
FORMAL DATA BASE SPECIFICATION -

AN ECLECTIC PERSPECTIVE

Marco A. Casanova*, Paul0 A.S. Veloso**, Antonio L. Furtado**

* Centro CientIfico de Brasilia
IBM do Brasil

Caixa Postal 853
70.000, Brasilia, DF

Brasil

** Departamento de Informztica
Pontificia Universidade Catslica do RJ

Rua Marques de S. Vicente, 209
22.453, Rio de Janeiro, RJ

Brasil

ABSTRACT

Logical, algebraic, programming language, grammatical
and denotational formalisms are investigated with res
pect to their applicability to formal data base specz
fication. On applying each formalism for the purpose
that originally motivated its proposal, it is shown
that they all have a fundamental and well integrated
role to play in different parts of the specification
process. An example is included to illustrate the
methodoldgical aspects.

1. INTRODUCTION

Although data base theory has been largely influenced
by concepts derived from first-order logic, either in
their pure form or adapted to the particular needs of
data base research, there have been many attempts to
use algebra, high-level programming language constructs,
granznars and denotational semantics to capture data
base concepts. The purpose of this paper is to inves-
tigate the applicability of these different kinds of
formalisms to the process of specifying data base appli-
cations subjected to integrity constraints.

The major contribution of the paper lies in selecting
the appropr{ate variation of each formalism for each
level of specification, in the style of organizing the
formalisms together into a coherent conceptual design
framework and in the formal notion of refinement bind-
ing the different levels. Thus, contrarily to most
published literature, we neither limit ourselves to
just one formalism at just one level nor force the use
of the same formalism at different levels, which often
creates distortions. Finally, although the paper is not
intended to be a survey of the area, it may serve as a
guide to different approaches to data b&e theory.

kndssion to copy without fee all or part of this material is granted
provided that the copies an not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Associarion for Computing Machinery. To copy
~thmvi~, or lo republish, requires a fee and/or specific pernkion.

0 1984 ACM 0-89791-128-8/84/004/0110 $00.75

110

2. THE CONCEPTUAL DESIGN FRAMEWORK

We divide the design process into three levels of
specification, which can be summarized as follows.
The first level, the information level, characte-
rizes the data base by its information contents
independently of how the information will be used
or represented. It gives a high-level description
of the set of consistent data base states and the
set of state transitions and typically involves a
language to talk about the data base and a set of
staiic-constraints indicating which states are
consldered consistent, and a set of transition
constraints indicating in turn which transitions
are acceptable. In this paper, we will adopt an
extension of first-order languages, as described
in Section 3.

At the second level, the functions level, we add
to the characterization of a data base a repertoire
of functions, establishing how we intend to use the
information. These functions indicate how the data
base will be queried or updated and depend on the
applications the designer anticipates for the data
base. We will use in this paper an algebraic forma
lism related to abstract data types, which is des-
cribed in Section 4.

The thirdand final level, the representation level,
specifies the data base with the help of a data
model. A representation of the data base in terms
of the data structures supported by the data model
must be found and the functions defined at the
second level must be mapped into procedures using
a Data Manipulation Language (DML) associated with
the model. The third level therefore brings us cl0
se to the implementation of the data base applica-
tion on top of a Data Base Management System (DBMS).
A Grogramming language, described in Section 5, will
be used to specify the data base at the third level.
The syntax of the language is given by a grammatical
formalism, W-grammars, and its semantics is descri-
bed using a denotational formalism.

Each level of specification must be a refinement of

the previous one, in the sense that the second-level
update functions must preserve the first-level static
and transition constraints, and the third-level pro
cedures defining second-level functions must satis?y
the second level equations. This is further discussed
in Sections 4.3 and 5.3.

The reader is referred to the full version of the p$
per CVCFI for a more thorough discussion,

3. THE INFORMATION LEVEL - THE USE OF LOGICAL
FORMALISMS

3.1 Logical Formalisms

In this section we briefly indicate how a data base
can be specified, at the information level using a
logical formalism. We assume familiarity with first
order logic at the level, say, of [En], so that the
presentation of the formalism will be very terse.

There have been attempts to either use subsets of
first-order logic or use extensions of the formalism
depending on the aspects of data base design in
question. We illustrate this phenomenon in this paper
by defining an extension of first-order languages
that helps capturing transition constraints. The
extenston is perhaps the simplest one and depends on
the introduction of two modal operators. Other sets
of modal operators can be adopted to enhance the
expressive power of the language. A different approach
could also be taken by selecting a many-sorted first
order language with a special sort interpreted as
time (see CCF,BADW] for extensive discussions).

Given a (many-sorted) first-order language L, its
temporal extension, LT, is defined as follows. The
symbols of LT are those of L, plus one modalopera-
tar , the possibility operator denoted by . The
modal operm of necessity is the dual of 6 in
the sense that it can be introduced by definition
as cu?~.01P. The terms of LT are those of L and
the set of wffs of L is defined using the familiar
formation rules , plus one new rule:

If P is a wff of L or LT, then OP is also a wff of LT

The semantics of LT is defined as follows. A universe
U for LT is a pair (S,R), where S is a set of struc-
tures of i, all with the same domain D (this restric-
tion can be relaxed, but it simplifies the treatment
of quantifiers), and R is a binary relation over S,
called the accessibility relation. Given a wff P of
LT, a structure A in S and a valuation v over the
common domain D, we define the notion that A satisfies
P with v in U (denoted % P[v]) using rules identical

to those of first-order languages, plus one additional
rule:

1; (OP>C*I iff there is B in S such that
R(A,B) and 1: P[V]

The notions of model, logical implication and theory
are as for first-order languages.

