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THEOREM PROVING IN CONSERVATIVE EXTENSIONS OF THEORIES
E. Lopez Passas, R. Lins.de Carvalho
IME-PUC/RJ - BRASIL

ABSTRACT

This work includes some ideas and
experiments about Automatic Theorem Proving.
|t introduce a new and complete strategy for
Resolution based theorem  provers for

.pefinitional Theories, that #s, the user can
prove according to partial results. It is the
strategy Translation by Level. [Passos,10].

1. INTRODUCT ION
1.1 Basic Concepts

Some theories are "conservative
extensions” of theories which have few proper
axioms, by, for example, Boolean Algebras of
Classes (BAC), where we have only two axioms
[¥x (=x € #)] and [¥x €W)] and nine
definitions. [Carvalho,16].

Definitions are statements which
establish the expression meaning. A theory
can be composed by its primitives and axioms
about the primitivals, theorems would be
valid relations among these primitives
symbols. Thus, definitions are considered, as
a point of view of Logics of first order,
like a new axiom and, finally, it s
considered that the introduction of new
symbol serves only to facilitate the
deduction of the structure of the theory and
not to add them to that structure.

There are two basic criteria which may
be observed by the following definitions:

Eliminability: A introducing a new
symboT of a theory satisfies the criterion of
eliminabilites if and only if: Whenever Al is
a formula in which the new symbol occurs,
then there is a formula A2 in which the new
symbol does not occur, such that A - (A1-*A2)
is derivable from the axioms and proceding
definitions of the theory.

Non-creativity: A introducing a new
symboT of a theory satisfies the criterion of
non-creativity if and only if: there is no
formula B in which the new symbol does not
occur such that (A-3B) is derivable from the
axioms . and proceding definitions of the
theory,.but B is not so derivable.

The rules for conditional definitions
are on page 166 of [Suppes,i4].

1.2 Purpose of the Work

The work has the purpose of studing
certain theories or certain sets of formula
which describe determinate situations or
structures. For example, when it is needed
describe situations or structures of Data
Bank, kind of Data etc. in Computerization,

many are not proper axioms, but definitions
[Passos, Lanzelotte, Carvatho,6]. These
definitions are important to facilitate the
language. A complex formula, that is to say,
one with so many symbols, can be reduced if.
definitions are introduced.

Some examples which will be mentioned
belong to Mathematics because the structures
are so much behaved and easy for describing
what one wants. But anything impedes that
when structures of Data Bank (see [6,17,18,
19,201, where there are several examples),
Computers Networks or usual applications of
Logics are described, there exist analogous
situations, where the set of statements, at
which its structures are described or
specified, has some elements as Definitions,
that is to say, this set of statements is
really a Conservative Extension of Theory.

What the work fundamentally proposes is
a system of automatic demostration of
theorems, which uses a strategy called for us
of Reduction for Translation by Level.

1.3 Example of "~ the Aplication of the
Strategy for Translations by Level, got
From the Doctorate Thesis of [Passos,10]
and [Carvalho,16].

Proof of Point Set Topology Theory

¥YXVYYVZYW ((TX, Y)AZCW
—» DER (X, Y, Z) C DER (X, Y, W)

The proof, by use of the strategy for
translation by level.

1) T (X, V)

2) ZcCW

3)  =1DER (X, Y, W) C DER (X, Y, W)
4) =XE€Z v XE€ W then (2)

It has been placed into prover that is
found on [Passos,10], and with a given time
and a limit to the generated clauses number
it has not got to generate an empty clause a

Then it has been requested by the user
the translation to next level of clause 3.

5) LIM (X, Y, Z, x) (1,3) translation of DER

1t has not been got again therefore a
trans]ation to next level has been requested

6) —INBH (X, Y, V, x) v f1 (g(V), §) €V

7) =i NBH (X, Y, V, x) Cf1 (g(V), ) = x
translation of DER

8) —UNBH (X, Y, V, x) v f1 (g(V), #) € z

9) M1 x'€ hi (W, x), x) Vx'=xyv x'e W

10)  NBH (h&) (x, x), x) '
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where
x = f1 (DER (x, Yy, z), DER (x, y, w))
and g(v) = (v - [x1 N 7)
11) NBH (h&4 (W, x), x) from (6,7,8,9)
12) [, empty clause, from (10,11)

2. CONSERVATIVE EXTENSIONS
The classes elementary theory (Boolean

Algebra of Classes) is an example of
conservative extensions of a determined
theory.

