Lecture Notes

n

o
O
i
O
n
D
B
S
Q.
=
o
®

" LOGICAL SPECIFICATION AND INPLEMENTATION '

TS EjMaibaum*,,M1R‘Sad1er*,gP:hfsivelosof*“

Dept. of - Computing BRI : i
fImperlal College of:. Science and Technology " B
,180 Queen‘s Gate,London sw7 2Bz PR

'VDepartmentovde_Informatica”
Pontificia Universidade Catoiica
Rua'. Marques de Sao: Vicente, 225
322453 Rlo de Janeiro, RJ. BnaZil

'tracti .)

‘has become customary to focus attention on the semantic aspects of'
specificatlon and implementation, a ‘model theoretic or algebraicr
wp01nt We: feel however, that certain concepts are best dealtq
iwith at’ the syntactic level, rather than via.'a detour throughﬁ
nsemantics, and’ that 1mp1ementat10n is; one of these concepts.‘TWef
;‘egard logic as’ the most appropriate medium ‘for talking aboutg
specification (whether of abstract ~data : types, programs,‘databases,l
specifications teas:an 1nterpretation between theories say, rather*’
_an something to do with the.. embedding 0 f models or: mapping ofﬁ
i gebras,' In this paper,'we gives a'syntactio account of i
::mplementation .and: prove “the . ba51c‘results -'composability oﬁn
fimplementations and how to’ deal ‘with structured (hierarchlcalxg
;specifications modularly - for abstraot data types.

‘~l

: Inﬁroduetion“xgi e BT D T

oo

:As“ue see it, the two key concepts 1n an approach to, or theory of,’
!specification lare ‘the notion's of 'specification (our: ‘bbjects if you'f
“11ke) and implementation (the morphisms between objects). At thls'
stage we, feel ‘that is not as appropriate to: investigate the category-’f
vtheoretic properties “of - these notions (g1v1ng us the category(s) of?
?spec1f1cations and 1mp1ementations), as to continue to: explore

14

parblcular ways of looking at these motions: bdsed on:various:
;mathematlcal formalisms (algebra, set-theory, logic fdr’example) and .
how these formallsms support more complex ideas like parameterlsatlon -
fand other mechanisms for structuring specifications. ‘

f‘Our‘claim is that logic, or the‘lcgical approach, with an emphasis on:
f~$jhtactic ideas is a particularly fruitful formalism, In this paper we
'"-show how the logical approach supports specification of abstract data
e‘typeS'and implementations of abstract data types within other abStract\
data . types. ‘

Given an area of computing science an important first-step for af‘
theory of specification with respect to that .area is an identification-
e}of what is (are) the ba51c unit(s) of specification, see [LZ1, That
7is, the packages that are used as the atomic building blocks for
?*buildlng more - complex, structured specifications, Here we con51deri
:fabstract data types as our units, or atoms withrprograﬁming as ‘the
g'obyious area in mind, Similarly any formalism:offers, or sfﬁdies,

“ﬂvéfious stfuctures: in the -case of logic,,logics or theories say. Now
»Vpéntwof what we . would like for an-approach to specification is g
'ehatural match, in some sense, between the formey‘structures and the..
units of specification, And this natural match should also extend to a

mateh between.on-the one hand the kinds.of mappings between our formal’

‘Stfuctures and on:the other the ways we naturally put our
especifications together to: form structured specifications ‘and:~
"implement specifications in each other. SR N ' :

 The formal struetures to study in a. logical approach:.are the theories:
%given by languages, L, over some fixed cdnsequence relation'f-f
~determining the logic., The decision to: follow a logical épproache
“iappears in no way to commit one to any particular |-, otﬁer than e‘f
Afreguirement that certain meta~-theorems are provable abodt }4,kthe'

xvCraig Intérpolation Lemma for example. (See 'Theorem!' in. the .section:
¥ Using Implementations). ‘ o o :

“'We choosé to use an infinitary loéic‘and this is- where criticism is .
often focused., -However we feel that such criticism misses the point.
:"The major focus.of attention should be as %o whether‘we have this
natural match between units of specification and :formal structures; .
. here between abstract data types and theéories, ‘We claim this,match isz
v,obviously natural,)

s

‘We cannot always expect (for-any given approach) things to be so-
‘simplé,>f6r more-complex.bbjects‘moré §omplex formal structures~might‘
BSé'reQuired. For ‘specification: . of databases, for example, families of "
:mpaal theories (and:évenffamiiieé of families ofmodal theories) form

'the‘mdreuappropriate‘formal structures, see [KMS].