Thus, to account for transition constraints, a data
base is specified at the information level by defining
a theory Tl=(Ll,Al), where Ll is a temporal extension

of a (many-sorted) first-order language L and Al is a

set of axioms. The non-logical symbols of Ll describe
the data base data structures and all ordinary symbols

111

such as "less than", used to express facts about
the data base. Symbols representing data base strut
tures are called db-predicate symbols. The axioms -
in A define static constraintmhey do not
invo ve modalities, 1 or transition constraints,
otherwise. The semantics of the data base is fixed
by selecting a universe U=(S,R) for Ll. The strut
tures in Splay the role of data base states and-
the relation R over S is interpreted as indicating
that, if (A,B) is in R, then B is a future state
with respect to A. A structure A in S corresponds
to a consistent state iff it is a model of Al.

We note that the semantics of a data base, as ex-
plained above, is only loosely fixed by the theory

Tl' especially the relation R. This situation is
modified when the functions level (i.e., algebraic)
specification of the data base is fixed (section 4).

3.2 An Example

We are now in a position to present our example
data base and formalize it at the information level.

The example data base is defined by a theory

~lgl;;&;'m~h;;,'t;l is a many-sorted temporal lan
, course and student, and two -

predicate symbols, od&mof sort course , and
takes, of sort <student, course>. Thezded
interpretation ofednthat course c is
offered, and of Rakes(s,c) is that student s takes
course c. The set Al of axioms consists of two for -
mulas:

(1) ,3s&(.takes(s,c) A lobtWed(c))
(2) ds3c(0 Hakw(s,c) A 0 (~3c’Aaken(s,c’))))

The first formula formalizes the static constraint:
"a student cannot take a course that is not being
offered". The second formula formalizes the transi
tion constraint: "the number of courses takenby a
student cannot drop to zero" (i.e., he cannot be
taking a course in (some) current state and no tour
se in a future state).

4. THR ALGEBRAIC LEVEL - THE USE OF ALGEBRAIC
FORMALISMS

4.1 Algebraic Formalisms

Recall that the goal of a second level specification
is to define a set of query and update functions
that preserve the static and transition constraints
listed at the information level specification, provi
ded that only such functions be used (the encapsula-
tion strategy). This can be achieved by giving the
data base application an algebraic specification
lVF,DMWI.

An algebraic specification is a first-order theory
T=(L,A), where L is a many-sorted first-order lan
guage and A is a set of axioms obeying the follozing
restrictions.

The set of sorts of L must include a Boolean sort
and a designated sort state (also called sort-of-
interest). The remainingsorts are called parameter
sorts. The only predicate symbols of L are two equa
litysymbols of sorts <Boolean,Boolean7 and
<state,state>. For simplicity, and since no ambiguity
arises, both are denot.ed by '=I. The parameter sorts

of L are endowed with their own function symbols
(not involving the sort state) which have the effect
of generating a set of ground terms called parame-
ter names. Besides, each parameter sort s must have
-function symbol of sort <s,s,Booleanp, also denoted
by '=I, which checks equality among objects of that
sort.

The Boolean sort will be equipped with two constants,
True and False, and with five function symbols
standing for the usual connectives, -I, v, A,=>, g
written in infix notation.

The language L may have other function symbols as
long as state occurs as one of the domain sorts.
To simplche notation, we assume that state is
always the last one in the list of domain sorts. Thus,
if f is an n-ary function symbol in this group, it
must have a sort of the form <s 1'"" state,s > n+l
(recall that s n+l is the target sort). If sn+l is the

sort state then f is an update function (intuitively,
it maos states into states accordine to some areu-

I

ments); otherwise, f is a query function (it iiterro
gates the current state, according to some arguments-
and returns a value). Let f be an n-ary query func-
tion. Whenever terms of sorts other than state are
irrelevant, we will write f(s) instead of f(tl,...,s).

A term of the form 4(tl,...,Fn> where q is a query
function and tl,..., t, contain no occurrences of
update functions is called a simple observation. We
will Construct the language L2 to be sufficiently
rich with queries so that states can be identified
by means of simple observations. More precisely, if
s and s' are state variables such that for all sim-
ple observations f we have f(s)=f(s'), then s=s'.
This observability condition is often fulfilled by
data base applications due to their purpose.

The type of axioms allowed in algebraic specifi-
cations will be conditional equations, which are
wffs of the form P *t=t' where P is -a wff and
t and t' are terms of the same sort s. If s is
state then we call the axiom an U-equation, other
Gwe call the axiom a Q-equation. Often term t'
is "simpler" than t and we can view an axiom as a
conditional term-rewriting rule.

An algebraic specification, being a theory, defines
a set of structures, the models of the theory. (In
the context of algebraic specifications, structures
are called (many-sorted) algebras). As usual, we
further restrict this set to be the set of all
finitely generated algebras (i.e., those in which
every element is the value of a variable-free term)
which are models of the axioms. Thus, we can employ
the principle of structural induction (on terms)
as a proof rule.