Example: Classes elementary theory)

Al. ¥x (-x € @)

A2, ¥x (x€V)

A3, vwx vy (xCy ez (ze€x =z €y))
Ad, ¥x ¥y (x=y)«=(XCyaryCx))

AS5. Vx Yy ¥z (z €Q (Gy)er(x€x A zey))
AB. YxVvyV¥z(z €A (x,y)es(zexV zey))
A7. ¥x Yy Vz (z € (x,y)e(z€x ~zay))
AB. ¥x ¥y (x€C (y) «= x&y)

A9, ¥x ¥y (yeP (x) ey C X)

A10 VxVy(ygy%ﬂ¢+32(z€xAyeﬂ)
A1, Yx vy (ye (x)ex ¥z (z € x = yez))

In this theory only Al and A2 are theory
proper axioms and. the others are definitions
which are not necessaryly from functions, but
‘of predicate. For example, intersection is
not defined as a function, but as a predicate
€0, by use of €0 as they were one symbol
only.

On figure below we see that in the
Classes Theory there are sub-theories, and
the intersection of the Classes Theory with a
definitional extension of an € - theory, that
one of proper axioms, would be a definitonal
extension, with an &'~ formula not translated
an a o' - formula translated by the strategy
of level transltation, « - formula should be
written by use of definition elements only,
and «', its translation in €~ theory. Then
this reduction s obtained from that

intersection of Classes Theory with the

extension of € - theory and a formula returns

to € ~ theory, which formula only contains,
as a unique predicate without symbols (except
$,£, and )}, one formula, which will be
demostrated in € - theory (with only two

axioms).
Hx¥y xSy >N x)

SUB-THEORIES

\ DEFIRITI0MAL
EXTENS (D8

€ ~THEORY
iy (-x,1)€ REKM)

This can happen, in general, with an
other sort object description and not in Set
Theory necessaryly.

- theory is poor and not many
interesting things one may say about it. But
when translation is made, the definitional
extension where there are so many valid
formulas is used.

Classes
definitional
figure below.

sub-set  of
showed on

Theory is a3
extension, as it

LANGUARGE / D
\EXwES FindiTiow

PEFIMNIT IONAL

" ) ¢IVI/ {A”} 1{1%"'

3. ALGORITHM OF TRANSLATION BY LEVEL WITH
ITS COMPLETUDE PROOF
3.1 Notation
Notation used in completive proving. R
is resolution with locking that we attribute
for all literals the same indexis, therefore
is equivalent to (resolution without locking)

.SA Axioms set of the theory

.ST Clauses obtained from the negation
of the theorem

.53 = RY (5% usT) for 5> 0, jem

°=sius=R8(sAusT)forj=o

.S
. SD definitions set

.RD definitional structure of the
theory with S defintions

.2 maximum level of attempts

N maximum level of Rg with respect to S
j .

S =r (s

with lock where i means

AU sTus)P ef>1 resolution
that the
clauses from S (SD,ST, ...) were indexed
according to the scheme of indexing from

considering the level N - i of le.
3.2 Algorithm

Bellow we will describe the algorithm of
refutation with resolution with translation
by level, based on the definitional structure
of theory.

The inputs for the algorithm are:

SA, ST, SD, € N, We will represent the
set of generated clauses by the algorithm for

Ry (sh, 8%, sT g

A T Observations:
T. je0; Ke03 58" U S :j 03 N (*1)

2. 1fQ ajRﬁ(S) then finish "T is a theorem"
: ; : 1 (*2)
1f 0 gma(S) and Rﬂ(s) = Ri (S) and j>i



then if K= N+ 1,
finish "T ins't a theorem” (*3)

1f not, go to (3) (%)
j ; j feg )

O ER)(S) and RR(S)  R(S) iF J<p

then do j ¢ j+1 and go to (2) (*6)

If not

IfK=N+1,

finish "T isn't a theorem" (%7)

3. Do KeK+1 §=5"050, jei
akid go to (2) (*8)

3.3 Observations about the  steps of the
algorithm

R (sh, 8T, %, £, )

(*1) Having in mind that even on a
defitional theory some theorems (sentences to
be tested) will have only primitive symbols,
initially the set S on which we will be

- applied resolution, won't have any
definition.

Definitions will only be introduced on
the step, see observation, *8. K = 0 means
not to use definitions. K grows in accord to
the Tlevel related to the definitional
structure.