Below we explain th¢ logical'apprdach to specification, implementation’
(in some detail) and:how to use implementations to support the}

“softwate design process. . » v

Specifications

We begin by reviewing the approach to specification outlined in [MVI.
,There,vstrpoturing of specifications was defined in terms of semantic
éoncepts‘but here a. purely syntactic line using an extended first
order'logic with infinitary formulae and infinitary rules . is taken., We
‘conceive of«épecificatiqns as‘theories within fhis mbdification of .
fi%ét order logic} The reader is assumed.to be familiar with the
concepts of .first order .logic, - see,. for examplé [END], [SCH], but we
‘explain the modifications we.make as the formal defails are presented.:

.BXpressiveness in our approach 'is determined by thé'usé of many sorted:
languages. We require an equality symbol for each sort, but regard
thém:as,pakt‘of-the"non—logical vocabulary., Thus the eqUality‘symbols

éfe.not regarded asrlogicalyconstahts as in most approaches ‘based on:
1ogic or algebra, In practice, rather than~pkesenting'such'lénguages'
as_lis%s of 'sorts, operations and so on, we use syntax diagrams to

convey the information pictorially. .For example: ')

\ suc

zero

vhnag-is an. appropriate 1anguage'for the natural numbers, That is,
Lhat has one sort, nat, one constant, zero, of type (NIL,nat), a
‘further operation, suc, of type (Knat>,nat) and a predicate symbol, =,
of ‘type <nat,pat> (where NIL is the empty string, <pat> and <ng&}nah?
are-strings of lengths one and two respectively)., ' For clarity, we

_ijsuopness*equalﬁty<symbols‘fr0m~suchvdiagrams;’g‘*“w PR R

'set of terms, Term(L), overta language L 1s deflned in the usual:
y and we define the names, Name(L), of:L'to be the var1ab1e free:
t,'ms in Term(L). The;formulaevand sentences (closed formulae) ‘of L,

resent our flrst opportunlty for extending the more common flrstm

'er notlonsl Our formulae are those of the extens1on to the

ﬂtraditlonal f1rst order language g1ven by addlng 1nf1n1tary
_dlsJunct1ons (V). The sets of such formulae and sentences we denote byﬁ
:Form(L), Sent(L) respectlvely. { SRR Lo SR

T 3 Lo _ e R
. LA R L : . L e
“Example "

. for-all f'Vn in‘N,-x,:.ﬁ>;»
where N~ is an enumeration of Name(Lnat). Thus this formula 1st
equlvalent tos. i' : : Proos el 3 vsi

for-all X (x zero v .x= suc(zero) vixs suc(suc(zero)) Ve Vb

l.’ . . : : Lot

}
B
'o
i

Thls formula 1nd1cates that the only allowed values (up to -) overﬂ
‘wh1ch a varlable X of sort ‘nat’ can range are the names in Name(Lnat)g
(Thus any: structure sat1sfy1ng thls sentence w111 have no- nonstandardv
values for the. natural numbers) : s

A speclflcatlon, S, is a. pair (L A) where L is: ‘a many sorted 1anguage'
(with 1nf1n1te dlsJunctlons), Aisia, con31stent subset, of Sent(L) andw
"where, for,each.scrt,s of L, we have AN !)

; B - i : ? S »‘7‘:" R IN
! :

"‘i)'L'contains 35 a predlcate symbol of type <s s> and A contains the)
e usual congruence propertles for =g - reflex1v1ty, symmetryy
tran51t1vity and substltut1v1ty., We usually drop ‘the subscrlpt
from- =g when it is clear from the context Poooiie . ? u\a’
1) A contalns for=all x (Vp 4y Name(s) *x- sn) - fwhere X is af
-variable of sort 8y where Name(s) are the names of sort s 1n“

Name(L). (We call such sentences namablllty ax1oms)

“Again we usuaily suppress thls 1nformatlon in present1ng anyx
,speclfication Note’ speclflcat1cns need. not contaln boolean values andf
;operatlons‘- these..can be left as 1ogucal rather than non log1cal1
concepts. |

Examples:

NAT z (Lnat’ nat) where Anat would also 1nclude.
suc(x) suc(y) -> x y ’1"'; o .ﬁJ“
~(suc(x)=zero) " !',vﬁ‘ L

po :
where leading un1versa1 quantlflers are. §uppressed
i . . . ‘ ; .