We call an algebraic specification T=(L,A) suffici-
ently complete iff for every ground term of the
form q(t1,..., t,), where q is a query function (with
target sort s, say), there exists a parameter name p
(of sort s) such that FA q(tl,...,t,) = p.
Intuitively, a sufficiently complete algebraic speci
fication is one enabling the evaluation of all querTes.

4.2 Obtaining a Functions Level Specification -
An Example

We now outline the methodology we employ to obtain
an algebraic specification T2=(L2,A2) of a data
base application at the functions level.

Consider again the data base application described
at the information level by the theory Tl=(Ll,Al)
of Section 3.2. For simplicity, we take the para-
ter sorts of L2 as the sorts of Ll. Moreover, we
correlate.the db-predicate symbols of Ll describing
data base structures with query function symbols.
So, L2 will contain two query function symbols,
offered and takes, of sorts <course,state,Boolean>
and <student,course,state,Boolean>, respectively.
The intended interpretation of offered(c,U), for
example, is that it is true iff c is a course
offered in state U.

The update function symbols (with their intended
interpretation) are: initiate of sort <state>, with
initiate understood as an operation that initializes
the data base; offer of sort <course,state,state>,
where offer(c,Umndicates that c is added as a
new course to state U, creating state 6; cancel of
sort <course,state,state>, where cancel(c,U)=6
means the inverse operation; enroll of sort
<student,course,state,state>, where enroll(s,c,U)=&
creates a new state 6 by enrolling student s to
course c on state U; transfer of sort <student,
course,course,state,state>, with transfer(s,c,c',
a)=6 understood as creating state 6 from state U

by transferring student s from course c to course
C’.

Our task now is to write a set of conditional equa-
tions from which we can obtain the correct result
of every query and, at the same time, guarantee
that consistency is always preserved. In other words,
for every query function q, for all parameters p and
for all ground terms t of sort state, we should be
able to derive from the axioms the equality q(p,t)=b
where the Boolean value b is the correct answer actor
ding to thx description. Now, the set T of -
ground terms of sort state is the smallest set of
terms containing initmand closed under symbolic
application of the other update functions. Thus, we
shall strive for Q-equations of the form (perhaps
with some condition):

q(p,u(p',U)) = "simpler expressionn

for all query functions q, update functions u and
parameter lists I, and p', u being a variable of
sort state.

In order to obtain such equations we employ struc-
tured descriptions giving, for each update function,
midtended effects , preconditions for state change,
possible side-effects, and simple observations that
are not affected. In fact, we obtain equations that
are guaranteed, by construction, to be correct with
respect to the description. Then, we verify suffi-
cient completeness.

As an example of the method, let us consider the
update function cancel, whose structured description
is:

112

6 = cancel(c,U)

I* course c is cancelled at state 6, providing that

*/
no student is taking it at state u

intended effects: offered(c,U) = False
pre-conditions: Ys~s,c,u) = False)
side-effects: none
not-affected: all other queries, including

offered(c’,.) with c’fc

We shall examine in detail the case of the
query offered. In other words, we want (conditional)
equationsenabling us to derive the correct results
of queries of the form:

offered(c’,cancel(c,U)) - -

We shall d vide our task into two cases depending on
the comparison of c’ with c.

For the first case (c#c’> the not-affected part of
the structured description tells us that the value
of offered(c’,.) is not affected by the update, i.e.

offered(c’,cancel(c,U)) = offered(c’,U)

We can put this into the form of a conditional
equation

c’#c 9 offered(c’,cancel(c,U)) = offered(c’,U) - -

Notice that the antecedent of the conditional equa-
tion does not involve terms of sort s, only
parameters. Also, the righthand side of the consequent
is “simpler” than the lefthand side.

Now let us examine the case c’=c. According to the
structured description, the value of
offered(c,cancel(c,U)) will depend on the pre-condi
-If the pre-condition holds then we have the -
intended effect False. Otherwise the value remains
unchanged. Thus, we have:

offered(c,cancel(c,U)) =
False if ts(takes(s,c,U) = False)
offered(c,U) if %(takes(s,c,U) = True)

Now, in view of the static constraint, we have:

+s(takes(s,c,U) = True) qoffered(c,U) = True --

So, we can write

offe@d(c,cancel(c,U)) = True E G(takes(s,c,U)=True)

which can be rewritten as two conditional equations:

+s(takes(s,c,u) = True) =>offered(c,cancel(c,U))=w

+js(takes(s,c,U)=True) =>offered(c,cancel(c,U))=False ---

Three remarks are in order. First, in obtaining this
equation we used the static constraint (assumed to
hold; we shall later have to verify that it does
hold). Second, the antecedents of the above conditi-
onal equations do not involve quantification over
states, only over parameters. Third, we may regard
these equations as reducing the problem of determining
offered(c,cancel(c,U)) to that of determining whether
there exists a student s such that takes(s,c,u)=E,

which may be viewed as a problem somewhat simpler
than the original one. However we must be careful,
for some other equation might reduce the problem
of determining takes(s,c,U) to that of determining
offered(c,U), thereby creating a circularity. This
isreason why we later verify termination.

By applying the general methodology outlined above
we obtain the following set of Q-equations for our
example :

1.
2.
3.
4.
5.
6.

offered(c,initiate) = False
takes(s,c,initiate) = F-‘-- CQLJ.s

offered(c,offer(cP)) - = True
cTc’offered(c offer’ - *‘-
takes(s,c,offe - -

7.
8.
9.
10.
11.

