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ON REDUCIBILITIES AMONG GENERAL PROBLEMS

P.A.S. Veloso and R.C.B. Martins

Dept. Informatica, Pont. Universidade Catdlica
22453 - Rio de Janeiro - RJ; Brasil

The notion of reduction among problems is examined in a general context. Three precise
versions of reduction are introduced, characterized and compared, with the aim of
clarifying the essential features of this method of problem transformation. These ver-
sions of reduction involve the translation of data and the retrieval of results.

1. INTRODUCTION

The aim of this paper is to present and compare
some precise counterparts, of general applica-
bility, to the informal but useful notion of
reduction of problems.

The idea of reduction is widely known and em-
ployed albeit in vague terms, withess the vari-
ety of names used in this connection or for va-
riants thereof: reduction, translation, analogy,
subsumption, generalization, etc. The general
idea is to exploit the following situation, in
the words of Polya [2], "Here is a problem re-
lated to yours and solved before". Probably the
best known example of reduction is that of geo-
metric problems to algebraic ones achieved by
Descartes's method ef coordinates. Nothwith-
standing its wide applicability and usefulness

the idea of reduction is not so clear cut when
made precise. This has already been noticed by
recursion theorists who employ several precise,
but specialized, definitions of reduction, e.qg.
one-to-one, many-to-one, truth-table, Turing
reducibilities [3]. In addition the idea of
polynomial reducibility is crucial for the the-
ory of computational complexity [11].

Here we want to deal with reduction among pro-
blems in precise but general terms. In order to
do that we must provide a precise definition of
problem and related notions such as solution ,
etc. This is what we do in the next section.
Then in Section 3 we try to make precise the i-
dea of reduction in this general context . This
leads to three variations of reduction studied
in Sections 4, 5 and 6, which are compared in
Section 7, Finally, Section 8 contains some con
cluding remarks. -

2. PROBLEMS

Polya [2] suggests asking the following ques-

tions in approaching a problem

. What are the data?

. What are the possible results?

. What constitutes a satisfactory solution?

Indeed consider the problem of "finding a root

of a polynomial", It is not precisely formulated

until we clarify the following points.

. Are we dealing with polynomials with integral
coefficients or real coefficients? Are  they,

say, quadratic or can they have any deqree?

.'Do we want integral, real or complex roots?

. A polynomial can have more than one root. Do
we want the smallest one, the largest one, or
any one?

It should be clear that the answers to these

questions affect the very nature of the problem,

for they influence not only the possible ap-
proaches to the problem but also its solvability
character,

These intuitive ideas lead to the following pre-

cise definitions [5]. A problem P is a two-

sorted structure <D,R,q>, where

. D is a nonempty domain (of data or instances);

. R is a nonempty domain (of results);

. q is a binary relation from D to R (the con-
dition).

By a solution for problem P we mean a (total)

function o:D > R assigning to each data deD a

possible result o(d) ¢ R satisfying the problem

condition in the sense <d, o(d)> ¢ q.

It will also be useful to consider the concept
of solution space of a problem P as the set of
all 7ts solutions, i.e. Z(P) = {oeF(P)/o < q}
(Here we employ a notation, to be used in  the
sequel, namely F(P) denotes the set of all func-
tions from D to R). Also, it is natural to call

- P solvable iff it has at least one solution,i.e.

x(

In the sequel we shall have occasion to employ
two special properties that a problem P=<D,R,q>
may possess. Call P homogeneous iff for every
<d,r>eq there exists cen(P) such that o(d) = r.
We say that is result determined iff whenever
<d1,r>eq and <d2,r><q.then di=d2’ i.e. the con-

dition g is an injective relation,
3. REDUCTIONS IN GENERAL

Consider two problems P='<D,R,q> and P'=<D,R',q'>,
What is a reduction of P to P'? The basic idea,
as suggested by the common usage (cf. Polya's
quotation in Section 1), appears to be that,when
we reduce P to P', a solution of P' should yield
a solution to P.

We can make this intuitive idea precise as fol-
Tows. A reduction E of P to P' induces a func-
tion g:F(P') = F(P) such that £[Z(P')] < I(P) ,
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i.e, any solution o' of P' yields a solution
£(c') of P. Even though this formulation does
make precise the intuition behind reduction, it
does not tell us what is a reduction. Indeed Z
induces a function £ with the desired behavior,
but what is. Eitself?

