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ABSTRACT 

Logical, algebraic, programming language, grammatical 
and denotational formalisms are investigated with res 
pect to their applicability to formal data base specz 
fication. On applying each formalism for the purpose 
that originally motivated its proposal, it is shown 
that they all have a fundamental and well integrated 
role to play in different parts of the specification 
process. An example is included to illustrate the 
methodoldgical aspects. 

1. INTRODUCTION 

Although data base theory has been largely influenced 
by concepts derived from first-order logic, either in 
their pure form or adapted to the particular needs of 
data base research, there have been many attempts to 
use algebra, high-level programming language constructs, 
granznars and denotational semantics to capture data 
base concepts. The purpose of this paper is to inves- 
tigate the applicability of these different kinds of 
formalisms to the process of specifying data base appli- 
cations subjected to integrity constraints. 

The major contribution of the paper lies in selecting 
the appropr{ate variation of each formalism for each 
level of specification, in the style of organizing the 
formalisms together into a coherent conceptual design 
framework and in the formal notion of refinement bind- 
ing the different levels. Thus, contrarily to most 
published literature, we neither limit ourselves to 
just one formalism at just one level nor force the use 
of the same formalism at different levels, which often 
creates distortions. Finally, although the paper is not 
intended to be a survey of the area, it may serve as a 
guide to different approaches to data b&e theory. 
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2. THE CONCEPTUAL DESIGN FRAMEWORK 

We divide the design process into three levels of 
specification, which can be summarized as follows. 
The first level, the information level, characte- 
rizes the data base by its information contents 
independently of how the information will be used 
or represented. It gives a high-level description 
of the set of consistent data base states and the 
set of state transitions and typically involves a 
language to talk about the data base and a set of 
staiic-constraints indicating which states are 
consldered consistent, and a set of transition 
constraints indicating in turn which transitions 
are acceptable. In this paper, we will adopt an 
extension of first-order languages, as described 
in Section 3. 

At the second level, the functions level, we add 
to the characterization of a data base a repertoire 
of functions, establishing how we intend to use the 
information. These functions indicate how the data 
base will be queried or updated and depend on the 
applications the designer anticipates for the data 
base. We will use in this paper an algebraic forma 
lism related to abstract data types, which is des- 
cribed in Section 4. 

The thirdand final level, the representation level, 
specifies the data base with the help of a data 
model. A representation of the data base in terms 
of the data structures supported by the data model 
must be found and the functions defined at the 
second level must be mapped into procedures using 
a Data Manipulation Language (DML) associated with 
the model. The third level therefore brings us cl0 
se to the implementation of the data base applica- 
tion on top of a Data Base Management System (DBMS). 
A Grogramming language, described in Section 5, will 
be used to specify the data base at the third level. 
The syntax of the language is given by a grammatical 
formalism, W-grammars, and its semantics is descri- 
bed using a denotational formalism. 

Each level of specification must be a refinement of 



the previous one, in the sense that the second-level 
update functions must preserve the first-level static 
and transition constraints, and the third-level pro 
cedures defining second-level functions must satis?y 
the second level equations. This is further discussed 
in Sections 4.3 and 5.3. 

The reader is referred to the full version of the p$ 
per CVCFI for a more thorough discussion, 

3. THE INFORMATION LEVEL - THE USE OF LOGICAL 
FORMALISMS 

3.1 Logical Formalisms 

In this section we briefly indicate how a data base 
can be specified, at the information level using a 
logical formalism. We assume familiarity with first 
order logic at the level, say, of [En], so that the 
presentation of the formalism will be very terse. 

There have been attempts to either use subsets of 
first-order logic or use extensions of the formalism 
depending on the aspects of data base design in 
question. We illustrate this phenomenon in this paper 
by defining an extension of first-order languages 
that helps capturing transition constraints. The 
extenston is perhaps the simplest one and depends on 
the introduction of two modal operators. Other sets 
of modal operators can be adopted to enhance the 
expressive power of the language. A different approach 
could also be taken by selecting a many-sorted first 
order language with a special sort interpreted as 
time (see CCF,BADW] for extensive discussions). 