-4

i

;(Llnt, iﬁt)'@heré: L
xAint: .soc(x) suc(y) -> X= y L
o pred(x) pred(y) —> x=zy

. " pred’ (suc(x)) X “p SRR

. neg R suc(pred(x)) X

AT I pos(x) =3 pos(suc(x))
neg(x) => neg(pred(x))
pos(suc(zero)
neg(pred(zero))

R -pos(zero)p | :
Vo, . -neglzero) - "

pecifio tion’(ﬁ A)‘defines a 'theory - Con(A), whieh: con51sts of all
,vable ‘sentences,". or 1og1cal consequences, of L from A where the
‘"cept ‘of proof is based on ‘usual flrst order notions together w1th§
e follow1ng omega-rule (1e, 1nf1nitary rule) or some approprlatej

-for—all X (Vn in’ N x n),‘Q(n 2. for each nJ‘?hJJ}:JéaJSdPSé?'Oﬁ‘?E

‘for-all x.(Vn in N J x&n v Q(x)) o '5: . g »‘:ﬁ jr’

L5y 1f we can prove some property Q for some (possybly 1nf1nitel,
bset J of N, then we can replace the dlsguncts 1nvolv1ng elements of
by the property Q., Thus, for example, we can dérive from the above3
peclfieatlon (Lnat' t) the sentence for-all x(x= zero v there-’
cists.y (x=sue(y)). - One form: of the usual induction formula for the-
tprﬁ¥~humbersﬁs We use: A l- Q to denote that Q 1s a loglcalf

nsequence of A, . i R

fpeaﬁfuse-namabiiity;axiéms.to@help struethre our.speeifieat;onsf

18

" Consider, for example, the extension of NAT obtained by adding to Lnaf
the following: '

and the axioms:

: Aseq: rhd(cons(x,l))znatx
. tl(cons(x,1))=g4q41
tl(nil):seq nil
—(nil:seqcons(x,l))
cons(x,1)=
v

<

cons(y,1l') => x= y &-l:seql‘

seq nat

n in Name(seq) lseq”

,:The (structured) specification, ‘which we.denote by (Lseq'Aseq)[NAT],
- has-the property that no new natural numbers are introduced by.any of’
the sequence operations’as.the namability axiém for. NAT still ensures
‘that all ‘names. for natural humbers must be of the form zero or
"suc(zero) or ... or equivalent to one of these, Note that this is a
‘much weaker requirement than-the sufficient completeness of‘[GHJ{
[GAN], [WB], etc, Note also that the specification is partial (loose,
incomplete, permissive) since no axiom tells us which natural ‘number
~'is the result of hd{(nil), Looseness in specifications (the abandonment
of a unique isomorphism class of models) has also been introduced -by
IBG] and .[WB]. A different notion of structured specifications was
also introduced in [WB] where they were called hierarchical.
specifications. . o o s S -

The above extension is in fact conservative ([END], [SCHI) - the
extended theory contains no new theorems about the language being
extended. That is (Lséq'Aseq)[NAT] has no theorems in Sent(Lnat) thap
‘are not provable from “Aj ..

Semantics for specifications are provided by logical structures
" satisfying. the axioms. Again we should point out that objects related-

16

tby':”symbols ‘need not 'be identified in models. The namabilit9 axioms
valso ensure that we: have only the so- called f1n1tely generated models
‘of [WB]. ‘ '

LWe»mention.the following completeness resﬁlt.

‘Theorem:) : -
‘Given a specification S and, a sentence Q, then Q is valid in all,
models of S (ie namable models) iff Q is provable from S,

Implementation

in the corpus .of work on spe01f10at10n of data types and programs,
theorles of implementation have occupied a very important .place. It
is .via such theories that the informal software engineering notion of
étepwise refinement can be incorporated. into a formalisation of the
programming process, - Amongst the large amount of material produced on-
“this-subject, the most notablé are [GTWI,. (HUPI, [EKP], [EHR], [GAN],
f[EK], [SW], all of which use algebras as semantics for specifications,
“There is.-also some work on implementations using 1og1e, as in [NOUJ,:"

 C1early, an implementatlon relates two. spec1flcat10ns and the general
sapproach used in. the work referenced above is to relate the .two
‘specifications via their semantics - by applying yarious constructions
etq an algebra (model) satisfying the target specification, one can
obtain an algebra satisfying the source specification. We believe
pthat afguing in terms of models is wasteful, both fofmally and
practieally, end present a pureiy syntactic theory of ‘implementation.

The concept of implementation we use is:based on the logical notion .of
interpretation between theories. Thus, our spec1f1cations generate
corresponding theories and these are related by interpretations.. An
interpretation shows how one can realise the concepts of one theory in’
terms of another - this being more or less the process descrlbed as
1mplementat10n, The theories. of implementation presented in other’
approaches do not use interpretations and hence have to resort to non-=
syntactic reasoning, Moreover, the comp051t10n of implementations
(which needs to be defined ih order to. . formalise the stepwise
refinement process) does not. have an adequate definition in any of the
algebraic approaches mentioned above., This inadequacy manifests

50

itself both in the shortcomings of the’ formal properties as: well ‘as“ip:.
'not modelllng the software eng1neer1ng practlce whlch seems to work.,.