;

C

(cr;;?T) = offered(c
r(c’;U),) = takes(s,c,U)

ffered(c,cancgl(c,U)) = True z
s(takes(s,c,U) = True)
#c’ffered(c,c~l(c’,~)) = offered(

. el(c’,a)) = takes(s,c,U) -
: offered(c.U)

:,O>

c,u)

12.
13.

14.

15.

takes(s,c,canc
offered(c,enroll(s,c’,U)) l
takes(s,c,enroll(s,c,U)) = offered(s,a).

rv cfc-’ *
takes(s,c,enroll(s’,c’,U)) = takes(s,c,U)
offered(c,transfer(s,c’,c”,U)) = offered(c,u)
takes(s,c’ ,transfer(s,c,c’,U)) =
(offered(c’,U) A takes(s,c,U)) v e(s,c’,U)
takes(s,c,transfeG,c’,U)) =
(,offered(c’,U) v takes(s,c’,U)) * e(s’c,U)
s#s’ v (CZC’ A CPCF
takes(s,c,transfer(s’,c’,c”,U)) = s(s’c,U)

4.3 First to Second Level Refinements

The information and functions level specification
of a data base application are bound by a notion of
refinement we describe in this section. Let Tl=(Ll,
Al) and T2=(L2,A2) be the information and functions
level specification of the same data base application.
Intuitively, we say that T2 refines Tl iff the axioms
in A2 are sufficient to guarantee that the updates
preserve consistency with respect to the static and
transition constraints in Al. Although this condi-
tion is on the surface simple, it creates some tech
nical difficulties to be formalized, mainly because
the two languages, Ll and L2, are of different types.
In particular, wffs of Ll may contain modalities,
which are not part of L2.

For simplicity, we assume that every sort of Ll is
a parameter sort of L2 and every variable of Ll is
also a variable of L2.

The notion of refinement is formally defined by
specifying an interpretation I mapping the non-lo-
gical symbols of Ll into terms of L2 with the follow -
ing

(1)

(2)

(3)

characteristics:

for each n-ary db-predicate symbol p of sort
<Sl,..., sn’ of Ll, I(p) must be a term of L2 of
sort Boolean and free variables sl,...,xnry of
sorts sl, . . . ,sn,E;

for each other n-ary predicate symbol p of sort
<sl,...,sn~of Ll, I(p) must be a wff of L2
with free variahles xl,...,sn of sorts s~,....s~,:

for each function symbol f of Sort isl’... .s,,.

Sri+++ : of Ll, I(f) must be a term of L2 of sort
s~+~ and free variables xl,...,sn of sorts
S1,...,Sn.

113

In our running example, we might define an interpre-
tation I that assigns to the db-predicate symbol
oddwed the term offered(c,o) and to tied the term
takes(s,c,o).

Thus, the notion of interpretation defined above
follows the general idea of first-order interpreta-
tions.

Given an interpretation I, we can extend I to map
wffs of Ll into wffs of L2. However, in order to do
so, we must extend L2 by adding a predicate symbol
F of sort <state,state>, which will stand for the
reachability relation R of the semantics of Ll. The
extension of I is defined in then full paper and an
example appears in the next section.

Thus, at this point we know how to map wffs of Ll
into wffs of Lg. Therefore, we can check if indeed
the equations of T2 are enough to guarantee that all
updates of T preserve consistency. More precisely,
we say that I 2 is a correct refinement of Tl iff for
any axiom P of Tl, I(P) is a theorem of T2.

As for first-order languages, our notion of interpre-
tation can also be used to induce a mapping M from
structures of L

f,
into universes of L

us to give an a ternative (semantica) characteriza- 1'
which permits

tion of correct refinement (see the full paper).

4.4. Proof of Correctness of Refinement - An Example

Let Ti=(L2,A2) be the algebraic specification of the
data base application obtained in Section 4.2. We
must guarantee that T2 has the following properties:

- it is sufficiently complete and correct with
respect to the structured description;

- it is a corr.ect refinement of the first-level
specification given in Section 3.2.

By construction dur equations are already correct
with respect to the structured description. We
proceed by proving: .

(a) sufficient completeness
(b) static consistency, i.e. every reachable state

is valid
(c) every valid state is reachable
(d) transition consistency

Parts (b) and (d) are equivalent to saying that the
refinement is correct. Part (c) enables us to simpli-
fy the verification of part (d), in addition to being
an interesting property by itself. Notice, however,
that by contrast not all valid transitions will be
realized by our repertoire of update functions.

We outline below how these properties can be proven:

(a) Sufficient Completeness

We can view our set of Q-equations as a system of
mutually recursive equations defining the query fun5
tions. From this viewpoint, sufficient completeness
amounts to termination of this system of recursive
definitions. There are several criteria for checking
termination of such term rewriting systems. However,
the basic idea is checking the absence of circularity
in these definitions. This basic idea will do for
cases simple as our example.

(b) Every reachable state is valid

Consider the set V of all valid states, i.e., the
set defined by

Ycfs(takes(s,c,U)=True *offered(c,U)=True) --

The set G of reachable states is the least set.of
states containing initi=d closed under all the
other update functions. So, in order to show that
the static constraint is satisfied at the functions
level, i.e., G c V, it suffices to show that V
contains initiate and is closed under all other
update functions.