Given a (many-sorted) first-order language L, its 
temporal extension, LT, is defined as follows. The 
symbols of LT are those of L, plus one modalopera- 
tar , the possibility operator denoted by . The 
modal operm of necessity is the dual of 6 in 
the sense that it can be introduced by definition 
as cu?~.01P. The terms of LT are those of L and 
the set of wffs of L is defined using the familiar 
formation rules , plus one new rule: 

If P is a wff of L or LT, then OP is also a wff of LT 

The semantics of LT is defined as follows. A universe 
U for LT is a pair (S,R), where S is a set of struc- 
tures of i, all with the same domain D (this restric- 
tion can be relaxed, but it simplifies the treatment 
of quantifiers), and R is a binary relation over S, 
called the accessibility relation. Given a wff P of 
LT, a structure A in S and a valuation v over the 
common domain D, we define the notion that A satisfies 
P with v in U (denoted % P[v]) using rules identical 

to those of first-order languages, plus one additional 
rule: 

1; (OP>C*I iff there is B in S such that 
R(A,B) and 1: P[V] 

The notions of model, logical implication and theory 
are as for first-order languages. 

Thus, to account for transition constraints, a data 
base is specified at the information level by defining 
a theory Tl=(Ll,Al), where Ll is a temporal extension 

of a (many-sorted) first-order language L and Al is a 

set of axioms. The non-logical symbols of Ll describe 
the data base data structures and all ordinary symbols 
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such as "less than", used to express facts about 
the data base. Symbols representing data base strut 
tures are called db-predicate symbols. The axioms - 
in A define static constraintmhey do not 
invo ve modalities, 1 or transition constraints, 
otherwise. The semantics of the data base is fixed 
by selecting a universe U=(S,R) for Ll. The strut 
tures in Splay the role of data base states and- 
the relation R over S is interpreted as indicating 
that, if (A,B) is in R, then B is a future state 
with respect to A. A structure A in S corresponds 
to a consistent state iff it is a model of Al. 

We note that the semantics of a data base, as ex- 
plained above, is only loosely fixed by the theory 

Tl' especially the relation R. This situation is 
modified when the functions level (i.e., algebraic) 
specification of the data base is fixed (section 4). 

3.2 An Example 

We are now in a position to present our example 
data base and formalize it at the information level. 

The example data base is defined by a theory 

~lgl;;&;'m~h;;,'t;l is a many-sorted temporal lan 
, course and student, and two - 

predicate symbols, od&mof sort course , and 
takes, of sort <student, course>. Thezded 
interpretation ofednthat course c is 
offered, and of Rakes(s,c) is that student s takes 
course c. The set Al of axioms consists of two for - 
mulas: 

(1) ,3s&(.takes(s,c) A lobtWed(c)) 
(2) ds3c( 0 Hakw(s,c) A 0 (~3c’Aaken(s,c’)))) 

The first formula formalizes the static constraint: 
"a student cannot take a course that is not being 
offered". The second formula formalizes the transi 
tion constraint: "the number of courses takenby a 
student cannot drop to zero" (i.e., he cannot be 
taking a course in (some) current state and no tour 
se in a future state). 

4. THR ALGEBRAIC LEVEL - THE USE OF ALGEBRAIC 
FORMALISMS 

4.1 Algebraic Formalisms 

Recall that the goal of a second level specification 
is to define a set of query and update functions 
that preserve the static and transition constraints 
listed at the information level specification, provi 
ded that only such functions be used (the encapsula- 
tion strategy). This can be achieved by giving the 
data base application an algebraic specification 
lVF,DMWI. 

An algebraic specification is a first-order theory 
T=(L,A), where L is a many-sorted first-order lan 
guage and A is a set of axioms obeying the follozing 
restrictions. 

The set of sorts of L must include a Boolean sort 
and a designated sort state (also called sort-of- 
interest). The remainingsorts are called parameter 
sorts. The only predicate symbols of L are two equa 
litysymbols of sorts <Boolean,Boolean7 and 
<state,state>. For simplicity, and since no ambiguity 
arises, both are denot.ed by '=I. The parameter sorts 



of L are endowed with their own function symbols 
(not involving the sort state) which have the effect 
of generating a set of ground terms called parame- 
ter names. Besides, each parameter sort s must have 
-function symbol of sort <s,s,Booleanp, also denoted 
by '=I, which checks equality among objects of that 
sort. 

The Boolean sort will be equipped with two constants, 
True and False, and with five function symbols 
standing for the usual connectives, -I, v, A,=>, g 
written in infix notation. 

