

file

processing programming, when we have oneapplicatim

grams (in the sense of ®) that can be obtained
the data transform method as specialized for

of the first step of the method followed by one ap-
plication of the

second step.

finished

|

|
q ,P

! transform

Figure 5: Diagram for file processing problems so-

tution by the data transform method.

The notation used in Figure 6 below is Pascal-Tike.

The programs that constitute Schema are presented

in the order of their derivation, therefore violat-

ing a Pascal syntax rule. From now on, any stand-

ard function not defined in the text is explainedin
In the
the

for

the glossary of functions in the Appendix.

program Schema the selectors i and r simulate
function ins and retr and the symbol A stands
the null sequence, The program schema only creates
an instance of the input data to allow the applica-

tion of the method.

The function update for the class of file process-
ing problems, can be defined as

update(x3) = append(x3, transform(last(xs)))

where transform is a function from Dx0 to Dx0

Program Schema;
type D = seq of objects];
type 0 = objects,;

type Dx0 = record i:D;

r:0
end;
type (Dx0)" = seq of Dx0;
var x,d:D;
var y,0:0;
x :=copy(d);
P;
o :=copy(y)

end {Schemal.

Procedure P;
var xq, y]:DxO;

begin
x].1:= X5 Xq.ri=h;
yi= yq.r

end {P};

Procedure P];
—_— *

var X, y2:(Dx0) H

begin
Xpi= make(xy)s;
P2;
yyi= 1ast(y2)
end {P;};

Procedure PZ;
—_— *
var x3:(Dx0) H

begin

X3:= X2;
while not finished (x3) do
xq:= update(xs);
¥pi= X3
end {P);

Figure 6: Program Schema for File Processing Pro-
gramming through the Data Transform Meth-

od

which contributes to the solution of the problem.
(Refer to definition of P2(d2) in equation (3).)

The function append has the usual meaning of the
operator with the same name, normally associated to

the type sequence, that is

392

append: (DxO)* X(Dx0) -+ (DxO)*

and aEpend ((p]’---3pn)!p) = §p]s---9pnap>

A Correctness Criterion for the Method

We first state a termination condition for the pro-
gram schema displayed in Figure 6. We have:
i) update(x3)=append(x3,transform(]ast(x3)))

*
i) ¥x3:(Dx0) smiir(transform(x3).i, x3.1)

iii)smllr is a well founded relation in DxD such

that any deD is in a finite smllr-chain start-
ing at A:
smiir(A,dy),smlir(dy,dp),...sml1r(d,,d),

(that is usual for file processing programs)

iv) 1ast(x3).i = A <> finished(x3) = true

Transform and finished must be specified so as to
the

partial correctness condition for the class of pro-

satisfy the above conditions. We can now state

grams.
*

v) ¥xq (Dx0) »finished(x3)> q,(x5,make(d.i,A))
Vi) ¥x3: (Dx0)') ap(xg.make(d.13A))> q(last(xs).ryd)

Intuitive]y,imllr guarantees that in each step
transform contributes some more for the solution.The
§mll£ relation, which is well founded,characterizes
the £ as a distinguished element that will necessa-
rily be reached to accomplish the termination of
the program. Condition (v) guarantees that when the
program stops X is the solution of the problem for
which the input is obtained from d by the applica-
tion of ins and make and condition (vi) ensures that
the reduction from the original problem P to Py s
by
the application of retr and last is the solution to
the original problem with input d.

good, i.e., that the element from X3 obtained

THE SORTING PROBLEM

We have selected the sorting problem as our example
for a number of reasons., First of all, the problem
is very well known and therefore the reader can con
centrate all the attention in the problem - solving
method and compare it with the many available so-
lutions to the problem. Second, since sorting e-
xemplifies a situation of backtracking (or at least

some backtracking) it illustrates a case where

Jackson's basic method cannot be directly applied®.
We will also take advantage of the conciseness of
the sorting problem statement to illustrate through
its development via the data transform method all
the details of the’theory presented in Sections 2
and 3. It would be harder to do the same in a short

paper with a problem with a more complex definition
X
Let A be a totally ordered set, d=<a1,a2,...,an>eD

a finite sequence of elements from A and
o=<b],b2,...,bn>g 0 a finite sequence of elements
from A. To sort means to solve a

SORT=<D,0,9> such that q(o,d) is defined by

problem

i) {a1,...,an} = {b1""’bn}
1) (¥i,¥3,1gi<jgn) => b, < bj

For simplification purposes we assume that a; # a
for all i # j and d # A.