(c) Every valid state is reachable

Consider again the sets V of valid states and G of
reachable states. We now want to show the inclusion
V c G. For this purpose we can proceed by induction
on the number of courses offered and the number of
enrollments of students in courses.

(d) Transition consistency

The transition constraint of our example (see
Section 3.2) is logically equivalent to

Ysfc(O(takes(s,c) *0(3c'takes(s,c'))))

which can be rewritten, by applying the notion of
refinement as

VaO(VsVcVo(F(oU,u) =(takes(s,c,a) = True =
V&(F(U,d) *,c'taksc',b)) = True)))

where F corresponds to the accessibility relation.

We shall first check

~fsVcVo(t~kes(s,c,a)=True * %'(takes(s,c',u(o))=True)

for each update function u other than initiate.

We illustrate this checking with the case of cancel.
For this purpose notice that, by equation 8

takes(s,c' ,cancel(c",o)) = takes(s,c',o)

So, if takes(s,c,o) = True then there is c' = c
such that takes(s,c',cancel(c",o)) = True.

The case of offer is entirely similar. For the
update functzenroll and transfer the checking
can be performed by breaking into cases depending
on the comparison of the values of the parameters.

Thus we have that every single-update transition
obeys the transition constraint. It follows readily
by induction that every transition (effected by a
sequence of updates) also obeys the transition
constraint.

5. THE REPRESENTATION LEVEL - THE USE OF A
PROGRAMMING LANGUAGE FORMALISM

5.1 Programming Language Formalism

To qualify as a specification formalism, a programming
language must be simple and theoretically sound. We
shall use regular programs over relations (RPR)

114

(see CCBI), which is associated with the relational
model and is based on the concept of regular programs
of [Hal.

We note that, by specifying a language associated
with a data model, we are in a sense providing a
formal specification of the data model itself.

5.1.1 Syntax - The Use of a Grammatical Formalism

Briefly, the syntax of a data base schema is defined
as follows. Let L be a many-sorted first-order lan-
guage with a set of distinguished constants, called
scalar program variables. If P is a wff of L with free
variables xl,. . , ,s, then we call an expression of.
the form .c(x~,...,xm)/P~ a relational term of sort
<s~,...,s~>, If Si is the sort of xi.

A data base schema has the following format:

schema SCL ; OPL end-schema

SCL is a list of statements of the form RCA1,...,&1
where R is a predicate symbol of L and Al,...&
are unary predicate symbols of L such that, if

<s1,...,sp7 is the sort of R, then Ai has sort <si>,
for each l=l,...,n. Each predicate symbol R in SCL
is called a relation name or relational program
variable. OPL is a lizf operation declarations
of the form "proc I(Y1 ,...,Y,> = S" where I is an
operation identifier, Yi is either a scalar or a
relational program variable, and S is a statement,
called the operation body;

The set of statements (based on L), is defined induc-
tively as follows:

(1)

(2)

(3)

(4)

For any scalar program variable x of L and any
variable-free term t of L of the same sort as x,
the expression x := t is an assignment state-
mPn+ f -.- -- - ,
For any relational program variable R of L and
any relational term F of the same sort as R,
the expression R := F is a relational
assignment statement;
For any closed wff P of L, P? is a test
statement;
For any statements p and q, the expressions
(P u q), (P ; q) and p* are statements called
the union of p and q, the composition of p and
q and the iterationof p, respectively.

We may also introduce some familiar constructs by
ddinition such as if-then, if-then-else, while,
insert and delete. Statements constructed using
these statements and assignments are called deter-
ministic.

The formal definition of the syntax of data base
schemas is given in the full paper, using W-grammars
(see also [FVC]). W-grammars (as also other compara-
ble formalisms, such as attribute gramanars and affix
grammars) go beyond BNF in that they can express
context-sensitive restrictions (e.g., that all rela-
tional program variables in the OPL part of a schema
have been declared in the SCL part), and can be used
to build compiler generators. A correspondence between
W-grammars and logic has been established in CHel.

115

5.1.2 Semantics - The Use of a Denotational Formalism
Formalism

Let L be the underlying many-sorted first-order
language. For a given structure A of L and a given
non-logical symbol s of L, let A(s) denote the value
of s in A. Likewise, let A(t) be the value of a
variable-free term t of L in A and let A(F) be the
relation denoted by F, if F is a relational term.

A universe U for L is a set of structures of L
satrsfying three conditions:

W

(ii)

(iii)

any two structures in U differ only on the
values of the scalar or relational program
variables;
for any A in U, any scalar program variable
x and any element e of the domain of the
sort of x, there is B in U such that
A and B differ only on the value of x,
which is e in B;
for any A in U, any relational program
variable R of sort <sl,...,sn> and any n-ary
relation r c D, x...xDs , where D 5. is the

1 n 1
domain of sort si, there is B in U such that
A and B differ only on the value of R, which
is r in B.