In trying to answer this question it is  worth-
while Tooking at yet another intuitive idea be-
hind reduction. Namely, the basic mechanism for
reducing P to P' consists of translating each
problem instance d of P to an instance d'e D' so
that any result r' for d' will yield a result
reR for the original deD. The basic ingredients
in this description are two connections between
P and P': one for translating data from P to P'
and another one for retrieving results from P'
back to P. We shall make these connections pre-
cise by means of functions. But it will be seen
that there is more than one way to do this. This
diversity is related to another aspect of reduc-
tion. Namely, when we reduce P to P' we first
translate data from P to P', then we sort of for
get about P and concentrate in finding asolution
for P', which only later will be retrieved back
to a solution for the original P. Thus we might
say that in reducing P to P' we should keep P
and P' "uncoupled”. On the other hand, the two
conne?tlons do establish some coup]ing between P
and P',

4. UNCOUPLED REDUCTION

Probably the most natural way of precisely for-
mulating the preceding idea of connections as
functions is by means of two maps, the first
translating data into data and the second re-
trieving results from results.

Consider two problems P and P' as before. An un-
coupled Tink (uc link, for short) from P to ~P’
is a pair A of functions t:D -~ D' and p:R' = R.

We say that A is a reduction of P to P' iff for
any ¢'eZ(P') the composite p.c'.T is a solution

of P.

This definition of uc reduction has a behavioral
character in that it involves the solution
spaces. It would be nice to have a structural
counterpart involving instead the problem con-
ditions. For this purpose let us consider a uc
1ink A=<t,p>. We say that A preserves conditions
iff p.q'.T ¢ q, where p.q'.T=1<d,r> ¢ DxR/ for
some r'eR', r = p(r') and <z(d),r'> ¢ q'}.Notice
that A preserves conditions iff whenever
<t(d),r'> eq' then <«d,p(r')> e g, which ex-
plains the terminology.

Our next result will show that preserving con-
ditions is a necessary and sufficient requirement
for a uc link to be a reduction, at Teast for ho
mogeneous problems, thus being the structural
counterpart sought for.

Proposition . Let P, P' and A be as above.

(a) If A preserves conditions then A is a re-
duction.

(b) If A is a reduction and P' is homogeneous
then A preserves conditions.

Proof

(a) Given o'eZ(P') we have for any deD
<t(d), o'.t(d)> ¢ q', hence
<d,p.c'.t(d)> € p.q9'.T € q.

(b) Given <d,p(r')> ¢ p.q'.T we have
<t(d),r'>¢ q' and, as P' is homoqeneous,
we have some ¢' ¢ I(P') with o'.7(d) = r'.
Then, as p.o'.t ¢ Z(P), <d,p(r')> ¢ q. QED

A remark about the logical status of these con-
cepts may be in order. The concept of "preserv-
ing conditions" is clearly expressible by a
sentence of first-order (two-sorted) logic. On
the other hand the concept of uc reduction in-
volves quantification over all solutions. This
explains why the equivalence between the two is
achieved at the expense of the concept of homo-
geneity, which involves an existential quan-
tification over solutions.

A nice property of uc reductions is their com-
posability as stated in the next result.

Corollary. Let P = <D RJ,qJ , for j=1,2,3, be

problems. Let AJ— <TJ,p .> be a uc Tlink from Pj

to Pj+] for j=1,2. Then the composition

Dpody = <T5.Ty50p.01> is a uc 1ink‘from Py to
Pa which is a reduction (resp. preserves con-
ditions) if both 4y and 4, are so.

5. LOOSELY COUPLED REDUCTION

Consider again two problems P and P' as before.
We have already seen in the preceding section a
notion of reduction among them. However, a more
interesting question is whether a reduction ex-
ists at all. In trying to answer this question
we shall be naturally led to another version of
reduction.

When could we say that there exists a reduction
of P to P'? Intuitively, we should demand first

- that for each instance d of P we can assign an

instance d' of P' that subsumes it. If we use
the binary predicate symbol B for subsuming we
cah express this requirement by a first-order
sentence

(¥d:D) (3d':D) B(d,d") (ry)

And what is "subsume" supposed to mean? Recal-
Ting our discussion about “decoupling" what we
would like is that given any pair <d',r's we can
find a result r for P such that for any data d
subsumed under d' the pair <d,r> is in q when-
ever <d',r'> is in g*. Forma]]y

(¥d':D') (¥r':R') (dr:R) (¥d:D)
[B(D,d") > a(d,r,d',r')]

where o is a quaternary predicate symbol in-
tended to mean that <d,r> "goes with" <d',r'> in
the following sense

(¥d:D) (¥r:R) (¥d':D') (¥r':R")
{o(d,r,d',r')=+lq'(d',r'}>q(d,r)1}

)

(2,)
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Now, recall the concept of Skolem functions from
Jogic [41. Associated to the existential quan-
tifier in the sentence (X,) we have a Skolem
function of type D - D', whereas a Skolem func-
tion of type D'x R' » R is associated to the ex .
istential quantifier in (A,). This suggests in-
troducing another kind of %1nk, sTightly more
coupled, from P to P'.