J

As in Figure 6 we will define a Program Sort that
will create an instance of the data that will be
used for the application of the data methodfProgram
Sort can be defined as follows:

Program Sort;
type D = seq of Aobjects;

0 = seq of Aobjects;
(Dx0) = record i:D;
r:0
end;
(DxO)* = seq of (DxO)*;
var x,d:D;
v,0:0;
x := copy(d);
P;
o := copy(y)

end {sort},
*
Of course, identifiers such as (Dx0) and (Dx0) are
not available in standard Pascal syntax. They are

used here for compatibility with the mathematical

notation. The notation seq of Aobjects stands for
a sequence of objects. Graphically, what we have
done so far leaves us with the situation shown in

*That is, we will apply steps 1 and 2, therefore
placing the problem in our canonical form,and then
examine the solution at hand to see if further re-
ductions or decompositions are necessary.

Figure 7:

Figure 7: Sort

We are now ready to apply the first step of the
method. It is graphically represented in Figure 8.
We want now to model the situation expressed in
Figure 8, through a program P.

ins
/@ — ”’
sort . P sort

1 L Py
retr \

Figure 8: SORT 5 SORT,
P can then be expressed as:

Procedure P;
var x],y]:on;

begin
x].i = X3
Xy.r 1= A3
P1;
y 1= yq.r
end {P};

Note that the selectors i and r simulate the func-
tions ins and retr. We now apply step 2 which cor-
responds to the abstract notion introduced inFigure

3.
O ins make .
i I
SORT E P SORT]) P] SORTZ I P2

G

i
retr\@ last g O)*
N "

Figure 9: SORT £ sorTy & sorr,
P1 can be expressed as follows:
Procedure Pq;

*

var X,,¥p! (Dx0) 3

begin
;2.:= make(xy);
29
¥y = Tast(y,)

end {Py};

Functions make and last need to be expressed in

PASCAL notation, following their usual definitions
for files. Note that so far we have only organized
the solution of the problem so as to put it in our

canonical form. Later we will indicate how the a-

bove structure for the probiem solution will ac-
tually help establishing the correctness of the

program (in particular termination).

The next step is a first decomposition of PZ.Reca11
that we are only interested here in solving pro-
blems that can be classified as file processing ap-
decom-

plications. For this purpose the following

position can be proposed. The notation we use is
widely employed in the literature about abstract da
ta types®. It bears a natural similarity wity Your-
don and Constantine's data flow graphs because when
decomposing we are detecting the transformations to
we

be applied on the data. For didactic purposes

shall add the first decomposition to the diagram in
Figure 9. It should be noted that Figure 10 contains
a diagram which is typical of file processing pro-
grams.
finished
make

—'—

SORT P SORT SORT,

\@'W

Figure 10: SORTLSORT1£SORT2'r(1ast,tr‘ansform,append)

We are now ready to express programs P, and update
as follows:

Procedure Pos

var xs: (DxO) 5
begin
X3 = Xz;

while not finished(x3) do

X3 1= update(x3);

Procedure update(xs:(Dx0)*):(Dx0)*;
var x,:Dx0;
y3: (Dx0)*;
begin

Y3 = X33

394

xq := last(xg);
Xq i= transform(x,);
update := append(ys,x,)

end {update};

For the next level of decomposition we will separate
the input structure from the output structure and
it
place it in the output. This idea can be expressed

will remove one input element, "transform" and

graphically through the following diagram (Figure
11).
project
W\ process
) transform °
LY
« o append
recombine
Figure 11