Formal inadequacy has been demonstrated by [PV] where it is shown that‘
certain des1rable properties are not preserved by compos1tion as well
as in [EHR], where comp051ticn 1s not construct1ve (and so. 1nadequate
for pract1ce). Practical inadequacy can- be used to illustrate what is
5wrong with these definltlons. :)

;Suppose that a software:engineer sets out to write some program using
”sets. “Having proved the correctness of his abstract program u51ng the
;propertles of set” operat1ons, he then 1mplements ‘sets in terms of5
\sequences,' sa¥y., - Together w1th the abstract program,‘ the_
procedures/functlons deflnlng set operatlons in terms of sequenceﬂ
'operatlons then becomes an»'executable' 1mplementatlon if the
(programming Ianguage has .Sequences as-a bullt 1n data type.q If noty*
%then a further su1te of procedures/functlons is: def1ned to! 1mp1ement
‘sequences’ ‘and the abstract program together with the seft, operatlonl
*1mp1ementat10n and the sequence operatlon 1mplementat10n constitutef
‘the ‘final 1mplementation. In the, theories mentioned above, it:is feltf
3necessary to eliminate the equivalent:: of the sequence proceduresu
;(wh1ch in the program 1nterface ‘between the - ‘abstract program u51ng
?Sets and the language based construots in terms of" which sequences are;
'implemented). This is analogous to definlng recurs1ve1y £ in terms: ofj
»g, g in terms of h,. and then trying to. compose the two by el1m1nat1ngf
any occurrence of g, Often no such: f1n1te def1n1t1on can be.obtalnede
[by simple substltutlons of def1nit1ons for. symbols = hence the
problems 1nd10ated in [EHR] and [PV]. ; ,_” S _'uL : B

‘When 1nterpretations between theorles are ccmposed no such'attempt‘ati
feliminating the medlating language 1s made. Thus these problems are’
?avoided. S S T R T RRNTa T ‘r': R L
iAn 1nterpretat10n between theorles is a translation between the:
underlying 1anguages,ftermsy formulae,'eto, whlch respeots the.
properties expressed 1n the theory being 1nterpreted. Thus each- sorti
«of ‘the source: language 1s mapped-to- a: (tuple-of). sort(s) of; the targetf
”language, non-logical symbols to appropriate non-loglcal symbols and.
quantlflers to: restrlcted quantifiers = ie, quantifiers relatlyisedwto_
predicates,. o |

21

”Stwan’ekamplé:

ill 1nformally discuss how to interpret INT =z (Lint,Alnt) by means
>f “NBOOL (LNB,ANB) which is an extension of NAT obtalned by addlng
e sort bggl, ‘the symbols T, F of type (NIL, bggl) and the axiom
, Note that the namablllty ax1om for bool.is simply b T v b F.-*

,urtlntenmloh 1s, of~course, to represent the 1nteger n (an
breviation,for n applicatipnswof”sucfto zero)iby n.of pat and'Trof
Fl and: -n: (an abbrev1atlon for n appllcatlons of Jpred: to: zeéro) by n
nat and F of bggl Zero of Int can be represented AN two ways (as
ro and T or as" zero and F). Note that unlike- other theorles of'
ta: types, We.'.do’ ‘not "have to create a new sort nat X .bool. andi
soclated pa1r1ng and prOJectlon functlons (of course we are not
ented from doing so). ‘There 1s also: some leeway in 1mp1ement1ng;
he functlon symbols of Llnt' e1ther as a:single function that. réturns
o;values (one from nat and. one from bggl),'or as. two functions each
eburnlng one value' '(one’ functlon having result nat and the other
sult .bool). We choose the ‘latter“option . here, but in‘géneral
i oselwhiehever option seems more.approprlate fon a giveﬁwoontext,s.'

EFor a term t of Term(Llnt) ‘Wwe deflne two components tBI and tBI both~

fi: Term(LNB) ‘where the subscrlpts N ‘and B prov1de us with sortf
nformation, nat and bggl respectlvely. Thus our. interpretat1on T
on51sts of. the follow1ng. ' ‘ LT AT

ST

1) we assoc1ate w1th the sort int the palr of sorts nat and bggl
; 1.) ‘We assoclate w1th int’ a relativisatlon predlcate 1s int. of type-

<bggl,nat> whlch Wwe add to LNB and which is deflned by the
follow;ng ax1om :

- vt
ca

is;int(xB,xN)

'v;i~ ThlS ax1om says that any pair of boolean and’ .natural number‘

! values represents sSomeé 1nteger. (In general, we wlll ‘not -be so.