A loosely coupled link (1c Tink for short) from
PpTo P’ is a pair A of functions u:D -~ D' and
v: D'x R' = R, We say that A is a reduction of
P to P' iff for any o'e<X(P') the assignment
o(d) = vIn(d), o'.u(d)] defines a solution for
P. Also, we say that A preserves conditions iff
vxq'xu © q, where vxq'su = {<d,r> € DxR/ for
some r'eR', r=ulu(d),r'] and <u(d),r'> e¢q'}.
Again, A preserves conditions iff whenever
<u(d),r'>eq' then <d, vip(d),r'>> ¢ q.

Proposition. Let A be an Tc Tink from P to P'.
K sufficient requirement for A be a reduction
is that it preserves conditions. If P' is homo-
geneous this requirement is necessary as well,

Proof
Similar to the case of uc link., QED

Now, to return to our opening question "when
does there exist an lc reduction of P to P'?",
consider the compound structure

P+ P = <D, D', R, R, q, q'>

We can expand this structure by adding two re-
lations, a binary one, to play the role of B,
and a quaternary one, to play the role of a.The
resulting structure is what we call an o+B8-ex-
pansion of P+P', Such expansions are appropriate
for interpreting the sentences A], Aps Ags and

they will enable us to answer the above question
in the next two results.

Lemma. There exists an Tc link from P to P' pre
serving conditions iff some a+B-expansion of
P+P' satisfies Apshoshsg.

Proof

(=) Let A=<p,v> be an lc link from P to P' pre-
serving conditions. Let Q be the a+B-expansion
obtained by interpreting 8 as the graph of u and
a as {<d,r,d',r'>eDxRxD'xR'/<d,r>¢ g or
<d',r'> ¢ q'}. By construction, Q F A A Age

Given any d'eD', r'eR' take r = v[d',r']. So for
any deD, if Q E 8(d,d') then d'=u(d) and

9k a(d,r,d',r') as A preserves conditions.Hence
Q sz.

(=) Let Q be an a+B- expansion of P+P' satisfy-
ing Ashp,Aq and take u and v as Skolem  func-
tions correSponding A7 and A9, respectively.
Then Q satisfies .

(¥d:D) (¥r':R') [q'(u(d),r')I+q(d,vlu(d),r'1)).
Hence <u,v> preserves conditions. QED

Theorem. If some o+R- expansion of P+P' satis-
les the sentences A],Az,ls then there exists an

Ic reduction from P to P'. The converse also
holds if P' is homomogeneous.

Proof
Follows from the preceding proposition and Tem-
ma. QED

Now assume that we have lc links A1 from Py to
P, and A, from P, to Ps. In this situation there

does not appear to be a natural definition for
a direct composite 1c Tink from P1 to Pa.

6. TIGHTLY COUPLED REDUCTION

Let us return to the question of when a re-
duction exists. The preceding section showed
how this motivated loosely coupled Tinks and re
ductions. Now, a closer analysis of this same
question will motivate yet another kind of re-
duction,

The conditions for the existence of an lc  re~
duction involved the notions of "subsumption"
and "going with", which, however interesting,
are nonetheless auxiliary. Can we dispense with
them? Indeed we can if we reason as follows.The
basic intuition behind reducing P to P'amounts
to: given any instance d of P we can find an
associated instance d' of P' so that given any
result r' to match d' we can find a result back
in P to match d. This can be expressed by the
following sentence

(¥d:D) (3d':D') (¥r':R') (3r:R) (v)
[q'(d'sr') » q(d,r)]

Associated to the first existential quantifier
we have a Skolem function of type D -~ D' as be-
fore, but the second existential quantifier will
give rise to a Skolem function now of type

DxR' + R. This suggests another kind of 1ink
between P and P'. Notice that now P and P' will
be more coupled in that for retrieving a result
r' back into R we will have to remember the o~
riginal data d. from P.