This decomposition step can be thought of as being
coupled to the diagram in Figure 10 (note the dots
The func-

tion project stands for the first and second

to the left of the diagram in Figure 11).
pro-
jection of the cartesian product (simulated by the
selectors i and r in the following transform pro-
The function recombine constructs an ordered
1t should be

that project, recombine and append are gsm solvable.

gram).

pair from two given elements. clear

We need now to define process in such a way that
in each pass of its execution process reduces the
input and expands the output while contributing to
the solution of the problem. Hopefully we will be

able to define process so as to be gsm solvable, o-
therwise we would need to further decompose process.
Since the sorting problem is very well known it s
simple to identify the central operation of process
s0 as to make it gsm solvable. This operation con-
sists of selecting the minimal element of the input
sequence and append it to the end of the output se-
quence. The operation then determines a sequence of
one pass scannings over the input, there-

fore to a gsm solvable program. We can at this poirt

Teading

present the code for transform and process. The
functions first and tail have their usual meaning
when applied to sequences (see glossary in the Ap-

pendix).

Procedure transform(x,:Dx0):Dx0;
!Et'x5,x6:D;
.Y5;.Y6:0;
minimum:Aobjects;
begin
Xg 1= x4.1;
Yg i
Process;
Yg =
transform :=

X4.Y‘;

append(yg,minimum);
recombine(xg,¥g)

end { transform}

Procedure Process;
begin

minimum ; first(xs);
Xg tail(xg)s
Xg = A

while not (x5;A) do

If minimum <first(xg) then

Xg 1= append(x6,fj£§£(x5));
xg = tail(xg)
end
else
begin
Xg 1= apEend(x6,m1nimum);

minimum ;= first(x5);
xg 1= tail(xg)
end
end {Process}
We need now to specify the predicate finished so as
to satisfy the correctness conditions presented 1in
section 3. For that we note that process reduces in
each pass the length of the first component of the
ordered pair which is being "transformed". It na-
turally suggests that this process terminates when-
ever the length of the first component becomes zero.
We can now define finished as:
¥x3:(Dx0)™, finished(x3)<—>1ength(]ast(x3).i=0)

To satisfy the correctness criterion expressed in
section 2 we need to define a well founded relation
smllr. We propose the following:

(Vd1,d2):D,sm1]r(d1,d2)<->1ength(d1)<1ength(d2)

An informal argument can be expressed as follows.Giv

en the way process was constructed, length

395

(transform(x3).1)<1ength(x3.i) and that proves con
dition (ii). We also note that smllr has been de-
fined via "<", thus being well founded, which
proves condition (iii). The definition of finished
matches condition (iv) and finally the condition
(v) for partial correctness can be shown by induc-
tion on the way the output sequence is constructed
(in each step we introduce the next possible smal-

lest element).

The reader must have noticed that in the problem
solution the first reduction, which may have seemed
be

characterized as a structure clash problem, has in

artificial, since the sorting problem cannot

fact been instrumental for proving the termination
of the program. In fact, recall that finished and
sml1r have been defined on the first component of

an input-output ordered pair.

CONCLUSIONS

This paper introduced the data transform program-
ming method and applied it to the solution of a
simple and classical programming problem. The ex-
ample meant to compare our approach with Jackson's
method, since his method cannot directly solve

problems of the class we have dealt with. We have

shown the solution of a toy application of file
processing programming, which often deals with far
more complex situations. The full power of the
method can be better assessed through its ap-
plications to larger problems. When we deal with

aspects of real-world data processing problems such
as making verification accessible to practitioners,
providing programming standards for large program-
ming teams and enhancing the quality of document-
ation and maintenance practices of the method can
be fully appreciated. The present work is a major
extension of the work published in °. Many interest
ing developments of the present work are in sight.
A software environment to support the method proved
to be an interesting feature. The works by Coleman,

Hughes and Powel1!® and Logrippo and Skuce!! also
follow this general direction although they are
restricted to the automation of Jackson's basic

method, which we extend here.