IV I
For a fixed universe U of L, the meaning of state-
ments is given by a function m assigning to each
statement in RPR a binary relation in U as follows:

'v

(1) m(x:=t) = ((A,B) / B is zq;;:)o A, except that
B(x)

(2) m(R:=((xl,...,x,) / PI) = {(A,B) / B is equal
to A, except that B(R) = A(F))

(3) m(P?) = ((A,A) / P is true in Al
(4) m(p u 9) = m(p) u m(q) (union of both relations)
(5) m(p ; q) = m(p) 0 m(q) (composition)
(6) m(p*) = (m(p))* (closure of m(p))

The meaning of procedure declarations is given by a
function k assigning to each procedure declaration
d of the form proc I(YL,...,Y,)= S a function
from DslX...XDsm into the set of all binary rela-

tions over the universe, where D si is the domain of

of sort Si and Yi is of sort si. The function k is
defined as follows:

(7) k(d) = f iff for any (cl,...,cm) in Dsl~...xDsm

f(CL,...,cnJ is the set of all pairs (A,B) in

UxU such that (A~cL/Y~,...,c,/Y,I,B) is in m(S)

If the procedure bodies'are deterministic programs,.
then the range of k is the set of all functions
from U int0.U.

The formal definition of the functions m and k is
given in the full paper using the denotational
approach CBJ!.

5.2 Obtaining a Representation Level Specification -
An Example

Obtaining the third level specification means to
express in the programming language introduced in
the previous section both the kinds of predicates
to be used, under the guise of relations, and the

ouerv and uudate functions that will act uoon them.
&ery functions are trivially introduced by noting
that the language allows logical-valued exnressions
of the form R(t) that yield True if t is in R, and
False otherwise.

In order to obtain in a constructive manner proce-
dures that implement the desired update functions,
we first correlate the four parts of our structu-
red (semi-formal) description of update functions
with the semantics of the statements of the pro-
gramming language.

From the semantic definitions, one readily sees
that, in the simpler cases, an update function f
will follow the pattern:

proc f(x) = (pre-conditions?;effects;side-effects)
u lpre-conditions?

which can also be written using the if-then construct.

More complex updates may require (possibly nested)
tests and iterations. The latter are useful, in parti
cular, to check a universally quantified pre-condi-
tion. Explicitly quantified pre-conditions and the
general form of assignments lead to a more "set-ori-
ented" style of programming, whereas the use of ite-
ration and insert/delete statements favor a "tuple-
oriented style.

The complete programming language specification for
the example is given below:

schema

OFFERED(Students);
TAKES(Students, Courses);

proc initiate0 =
(TAKES := 0 ; OFFERED := 8)

proc offer(c) =
insert OFFERED(c)

proc cancel(c) =
if -13s TAKES(s,c)

then delete OFFERED(c)

proc enroll(s,c) =
if OFFERED(c)

then insert TAKES(s,c)

proc transfer(s,c,c') =
if TAKES(s,c) A lTAKES(s,c') AOFFERED

then (delete TAKES(s,c);
insert TAKES(s,c'))

end-schema

5.3 Second to Third Level Refinements

Let T2 = (L2,A2) and T3 be the functions and repre
sentation level specifications of the same data ba
se application. Then, the operations defined by -
procedures in T3 must satisfy all equations in A2.
Again, we must face the fact that T2 and T3 use
different formalisms, so we do not have a notion of
interpretation readily available.

Recall that T3 uses a programming language, which
is in turn based on a first-order language, say, L3.
For simplicity, we assume that every parameter sort
of L3 and every variable of sort s of L2 is also

a variable of L3.

The notion of refinement is again formally defined
by specifying a mapping K from the non-logical
symbols of L2 into non-logical symbols of L3, wffs
of L3 and procedure declarations of T3. The mapning
K must satisfy the following requirements:

(1)

(2)

(3)

(4)

for each n-ary update function symbol u of L2
of sort <sl,...,sn-l,state,state> K(u) is a
procedure declaration proc U(Yl,...,Y,-1) = S
in T3 such that Yi is of sort Si, for i=l,...,
n-l.

for each n-ary query function symbol q of L2
of sort csl,..., s,-l,state,Boolean>, K(q) is a
wff of L3 with free variables xl,...,x
sorts sl n-l of

,.*.,sn-1
for each n-ary function symbol f of L2 of
sort <sl,...,sn,Boolean>, except those above
and those representing logical connectives and
Boolean constants, K(f) is a wff of L3 with
free variables xl,...,xn of sorts sl,...,sn.

for each n-ary function symbol f of L2 of
sort <s l'...'Sn'Sn+ > with sn+., not equal to
Boolean or State, Klf) = f.

note: the requirement in (5) could be generalized
to K(f) being a wff of L3 with free variables
Xl,. . .,x ,y of sorts sl,...,s
force thz wff K(f) to define E+

if we could
1' unction as

for first-order interpretations.

Ne now pause for a comment from our formalism depar
- tment. If the reader remembers section 4.3, the

next natural step would be to extend K to map wffs
of.L2 into wffs of L3. However, L3 is not powerful
enough to permit us to carry on such extension. In
order to do so, we would need a full programming
logic, such as Dynamic Logic (a separate paper will
explore this possibility). To circumvent this diffi
culty, we adopt a semantic definition of correct
refinement.

Thus, using an interpretation K, we define a mapping
N from universes of L3 into finitely generated
structures'of L2 (see full paper).

Now, using N, we say that T3 is a correct.refinement
of T2 iff for every universe of L3, N(U) 1s a model
of T2.

5.4 Proof of Correctness of the Refinement - An
Example

On analysing the constructive strategy (section 5.2)
we observe that the semi-formal considerations that
resulted in the algebraic equations of the second
level were used but not the equations themselves.
Similarly, our understanding of the syntax and se-
mantics of the programming language helped us, but
the formal definition of these notions were not
directly used.