“ 1ucky.‘ Only some values 1n the target of an interpretatlon will
represent values in the source.) ‘ i

) » We assoclate with: each function symbol (includlng the constants)?_
" of Lint a pa1r of . functlon symbols whlch are added to LNB andiﬁ
- whose - typing respects the mapplng of sorts defined in (1).- So i
‘Wwe associate with zero of.int the zéro of nat and ; T of hggl,ﬁ

22

(Thus we choose one of the two possibilities mentioned 'above.'
The other, the pair zero and F will be equivalent to the pair
zero and T,) ~ To .suc. (pred) of L; ¢ we associate sucrepN
(predrepN) 6f type‘(<nggl,ngt>;naph and sucrepB (predrebB) of
type (<bool,nat>,bo0l). . ' :

iv) - We ‘associate with predicate symbols of Llnt' predicate symbols
which we add to Lyg and with typing which respects the mapping
defined in (i). Thusvﬁobpos (neg) we associate: posrep- (negrep):
of type <bgol,nat>. Tox=int'we associate =rep of type
(bool,bool,nat,nat). (Note that equality is impl%mentéd like any
other 'predicate.) R ‘ o

v) We associate with every variable x of sorfﬂing a cofrresponding
pair of variables Xy and xpg of sorts pat and bool, respectively,
We:also -add to Ayp axioms defining the hew symbols we have added .

" in steps (iii) and (¢iv). ‘(is_intfxadded in step (ii); -was .also.
defined there wvia a new ‘axiom added to Ayp). ‘Note: that
=,suc,zero,T and .F below are.symbols in Lyp: (

posrep(xp,xy) <=> (xp=T & -xy=zero)
negrep(xB,xN) <=> (xp=F & =-xy=zzero)
-rep(xB,yB,xN,yN) <=> ((xy=yy & xg=yg) v (xN-zero & yN-zero))

(So two pairs repesenting integers are equivalent - represent the same
integer - if the pairs are identical or-if the natural number element .
in each pair is zero.)
xp=T => (suchepN(xB,xN)-suc(xN') & (sucrepB(xp,xy)=T) ‘
(xB F&- (xN-zero)) ->(sucrepB(xB,xN) F)& :
‘ . there-exists yN(sucrepN(xB,xN) =yy & suc(yN) xN))- _
(xB=F & xy=zero); => (¢ sucrepB(xB,xN) T & sucrepN(xB,xN) suc(zenp)‘;p;

‘(These three axioms define sucrepN and sucnepB by cases.)
We add similar axioms for predrepN and predrepB.

HaVing added ‘the . above~symbols‘and ‘axioms to*NBOOL,*we'get‘a

:specification ENBOOL, We remark that all values in this. new- ‘theory.. are"{

fstill descrlbed by those . provxded by . NBOOL because of the. namabllity ;‘
‘axioms for pnat and bool. - Thus' models.-of ENBOOL-'can -be: obtalned onlyf
:by extending those of NBOOL without adding new objects."

I3

(i) - (iv) above define a translétion I of'terms from JINT to ENBOOL

2
us, “for: example:
'zeroNI =~zero, i zeroBI =T

’~(suo(t))N C= sucrepN(tBI,tN)
(suc(t))B = sucrepB(tB ,tNI) ete, -

We'extend this translation to atomic.formulae by:

pos(t)I z posrep(tBI,tNI),- neg(t)I = negrep(tp™ ,tNI)

(t=w)I = =rep(tBI,uBI,tNI,uNI)

R . . g)
fFor sentences in general, we have to be careful because we want
}translated sentences ‘to hold only for objects which: really represent
'values ‘in the source ‘of the translation I. (Although we had no 'junk!
elements here, in general we;do) We do . this by relat1v151ng
fquantiflers - ie, we condition quantifiers to range only over those
‘values Wwhich satisfy ‘the relat1v1sat10n predicates as. these are meant

{to define such representatlves. For’ Q and R formulae we have: . A

(-@T = oI, (qam)I = larl
fand for Q with free variable x ‘we have:

(for-allxQ)! = for-allxy for-allxy (is 1nt(xB,xN) - QI)

(there-existsxQ)® = there-existsxpthere-existsxy (is_ 1nt(xB,xN)
=5 s ‘ &l
Thus for example, .