(*2) Although the algorithm begins with

j = 0, which means that we will test ifo € S,
that means a nonsense, some theories add as
strategy the generation of inconsistency,
soon after the process of defintions. For
example: if we are on the "Theory of Sets"
and we have a literal (A U B) = @ and a
clause is x € A U B, during the process of
translation (introduction of definitions) we
may introduce the clause O in the place of
x € (A * B) . This means to generate the
empty clause before translating.

(*3) As K is equal to N + 1, there
won't exist on the system, for 'j > 1, any
definite symbol. And the fact of the
resolution that  will be unrestricted
(equivalent not to use locking because all
the indexes will be equal to 2,.spe "8) and
hence the no increase of 1R (S) for
resolution means that the ~ system s
satisfactory. This will always happen when
the theory is decidable and, eventually in
the case that the theory is undecidable. In
both cases for a j sufficiently big.

(*4) Here although the resolution
applied to the existent set of clauses is not
permanent (no new clause was generated) we
conclude that there are in the system definte
symbols, or the system is satisfactory. But
now we can't known, unless we modify the
algorithm to.verify if there are definite
.symbols 1in RJ(S). We can think that in the

“point of view of specification such aditional
item 1is unnecessary (decidable theory is
‘rare).

(*¥5) In this case the number of attempts
of resolution is smaller than the user's
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permission, thus we must reapply resolution
without introducing new definitions.

Note that if we wuse this algorithm-
interactively, the user, by the analysis of
the clauses will be able to decide to modify
j X Prohibiting resolution, going to (3)
whéfe there will be introduced new
definitions.

(*6) A interactive system the user may
modify £ , attributing to it a bigger value.

(*7) For j .. = L given, it was not
possible to veri?y, if T was a theorem. The
user may change 1.

(¥8) The introduction of new definition
is done through a attribution of indexeB to
the literals Ry(S) getting the set S'. Sk by
attribution of indexes to clauses of S
according to the following = scheme o
attribution of index.

- S' is obtained from RJ(S) by
attributing index 2 to all of its Hitera]s
which do not contain symbols of the Tlevel
N - (K - 1) and index 1 to the other literals
(which contain symbols of the Tevel
N - (KD - 1)).

- SD is obtained from SD attributing to
it index 1 to the first literal of clauses
that define symbols of Tlevel, exactly,
N - (K =1) and index 2 to the other literals
of these clausqﬁ and index 3 to the literals
of clauses of S~ that don't define symbols of
Tevel N - (K. - 1),

Observation about the functioning of the
algorithm.

Notice that the algorithm always ends,
or by the exit of (*3) or by the exit (*2)
that is the point of end that we are
interested about, because we must show that
we always go out through (*2).

And as we have already seen by the
observation f (*5), any other exit is
fictitious, because in the point of view of
the theorem, it's equivalent to the hypotese
"for some 2” or.

Notice too, that the minimum value of 1
for that, really, it may be possible to get,
is at least equal to the minimum number of
clauses wused for the definition of the
symbols in S.

In the proof of the theorem we limit
ourselves to show that the algorithm always
ends by the exit (2).

3.4 Theorem of Completive Rule

1f P uDP T thenmeR (sh, P, 5T 4
, N) for some £ , L€ N.
Demonstration

£ 5P usPE T then



(As ST are the clauses obtained by negation
of T) 5" U sD sT 45 inconsistent.

I¥ in T don't occurrs symbols (N = 0)
Py then s" & T and thus s" U sT is
T

defined (S

incosistent thus 0 € IRn(SA U3 ) so, to some
j, B = RI (SA U ST)., As R, = [R (seen
before}, thz atgorithm stops with K = 0, on
the styp 2.

Ay lock reselution is refutationaly
complete (Boyer's theoram), in [Chang,11],
after K = N + 1 (all the definitions were
used apd so, the Symbols defined eliminated).
So, by the theory of defipition

if P u P T, A T', and by algorithm

where T' is the obtained formula of T by the
elimipation of symbols defined by the

; .
definitions in 5° , s us" CcmI +1s).

For j sufficiently big, shou ST s
incpsistent. And so for some j'2j,

& m
£ ml, (s).

4, CONCLUSION

What we have made up till now has been a
theorem prover to some class of axiomatic
theories that we call Definition Theories.
New ideas included in the complete work are:
generator of definitional theories and,
Translation by level as a complete strategy
for definitional Theories. The computeriza-
tion system is interactive and, the
experiments will be object of a next work.
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