The formaldefinitions of the syntax and semantics
of the programming language are necessary when we
want to prove that the 'third-level, soecification
is correct. We illustrate this process by taking
the specification of Section 5.2 as examnle.

116

In order to verify that the specification in Section
5.2 is syntactically correct, we have to guarantee
that it can be generated by the corresponding
W-grammar, which creates no difficulty (see full
paper).

We now outline how we can verify that the represen
tation level specification T3 (see'section 5.2) is
a correct refinement of the functions level speci-
fication T2 = (L ,A) (see Section 4.2) under the
interpretation K de lned below: 2 P*

K(offered) = OFFERED(c)
K(v = TAKES(s,c)
K(u) =u , where u is an update function

and U is the homonym procedure

Let L3 be the underlying language of T3.

Intuitively, given a universe U for T3, the inter-
pretation K induces a finitely generated structure
A for L2. At this point, it suffices to clarify
that each element p of the domain of the sort
state of A will be in fact a structure in U. From
now on, we will refer to such elements simply as
states and use p,q,r,... with subscripts if nece-
ssary to denote them (the reader must bear in mind
that states are structures of L3).

It is also important to stress that the domain of
sort state is finitely generated by construction.
That rs, each element p of this domain is the value
of a term of L2, which is schematically of the form:

u&l,-,L..ul(uoL..)>

where UC is the update function symbol initiate of
L2 and Ui with i=l,..., n are also update function
symbols of L2.

Intuitively, since the data base application is
encapsulated by the query and update functions,
the current data base state can be represented by
the sequence-composition (trace) of the operations
used thus far.

To prove that T3 is a correct refinement of T2
amounts to proving that each of the conditional
equations in A2 is (universally) valid in A. Now,
since A is finitely generated and in view of the
previous discussion, we can in fact do an induction
on the lenght of the term u,(u,-,(...(initrate)...))
corresponding to each element p of the domain of
sort state of A. That is, for each P in A2, we will
provemnduction on n that P is valid in A when
the state variable u receives as value some state p
and p is in turn the value of a term
Un("n-l (...(initiate)...>) of L2.

The basis.is trivial. So assume that each P in A2 is
valid in A when the state variable receives as
value some state r and r is the value of a term
v,-l(v,-2(...(initiate)...)) of L2. We will shown
that the result holds when we consider terms of length
n.

Now, let q be an element of S and assume that q
is the value of a term un(urrl(...(initiate)...))
of Lq.

As an example of the induction hypothesis case ana-
lysis, consider equation 6, namely,

(1) offered(c,cancel(c,q)) =True z - -
%(takes(s,c,o) = True) -

In view of the construction of A (which the reader
will find in the full paper), equation 6 is uni-
versally valid in A when U is valued as q iff the
following condition holds (from now on, C will
denote the domain of sort course of A, T will deno
te the domain of sort student of A and S will den: -
te the domain of sort state of A):

(2) for each beC, bEq(OFFERED) iff
(t,b)Ep(TAKES), for some tET
where (p,q) Ek!cantiel(c)B(b)

note: q(OFFERED) denotes the value of OFFERED in
the structure q, and similarly for p(TAKES)

Now, by definition of the procedure cancel, we have:

(3) (p,q) skflcancel(c)l(b) iff
(3.1)

Ol?

(3.2)

if (t,b) # p(TAKES), for any JET
then q is equal to p, except that
q(OFFERED) = p(OFFERRD) - {b)

if (t,b) E p(TAKES), for some t&T
then q is equal to p

In view of the form of (3) (consisting of the dis-
junction of two conditionals) it is natural to divi
de this verification into two cases:

case 1: (t,b) $ p(TAKRS), for any t ET.

Thus, by (3.1), state q is equal to p except that
q(OFFERED) = p(OFFERED) - {b}. Therefore,
b 6 q(OFFERED), which suffices to establish (2) in
view of the conditions of the case.

case 2: (t,b)Ep(TAKES), for some tsT.

Then, by (3.2), state q is equal to p. Thus,
bsq(OFFERED) iff b E~(OFFERED). We will now show
that bfzp(OFFERRD), under the assumption that
(t,b)&p(TAKRS), for some t ET.

Recall that q is the value of a term
Un("n-l (....(initiate)...)). Let ri be the state
denoted by the term ui(u;,,(...(inltiate)...)),
for i=l,...,n (hence rn=q). By the induction hypo-
thesis, each equation P in A2 is valid in A when
u is valuated as ri and c is valuated as b, for
i=l ,...,&-I-1. (We will use A k PCb/c,ri/UYl to
indicate this condition). Let us proceed in a backward
direction to examine the various possibilities for
each Ui, for any b',b"sC and t,ti ES:

(4.1) if u. is initiate then, by equation 2,
A = ttakewitiate) = False)Ct/s,b/cl

(4.2) if u* is offer then, by equation 5,
A k ttakeG,offer(c',U)) =

takes(s,c,m/s,b'/c',b/c,ri-l/o]

(4.3) if ui is cancel then, by equation 8,
A k (takexcancel(c',U)) =

takes(s,c,ms,b'/~?,b/c,r~-l/o]

(4.4) if u' is enroll then, by equation 10,
A]= ttakeGenroll(s,c,o)) =

offered(c,~s,b,bc,ri-l/U]

and by equation (ll), if t#t' and b#b':