‘(for-allx for-ally (suc(x)=suc(y) => x=y))I
= for-allxg. for-allxy for-allypg for-allyy (is_int(xg,xy) =>
_((J.S 1nt(yB,yN) -> (
_rep(sucrepB(xB,xN) sucrepB(yB,yN) sucrepN(xB,xN) sucrepN(yB,yN))
-> *rep(xB,yB,xN,yN))))
v
:Te assure ourselves that our translation I is faithful in the sense of
preserving the properties of integers as we have defined them, it is
sufflclent to show that the axioms Alnt translate under I .to theorems
uof ENBOOL., In particular, the namabllity axiom for integers '
for-allx (V, ;4 7 %x=2) translates to:
for-allxpfor-allxy (is_int(xp,xy)) => V, ;i Z:rep(xB,zBI,xN,zNI))'

That .is, ‘every pair of values satisfying the relativisation predicate

24

‘1s int: must. be equ1valent to the translatlon of an. allowed name ifor’ an
.1nteger. One usually checks that the translated namability akl m;is ai
<consequence of the target “theory .by some :sort of 1nduct1ve angument
based on” names in_ the: source.~ (We remark that the ax1oms definlng

,equallty also translate to relat1v1sed equalaty ax1oms)
'In general ‘a translat1on as. deflned by (1) - (1v) above. w1th the
property ‘that axioms of the source are translated to theorems of the

ftarget is called an interpretation between theor1es [END], [SQBJ. i

leen theories (L A) for i 1, 2 3 H and 1nterpretations Coae
Iyt (L Ay) -> (L1+1’A1+1) we have the followlng 51mp1e propertles. o

'a) I +1.0 Iy for i=1,2, 3 ex1sts, is deflned obv1ously in terms ‘of
mapplngs deflned analogously to (1) _,(1v)“above, and 1s an
~1nterpretat10n between theorles. SRR Q:' ;ﬂl K . f',ﬂ J'W

:b) Moreover, I3o(12011) (13012)011.»€ Thnsnjcompositlonfrof
‘interpretatlons 1s assoc1at1ve.‘ RN : ’wf-ﬂ-‘ e ot < "
Based on- the above results,'extensions of | those found in. [END], [SCH],
we now proceed to glve results that connect the two 1deas of an

exten51on and an 1nterpretat10n of a spec1f10atlon.‘

Vhen we' say that we can’ 1mplement spec1f1cat1on S = (L A) in. terms of
‘speoiflcatlon T = (M B) - for example, INT in’ terms of NBOOL =:we mean
3that we .can extend S conservat1ve1y to TS[T] so that: we can deflne an
‘interpretation\ between theorles I S-—>TS[T]. Denotlng conservatlve
Texten51on by >- -> ‘we: have the follow1ng 51tuat10n,‘ e G

ST >_Tsv[:T] PR

3

(We mlght characterlse the 1mp1ementation of s 1n T by the pair

:(x TglTD e e T e

;Using Implementatlons RO

developlng speclficatlons we mlght now con51der doing two thing f
_F;rstly,.we might. want: to conservatively extend S and automatlcally

25.

rry ourxexten51on over to the 1mplementat10n of S by T. That is,” we.:

‘ould(llke to be able to complete the dlagram.

N

7 Ts[T], B

DR]'
4

'-'in35qmélaﬁ£omatic fashion..

I

Secondly, Wwe mlght wish to use.. an 1mp1ementat10n of T in terms of U to

1,

get ‘an 1mplenentatlon of S in terms of U, Graph1cally, thls can . béﬁ
1 1ustrated by the follow1ng.

Here (IZ,UT[U]) characterlses the 1mp1ementat10n of T 1n U Agaln we_
usee that we requ1re the completlon of the follow1ng 'rectangle' :

iiér» ,
I i

%6

: Where 12'011 and the target of Io' characterise the implementation of:
:S in U, We proceed to show that the missing specification in sueh™
*rectangles can always be automatically constructed by proving a more-
“general result. '

We will say that the ektension E: S-->3' is conservative exactly ine
" ‘the case that S' contains no theorems, stated only in the language of-
’S, other than those which ‘are provable from S.

Theorem

.Suppose that S;, S, S3 are specifications, and suppose~u

S I > S,

‘where E is a conservative extension, I an implementation, then there
‘exists Sy and I' such that: '

. 53 I >Su
SH I >S5

Moreover E!:SZ—->SA is conservative.