We believe, as Cheatham!?®, that for a large, long-

lived software project, the existence of an ac-

curate, readable and executable model or speci-
data

transform method, can be as important as the exis-

fication, such as the one produced by the

tence of an efficient implementation of it. We are
that
will allow us to arrive at an efficient version for
the solution at hand through a set of well defined
program transformations. Some interesting theoretic
al results have also been produced?®.

presently working on a refinement procedure

They are re-
lated to the formal characterization of the class
of problems which are solvable through the general
version of the data transform method (when, for ins
tance, a recursive solution can be contemplated) as
well as of the class of problems defined by the spe
file

in

cialization of the data transform method to
processing programming, which we have examined
this paper.

APPENDIX

Glossary of Functions

copy - copies the arguments and produces anoth
er instance of the type

first - exhibits the first element of a se-
quence, that is,fixg}(<a],a2,...,an>)=
= a; and the original sequence is not
changed

ggg - exhibits and removes the first element
of a sequence

last - exhibits the last element of a sequercg
i.e., l§§§(<a],az,...,an>) =a,

make - constructs an unitary sequence, i.e.,
9359(a1) = <ap>

tail - constructs a sequence by removing the
first element of the original sequence,
i.e.,

. :;1[Lf<a1,a2,...,an>) = <8py...53>
recombine - constructs an ordered pair from two

given elements, i.e.,
recombine(a],az) = (a];az)
BIBLIOGRAPHY

! M.A. Jackson,
don: Academic

Principles of Program Design.Lon-
Press, 1975,

J.D. Warnier, Logical Construction of Programs.

Nostrand Reinhold, 1974,

New York: Van

396

3

10

11

12

- E. Yourdon, L.L. Constantine, Structured

De-
sign: Fundamentals of a Discipline of Computer

Program and System Design. New York: Yourdon

Press, 1978.

J.W. Hughes, "A Formalization and Explanation
of the Michael Jackson's Method of Program De-
sign", Software-Practice and Experience. V. 9,
1979.

D.D. Cowan, J.W. Graham, J.W. Welch, C.J. Luce
na, "A data-directed approach to program con-
struction", Software-Practice and Experience.
Vol. 10, 1980.

P.A.S. Veloso, S.R.M. Veloso, "Problem decom-
position and reduction: applicability, sound-
ness, completeness"; R. Trappl. J. Klir, F.
Pichler (eds);
tems Research, Vol. VIII,Washington,DC Hemis-

phere Publ. Co. 1980.

Progress in Cybernetics and Sys

C.A.R. Hoare, "Notes on data structuring". ;
Dah1, 0., J., Dijkstra, E.W., Hoare,C.A.R.{eds,
Structured Programming. Academic Press: 1972.

D.L. Parnas, "Designing software for Ease of
Extension and Contraction". IEEE Trans. Soft-
ware Engineering, Vol. SE-5, nQ 2, 1979.

J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.F.
Wright ; "An Initial Algebra Approach to the

Specification, Correctness and Implementation
of Abstract Data Types", : Yeh, R.T. (ed) -
Current Trends in Programming Methodology, vol
v

D. Coleman, J.W. Hughes, M.S. Powell; "A Meth-
Multi-
programs". IEEE Trans. on Software Engineering,
Vol SE-7, n0 2, 19871.

od for the Syntax Directed Design of

L. Logrippo, D.R. Skuce; "File Structures,

Program Structures, and Attributed Grammars" .
Technical Report TR82-02, Computer Science De-

partment, University of Ottawa, 1982.

M. Broy, P. Pepper; "Program Development as a
Formal Activity®.IEEE Transactions of Software

Engineering Vol SE-7, n9 1, 1981,

13

14

16

T.E. Cheatham, G.H. Holloway and J.A. Townley ,
"Program Refinement by Transformation". Proceed-
ings of the 5th International Conference on

Software Engineering, 1981.

S.L. Gerhart,“Correctness-Preserving Program
Transformations™,Proc. ACM Symp. on Principles
of Programming Languages, 1975.

J.Jd. Arsac,“Syntatic Source to Source Transforms
and Program Manipulation®.CACM, Vol 22, no 1,
1979.

R.C.B. Martins, "The Data Transform Method" (in
Portuguese). Ph.D. Thesis, Computer Science De-
partment, Pontificia Universidade Catdlica, Rio
de Janeiro, 1983.

397