117

A 1 (~(s,c,enroll(s',c',U)) =
takes(s,c,a))(:s,t'/s',b/c,b'/c',ri_l/Ul

(4.5) if
A k

ui is transfer then, by equations 13,14,15
((s(s,c,transfer(s',c',c",a)) =>
(dffered(c,o)Vtakes(s,c,o)) = True)

Ct~',b/c,b~b"Ic",ri-1~

The backward induction uses (4.1)-(4.5) repeatedly.
In many cases we are simply led to examine a previous
state , since the expression says that b is offered
after the application of ui if it was offered at

2-l -
However this process cannot reach initiate,

w ere b would not be offered, contrarily to the
condition of case 2. We can verify that the only
way to fulfill this condition, rewritten as

(5) A k (3s takes(s,c,o))Cb/c,rn-l/o1

is either by enrolling some t in b or by transferring
some t to b, in any case in a state r. where b is
offered. Moreover, by equations 9 and? 1 , b will
still be offered after any of the two operations is
applied. Hence, we conclude that

(6) there exists j <n such that
A (&(takes(s,c,o) = True)rb/c,r /U! iff
A

1
(%.(G(s,c,u) = %&Cb/c,r"?bl and

A, (offsc,U) = True)Cb/c,rj/Uj

Let k be the minimum such j. So, from (5) and (6),
we have that:

(7) A b (3s takes(s,c,u) = True)Cb/c,rk/u] and

A k (offered(c,o) = True)Cb/c,rk/bl

Now, we can proceed in a forward direction to show
that indeed

-.

(8) A b (offered(c,o) = True)Cb/c,r,-l/u1

since the only way to reach from r* a state where
b is no longer offered is by cance 1 ling b, which
fails as long as there is a student taking b (here
we are using, among others, equation 6, the very
equation that we are about to prove; this is legi-
timate because we are assuming by hypothesis its
validity up to state r,-1).

That is, using the notation of T3 and the cons-
truction of A, and since p = rn-1, we have that
b E p(OFFERED), as was to be shown.

Proceeding similarly we can verify that all the
equations of the functions level are satisfied by
our specification of.the representation level.

6. CONCLUSIONS

In spite of marked differences in notation, the
five formalisms discussed in this paper have a cha-
racteristic in common: they are all related to logic.

The one-to-one correspondence between db-predicate
symbols (first level), query functions (second level)
and relation names (third level) provided a certain
uniformity that facilitated going through the 'diffe-
rent notations. This coincidence, although not a . . mandatory design decision, p roved to be convenient.

One of the more significant differences across the
three levels of specification is the treatment of
states. States are implicitly described by their
properties at the information level. They are ex-
plicit parameters at the functions level. At the
representation level they are defined in terms of
the value of the entire collection of data base
relations; each statement mentions only the relations
that it affects. Intermediate states may be consi-
dered as an operational (machine-like) aspects of
the representation level, resulting from the execu-
tion of single statements.

We believe that the discussion and the example
substantiate the claim that each formalism does play
a relevant role in the formal specification of data
bases, especially when used for the objective that
originally motivated its proposal.

Selected References

[BADW] A. Bolour. T.L. Anderson. L.J. Dekevser and

CBJl

CCBl

CCFI

CDMWI

[EnI

CFVCI

[Hal

[HeI

[VCFI

CVFI

N.K;T. Wang, "The'Role of Time in Information
Processing-A Survey", ACM SIGMOD Record 12,3
(1982), 27-50.
D. Bjorner and C-B. Jones, Formal Specification
and Software Development, Prentice Hall (1982).
M.A. Casanova and P.A. Bernstein, "A Formal
System for Reasoning about Programs Accessing
a Relational Database", ACM TOPLAS 2,3 (1980),
386-414.
M.A. Casanova and A.L. Furtado, "On the Des-
crintion of Transition Constraints "sine
Temporal Languages",

~W
in Advances in Database

Theory, Vol. II, H. Gallaire, J. Minker
and J-M. Nicolas (eds.), Plenum Press (to
appear).
W. Dosch. G. Mascari and M. Wirsinn. "On the
Algebraic Specification of Databases", Proc.
8th Int'l. Conf. on Very Large Data Bases
(1982), 370-385.
H.B. Enderton, A Mathematical Introduction
to Logic, Academic Press (1972).
A.L. Furtado, P.A.S. Veloso and M.A. Casanova,
"A Grammatical Approach to Data Bases", Proc.
9th IFIP World Computer Congress (1983),
705-710.
D. Harel, First-Order Dynamic Logic, LNCS
Vo1.68, Springer-Verlag (1979).
W. Hesse, "A Correspondence Between W-Grammars
and Formal Systems of Logic and its Applica-
tion to Formal Language Description", Tech.
Rep. TUM-INFO-7727, Technische Universitat
Munchen (1977).
P.A.S:Veloso, M.A. Casanova and A.L. Furtado,
"Formal Data Base Specification - An Eclectic
Perspectiveu, Technical Report l/84,
Pontificia Universidade Catolica do RJ (1984).
P.A.S. Veloso and A.L. Furtado, "Stepwise
Construction of Algebraic Specifications", in
Advances in Database Theory-Vol.11, H. Gallaire,
J. Minker and J.-M. Nicolas (eds.), Plenum Press
(to appear).

w

118