‘Proof - ‘ i S ,

Briefly, Sy and I' are obtained by extending S, and I as follows: For
“each new sort or symbol introduced: in extending 81 to S3, addU
corresponding sort or symbol to So. The translatlon I now extends to
translate symbols introduced into S3 and so we can translate terms or:
“.formulae of S3 to those of Sy. The extension of 82 to Sy is completed'
;by adding to S, the translations It .of the axioms introduced to: get $3
from S84, What remains to .be checked is the conservativeness of
:SZ-->Su which since 82 is consistent gives Sy as consistent. ThlS ‘is av
“istraightforward 'application of the Craig Interpolatlon Lemma [MAKI,
vessentially copying the proof of the ‘Robinson Consistency Theorem from
.the. Craig Interpolatlon Lemma [CK]. '

27

Further:

f E S1-->82 is not conservatlve then in general 84 ‘and I' need not
ekist., For suppose Sq has predicate p and constant a and neither p(a)
or -p(a) are in Con(S4). Suppose further that 84 ===> S3 and p(é)
on(S3) and I:S4 => S, is'such that I(p):p, I(a)za and =p(a) is‘in
Con(SZ). Then Con(Sy) would have to contain both p(a) and -p(a) which .

ould mean that S, was inconsistent. :

As an example, let us implement INT in NAT, We already have an
flmplementatlon of INT in NBOOL (NAT extended by BOOL) and we will how
Nlmplement NBOOL “in NAT, . We outline the necessary details below:

ﬁhégvand bool of NBOOL are both mapped to pat of NAT, To pat of NBOOL

We assign the relativisation pred1cate is_nat of type <paf> which we
}then define to be the 1dent1ty on pat of NAT. ' To bool we assigh the
brelat1v1sat10n predicate is_ bool of type <n3§> which we then define to

is_bool (x) <-> x=zero Vv x=suc(zero).

;Sb‘only zero and sué(zero) in NAT are used as boolean values. - Thus

;@his implementation produces 'junk!,

;We‘thén map zero, sue,':nat of NBOOL ideﬂtically to zero, suc, =nét of
QNAT and we mép T, F and =4, of NBOOL to the new symbols T', F', and
E"bool added to NAT respectively, and define-them as follows:

.Tl=w <-> x=zero . Frzx <=> x=suc(zero)
x='y001 <=> (x=zzero & y=zero) v (x=suc(zero) & y=zsuc(zero))

'To‘check that this mapping is an intefpretation we must check that the
axioms of NBOOL translate to theorems of this extended NAT which we
call ENAT. Clearly, the axioms for natural numbers in NBOOL translate
r£to formulae 1oglcally equ1va1ent to the same axioms 1n ENAT, - As for

the ax1oms concerning BOOL, ~(Tzpo01 F) becomes -(T"boolF)' (Note
that there are no relativisation predlcates in the resulting formulae

‘as Phere are ho variables in the original,) This clearly follows from
the fact that in NAT, -(zero=suc(zero).) .The namability axiom for
bool in NBOOL is b=p501T V bP=peo1 F)., 'Under interpretation, this

becomes: is_bool (x) => (x='poolT' V X='poo1F')). By the
definitions of is_bool, ='y,,1, T', and F' above this is equivalent

28

: ~(x=zero v: x= suc(zero)) -> (x= zero Xz suc(zero))
,whlch is a tautology. s

Thus ‘we have:

INT——— Iy————> ENBOOL

. NBOOL ——————— I, ——————3ENAT

‘and by the above theorem we-can get: .

ENBOOL——— I,* ——3 BENAT

fNBOOL — 12 ,»..,>»ENAT

a0

;w1th BENAT and I2'oI1, charaeterlSlng ‘the 1mplementat10n of INT 1ny
»terms_ef NAT. The varlous detalls omltted above, are stralghtforwardfﬂ

'If we now wanted to extend INT to SINT by deflnlng sequences off
“1ntegers (as done earller in this report for NAT) Wwe could usée the?
fabove result to carry thls exten51on 'along' our implementation to get :
f(unlmplemented) sequences of 1mplemented 1ntegers, SBENAT'a"’ ’

1

gSiNTﬂrH I, > SENBOOL > SHENAT

CINT——— Iy ———— 5 ENBOOL ——=— I, '~ >BENAT

e ' A -
I . : Lt L

NBOOL ————"T5 s ENAT |

NAT

Conclusion

‘feel that: the theory of 1mp1ementation presented -above provides a
mple, straightforward technical tool for reasoning about: software
velopment.» The maJor point in 1ts favour lS the suppreSSion of the
chnical flaws Sin earlier theories where 1mplementations were ‘not
ased on interpretations and compos1tion was, 1nadequately defined Thex
eory of . specification outlined and our theory ‘of. 1mp1ementation
ovides a. w1de»degree of freedom ‘in ch0051ng implementation
rategles. A structured specification can ‘be implemented all at once
to: a: specification which ‘is either the same’ in- structure or . quite
}Ifferent from’ the originalr‘ Parts of the structure can be