The language L may have other function symbols as 
long as state occurs as one of the domain sorts. 
To simplche notation, we assume that state is 
always the last one in the list of domain sorts. Thus, 
if f is an n-ary function symbol in this group, it 
must have a sort of the form <s 1'"" state,s > n+l 
(recall that s n+l is the target sort). If sn+l is the 

sort state then f is an update function (intuitively, 
it maos states into states accordine to some areu- 

I 

ments); otherwise, f is a query function ( it iiterro 
gates the current state, according to some arguments- 
and returns a value). Let f be an n-ary query func- 
tion. Whenever terms of sorts other than state are 
irrelevant, we will write f(s) instead of f(tl,...,s). 

A term of the form 4(tl,...,Fn> where q is a query 
function and tl,..., t, contain no occurrences of 
update functions is called a simple observation. We 
will Construct the language L2 to be sufficiently 
rich with queries so that states can be identified 
by means of simple observations. More precisely, if 
s and s' are state variables such that for all sim- 
ple observations f we have f(s)=f(s'), then s=s'. 
This observability condition is often fulfilled by 
data base applications due to their purpose. 

The type of axioms allowed in algebraic specifi- 
cations will be conditional equations, which are 
wffs of the form P *t=t' where P is -a wff and 
t and t' are terms of the same sort s. If s is 
state then we call the axiom an U-equation, other 
Gwe call the axiom a Q-equation. Often term t' 
is "simpler" than t and we can view an axiom as a 
conditional term-rewriting rule. 

An algebraic specification, being a theory, defines 
a set of structures, the models of the theory. (In 
the context of algebraic specifications, structures 
are called (many-sorted) algebras). As usual, we 
further restrict this set to be the set of all 
finitely generated algebras (i.e., those in which 
every element is the value of a variable-free term) 
which are models of the axioms. Thus, we can employ 
the principle of structural induction (on terms) 
as a proof rule. 

We call an algebraic specification T=(L,A) suffici- 
ently complete iff for every ground term of the 
form q(t1,..., t,), where q is a query function (with 
target sort s, say), there exists a parameter name p 
(of sort s) such that FA q(tl,...,t,) = p. 
Intuitively, a sufficiently complete algebraic speci 
fication is one enabling the evaluation of all querTes. 

4.2 Obtaining a Functions Level Specification - 
An Example 

We now outline the methodology we employ to obtain 
an algebraic specification T2=(L2,A2) of a data 
base application at the functions level. 

Consider again the data base application described 
at the information level by the theory Tl=(Ll,Al) 
of Section 3.2. For simplicity, we take the para- 
ter sorts of L2 as the sorts of Ll. Moreover, we 
correlate.the db-predicate symbols of Ll describing 
data base structures with query function symbols. 
So, L2 will contain two query function symbols, 
offered and takes, of sorts <course,state,Boolean> 
and <student,course,state,Boolean>, respectively. 
The intended interpretation of offered(c,U), for 
example, is that it is true iff c is a course 
offered in state U. 

The update function symbols (with their intended 
interpretation) are: initiate of sort <state>, with 
initiate understood as an operation that initializes 
the data base; offer of sort <course,state,state>, 
where offer(c,Umndicates that c is added as a 
new course to state U, creating state 6; cancel of 
sort <course,state,state>, where cancel(c,U)=6 
means the inverse operation; enroll of sort 
<student,course,state,state>, where enroll(s,c,U)=& 
creates a new state 6 by enrolling student s to 
course c on state U; transfer of sort <student, 
course,course,state,state>, with transfer(s,c,c', 
a)=6 understood as creating state 6 from state U 

by transferring student s from course c to course 
C’. 

Our task now is to write a set of conditional equa- 
tions from which we can obtain the correct result 
of every query and, at the same time, guarantee 
that consistency is always preserved. In other words, 
for every query function q, for all parameters p and 
for all ground terms t of sort state, we should be 
able to derive from the axioms the equality q(p,t)=b 
where the Boolean value b is the correct answer actor 
ding to thx description. Now, the set T of - 
ground terms of sort state is the smallest set of 
terms containing initmand closed under symbolic 
application of the other update functions. Thus, we 
shall strive for Q-equations of the form (perhaps 
with some condition): 

q(p,u(p',U)) = "simpler expressionn 

for all query functions q, update functions u and 
parameter lists I, and p', u being a variable of 
sort state. 

In order to obtain such equations we employ struc- 
tured descriptions giving, for each update function, 
midtended effects , preconditions for state change, 
possible side-effects, and simple observations that 
are not affected. In fact, we obtain equations that 
are guaranteed, by construction, to be correct with 
respect to the description. Then, we verify suffi- 
cient completeness. 