A tightly coupled Tink (tc Tink, for short)from
P to P" is a pair I' of two functions y:D -~ D'
and ¢:DxR' ~ R, We say that I' is a reduction of
P to P' iff for any o' ¢ 5(P') the assignment
o(d) = ¢[d,o'.y(d)] defines a solution for P,
Also, we say that T preserves conditions iff
olq'|v < g, where ¢|q7 [y = {<d,r> ¢ DxR for
some r' ¢ R', r = ¢(d,r') and <v(d),r'>e q'l}.
Here too, T preserves conditions iff whenever
<p(d),r'>e q' then <d,p(d,r')>eq,

Proposition., Let T be a tc link from P to . P',
I T preserves conditions then it is a reduction.
The converse also holds if P' is homogeneous.

Proof
Similar to the previous cases. QED

The next two results use the compound structure
P+P' of the preceding section to give require-
ments for the existence of a tc reduction.

Lemma. There exists a tc Tink from P to P' pre-
serving conditions iff P+P' satisfies the sen-
tence vy.



24 P.A.S. Veloso and R.C.B. Martins

Proof

(=) Let <y,¢> be a Tink from P to P' preserving
conditions. Then for all deD, r'eR' we have if
<p(d),r'>e q' then <d,¢(d,r')> ¢ q. Thus
P+P' kv

(<) Assume that P+P' E vy and let ¢ and ¢ be
Skolem functions corresponding, respectively,to
the first and second existential quantifier in
Y. Then P+P' satisfies

{(¥d:D)(¥r':R") [q'(¥(d).r') » g(d,o(d,r))].
Therefore <y,¢> preserves conditions. QED

Theorem. A sufficient requirement for the ex-
istence of a tc reduction of P to P' is that
the compound structure P+P' satisfies the sen-
tence y. This requirement is also necessary if
P' is homogeneous.

Proof
Immediate from the preceding proposition and
Temma. QED

Again tc links enjoy a nice property of compo-
sability in the following sense.

Corollary. Let Tj = <wj,¢j> be a tc Tink from
Pj to Pj+1 for j=1,2. Then the composition

r2|r] = <y r1l¢2>, where F]I¢2:D1XR3 + R

is defined by F-l [(I)Z(d'l ,r3)=¢~| (d-l ,¢2EU)2(d-I ) sr3])$
is a tc link from Py to P3 which is a reduction

(resp. preserves conditions) if both I'y and T,
are so.

7. RELATIONS AMONG REDUCTIONS

We have examined in the previous sections three
kinds of reduction. They all attempt to make
precise the informal notion of reduction but
their details stem from slightly different views,
A natural question now is how they relate to
each other,

We notice that the three kinds of link translate
directly from D into D'. It is in retrieving re-
sults where they disagree. A uc link retrieves
directly from R' back to R. An Tc retrieves from
R' into R with the help of data from D'. Finally
a tc Tink needs even Tonger memory, for the re-
trieval from R' to R employs the original data
from D. The next result makes these comparisons
precise.

Proposition.

(a) If A=<T,p> is a uc link from P to P' then
there exists an Ic¢ Tink A=<u,v> from P to P!
with u=t and v(d',r') = p(r') such that A is a
reduction (resp. preserves conditions) iff A is
so.

(b) If A=wu,v> is an 1c link from P to P' then
there exists a tc 1link T'=<y,¢> from P to P' with
Y= and ¢(d,r') = vlu{d),r'] such that I is a
reduction (resp. preserves conditions) iff A is
S0, :

Proof
Straightforward computations. QED

Thus we have, not surprisingly, uc = 1lc = tc.
The next proposition shows that we may have
tc = 1lc under special conditions.

Proposition. Let I'=<p,¢> be a tc link from P to
PT.If ¥ is injective then there exists an 1lc
Tink A from P to P' such that A is a reduction
(resp. preserves conditions) iff T is so.

Proof

If y:D + D' is injective there exists §:D' + D
such that ¥.¢ 1is the identity of D. Now define
u=y and v(d',r') = ¢[P(d'),r'1. Then a straight-
forward computation will finish the proof. QED

Notice that the injectivity of ¥ cannot be dis-
pensed with as a simple example (with finite
problems) will show. Moreover this requirement
is quite natural from an intuitive viewpoint.
For a tc Tink remembers data from P in retriev-
ing, whereas an Tc remembers only data from P'.
Injectivity of ¢ is exactly what we need to
back up from D' to D.

Now what about reversing uc = 1c? A simple-
minded requirement for this is that yi does not
actually depend on its first argument. Another
possibility occurs when problem P' is of a
special nature, namely it is result determined,
as defined in section 2.

Proposition. Let A=<p,v> be an 1c 1ink from P
to P'. If P' is result determined then  there
exists a uc Tink A from P to P' such that A is
a reduction (resp. preserves conditions) iff A
is so.