‘mplemented 1ndependently. f:_-'ifp

urther WOrk 1s in’ progress on a number of . fronts. For example,
‘heories are not always’ presented 1n the same formal system, as for
ample, - the .realisation of a first order speciflcation-in a
onventional language like PASCAL which has a"Hoare- like, modal logic.
'kare exploring 1nterpretations between theories 1n different. formal
‘ stems.‘We are also exploring the concept of parameterisation and
'fining implementations of. parameterised specification. The requ1redf
operties, 1nc1ud1ng the commuting of - implementation with parameter
‘as51ng «([BG], [EK], TGAN]y [PV, [SWI),> turn -out to. be
straightforwardly derivable again 1llustrating the: suitability of -our
?ools. Finally ‘we are’ exploring the idea of 'loose: 1mp1ementation' as
last step to. get +Eor example, from a specification of 1ntegers £ o
the finite representations p0351b1e 1n any machine.. Ba51cally, the
1dea is., to further restrict the relativ1sation predicates when we
con31der the translation of axioms.' We partition each relativisation
:edicate 1nto an interior (which respects the axioms of the source
‘ecification) and a boundary (which takes care of overflows and other

boundary 'errorsQ..

R M Burstall, J A Goguen.e'The Semantics of CLEAR a
Specification Language' Proc of " Kdvanced Oourse on Abstract~
f Software Specifications, Copenhagen, LNCSSé Springer-Verlag 1980
Kl17¢ ¢ Chang, Hd. Keisler.‘Model Theory. North Holland 1977
_[EHR] H D Ehrich.,'On the Theory of Spec1f1cation, Implementation and

30

Parameterisation bf»Abstract Data- Types'.JACM, Vol 29, No 1, 11982
[EK] 'H Ehrig, H-=J Kreowski. 'Parameter Passing Commutes with
Implementations of Parameterised Data Types'.Proc of 9th ICALP,
LNCS 140, Springer-Verlag 1982 '
[EKP] H Ehrig, H-J Kreowski, P Padawitz., 'Algebraic Implementation'of
Abstract Data Types: Concept, Syntax, Semantiés and Correctness!
Proc 7th ICALP, LNCS 85, SpringeraVeﬁlag, 1980
[END] H B Enderton. 'A Mathematical Introduction to Logic!, Academic
Press, 1972
[GAN] H Ganzinger. 'Parameterised Specifications: Parameter Passing
"and Impleméntation'. Technical Report, Dept EECS, U Caiif,'
Berkeley, 1980, To appear TOPLAS
[GTW] J A Goguen, J W Thatcher, E G Wagner. 'An Initital Algebra
’ Approach éo the Specification Correctness, and Implementation of
Abstract Data Types', In R T Yeh (Ed) 'Current qunds‘in
Programming Methodology - Vol IV' Prentice Hall, 1978 S
[GH] J V. Guttag, J J Horning, 'The ‘Algebraic Specification of
- Abstract '‘Data Types'. Acta Informatica, Vol 10, N0’1,>1978.
[KMS] S Khosla, T S E Maibaum, M.Sadler. 'Database Specification’..
Dept. Report, Imperial College; London, 1984 S
Lzl B Liskov, S Zilles, 'Specifipation.Techniques fqr Data
Abstraction' ,IEEE Trans. Software Eng. Vol SE-1, No 1, 1975
[MV] TS E Maibaum, P A S Veloso. 'A Logical Approach to Abstract Data
Types'.Technical Report, Dept of Computing, Impérial College,1981"
(To .appear in Science of Computér Programming)
[MAK] M Makkai, 'Admissible Sets and Infinitary Logict',Handbook of
Mathematical Logic., North Holland, 1977
[NOU] "F. Nourani, -'Constructive Extension and Implementation of
Abstract Data Types -and Algorithms'!, PhD thesis, Dept of Compu&er
Science, .UCLA, 1979 : ‘ E N
[PV]‘A Poigne, J Voss., 'Programs over abstract Data Types - On the
.Implementations of Abstract Data Types'. Draft Technical Report,
University of Dortmund, 1983 ‘
[SCH] J R Shoenfield, 'Mathematical Logic',Addison Wesley, 1967,
[SW] D Sanella, M Wirsing, 'Implementation of Parameterised
Speciﬁieations'. Proc 9th ICALP, LNCS 140, Springer-Verlag, 1982
[WB] M Wirsing, M Broy. 'An Analysis of Semantic Models for Algebraic
Specifications', International Summer School on Theoretical
FoundationS‘of Programming‘Methodology, Mérktobekdorf, Technical-
Report, Technical University, Munich, 1981 : B