Proof

Given A, set t=p and pick r_e R. Now given

r‘e R', if there exists d'e D' with <d',r'>e ¢'
then put p(r') = u(d',r'), otherwise put
u(r') = r,. Notice that p is well defined be-
cause P' is result determined and that a
straightforward computation will finish the
proof. QED

Again we remark that the requirement of P' being
result determined cannot be dispensed with as a
simple example (with finite problems) will make
clear. :

We have examined reductions of P to P' with both
problems fixed. However, when we apply reduction
we have some more freedom (and work). Indeed,we
have only one original problem P given. We are
free to choose, actually we have to, a problem
P' to which we will reduce P. Thus it makes
sense to ask the question "assuming that we have
an 1c reduction, say,of P to P', can we find a
uc reduction from P to a problem 'similar' to
P'?" We now examine this somewhat vague question
(Notice that we can always reduce P to

PxP'= <DxD', RxR', gxq'> if q' # @. That is why
we insist on a problem 'similar' to P'.)

Proposition. Let A=<y,v> be an lc Tlink from
P to P'. Define P= <D',D'xR',G>, where
<d',<d',r'>>eq' iff <d',r'>e q'. Then there
exists a uc Tink A from P to P' such that A is
a reduction (resp. preserves conditions) if. A
is so.
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Proof

Define t=u and p=v. Given o:D' - D'x R’ if
gex(P) we have ¢'cx(P') such that for any
d'e D' g(d') =<d', o'(d")>. Thus, for any
deD, p.o.1(d) = vlu(d),o'.u(d)3. Hence

p.0.Te L{P). Similarly for preserving con-
ditions. QED

The idea behind the above construction is  en-

Jarging the result domain (from R' to D'x R')so
that the extra help needed for retrieval is al-
ready built in. A similar construction, en-
larging the data domain so that the extra me-
mory needed for retrieval is already in the
right place, is employed in the next result.

Proposition. Let I=<y,$> be a tc Tink from P
To P'. Define P=<DxD', R', §>where
<<d,d'>,r'>e q iff <d',r'>eq'. Then there ex-
ists an 1c link Afrom P to P such that A is a
reduction (resp. preserves conditions) if T is
SO.

Proof

Define w:D - DxD' by n(d) = <d,y(d)
vi(DxD') x R' = R by v(<d,d'>, r')
QED

> and
= Y(d,r').

8. CONCLUSIONS

We have considered a problem as a two-sorted -
mathematical structure and examined the notion
of reduction in this general context, the basic
jdea being that a reduction is a link between
problems inducing a transformation between their
solution spaces. It was seen to be natural to
take this link as a pair of maps, one for trans-
Tating data and another one to retrieve results.
The first map is a direct translation from data
to data. In making precise the second map we
have been led to three natural versions, depend-
ing on the amount of coupling they establish
between the problems.

For each one of the three concepts of link we
have given a behavioral description, in terms of
solution spaces of the problems, and a structur-
al description, in terms of preserving the con-
ditions of the problems. Both descriptions were
shown to be equivalent under mild restrictions.

The uncoupled link is quite simple and natural.
The two problems are kept separate and in re-
trieving results we do not need any auxiliary
data, The loosely coupled Tlink is motivated by
requirements for the existence of a reduction.
The two problems are still separate but in re-
trieving results we do need to take into account
data from the second problem. The tightly
coupled Tink is suggested by simpler requirements
for the existence of a solution. Now the two
problems are no longer separate in that in re-
trieving results we have to remember data from
the original problem.

This description is in the order of increasing
power, in that uc » 1c = tc and the converse
implications hold only under extra hypotheses on
the connecting maps or the problems. On theother

UHIVERSIDASE

hand we can make the converse hold if we
the second problem extra memory space.

give

A question that we must leave unanswered is
"what is the 'right', or 'best', concept of re-
duction." For, uc reductions are natural and
simple but sometimes they may be not powerful
enough. On the other extreme tc reductions,des-
pite the simple requirements for their existence
appear to establish too tight a coupling between
the problems leaving a lot of work for the re-
trieval map. In between, the lc reductions ap-
pear to provide a nice trade-off between simpli
city and power; however requirements for their
existence are not so simple and they fail to
have a natural composition. Both uc and tc
Tinks compose quite naturally, thereby endowing
the class of problems with the structure of a
category, where the objects are problems and
the morphisms are reductions.

We would conjecture that each concept has  its
own assets and may be appropriate in distinct
situations. Our results provide character-
izations, comparisons and some transfers among
them.
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