As an example of the method, let us consider the 
update function cancel, whose structured description 
is: 
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6 = cancel(c,U) 

I* course c is cancelled at state 6, providing that 

*/ 
no student is taking it at state u 

intended effects: offered(c,U) = False 
pre-conditions: Ys~s,c,u) = False) 
side-effects: none 
not-affected: all other queries, including 

offered(c’,.) with c’fc 

We shall examine in detail the case of the 
query offered. In other words, we want (conditional) 
equationsenabling us to derive the correct results 
of queries of the form: 

offered(c’,cancel(c,U)) - - 

We shall d vide our task into two cases depending on 
the comparison of c’ with c. 

For the first case (c#c’> the not-affected part of 
the structured description tells us that the value 
of offered(c’,.) is not affected by the update, i.e. 

offered(c’,cancel(c,U)) = offered(c’,U) 

We can put this into the form of a conditional 
equation 

c’#c 9 offered(c’,cancel(c,U)) = offered(c’,U) - - 

Notice that the antecedent of the conditional equa- 
tion does not involve terms of sort s, only 
parameters. Also, the righthand side of the consequent 
is “simpler” than the lefthand side. 

Now let us examine the case c’=c. According to the 
structured description, the value of 
offered(c,cancel(c,U)) will depend on the pre-condi 
-If the pre-condition holds then we have the - 
intended effect False. Otherwise the value remains 
unchanged. Thus, we have: 

offered(c,cancel(c,U)) = 
False if ts(takes(s,c,U) = False) 
offered(c,U) if %(takes(s,c,U) = True) 

Now, in view of the static constraint, we have: 

+s(takes(s,c,U) = True) qoffered(c,U) = True -- 

So, we can write 

offe@d(c,cancel(c,U)) = True E G(takes(s,c,U)=True) 

which can be rewritten as two conditional equations: 

+s(takes(s,c,u) = True) =>offered(c,cancel(c,U))=w 

+js(takes(s,c,U)=True) =>offered(c,cancel(c,U))=False --- 

Three remarks are in order. First, in obtaining this 
equation we used the static constraint (assumed to 
hold; we shall later have to verify that it does 
hold). Second, the antecedents of the above conditi- 
onal equations do not involve quantification over 
states, only over parameters. Third, we may regard 
these equations as reducing the problem of determining 
offered(c,cancel(c,U)) to that of determining whether 
there exists a student s such that takes(s,c,u)=E, 

which may be viewed as a problem somewhat simpler 
than the original one. However we must be careful, 
for some other equation might reduce the problem 
of determining takes(s,c,U) to that of determining 
offered(c,U), thereby creating a circularity. This 
isreason why we later verify termination. 

By applying the general methodology outlined above 
we obtain the following set of Q-equations for our 
example : 

1. 
2. 
3. 
4. 
5. 
6. 

offered(c,initiate) = False 
takes(s,c,initiate) = F-‘-- CQLJ.s 

offered(c,offer(cP)) - = True 
cTc’offered(c offer’ - *‘- 
takes(s,c,offe - - 

7. 
8. 
9. 
10. 
11. 

; 

C 

(cr;;?T) = offered(c 
r(c’;U),) = takes(s,c,U) 

ffered(c,cancgl(c,U)) = True z 
s(takes(s,c,U) = True) 
#c’ffered(c,c~l(c’,~)) = offered( 

. el(c’,a)) = takes(s,c,U) - 
: offered(c.U) 

:,O> 

c,u) 

12. 
13. 

14. 

15. 

takes(s,c,canc 
offered(c,enroll(s,c’,U)) l 
takes(s,c,enroll(s,c,U)) = offered(s,a). 

rv cfc-’ * 
takes(s,c,enroll(s’,c’,U)) = takes(s,c,U) 
offered(c,transfer(s,c’,c”,U)) = offered(c,u) 
takes(s,c’ ,transfer(s,c,c’,U)) = 
(offered(c’,U) A takes(s,c,U)) v e(s,c’,U) 
takes(s,c,transfeG,c’,U)) = 
(,offered(c’,U) v takes(s,c’,U)) * e(s’c,U) 
s#s’ v (CZC’ A CPCF 
takes(s,c,transfer(s’,c’,c”,U)) = s(s’c,U) 

4.3 First to Second Level Refinements 

The information and functions level specification 
of a data base application are bound by a notion of 
refinement we describe in this section. Let Tl=(Ll, 
Al) and T2=(L2,A2) be the information and functions 
level specification of the same data base application. 
Intuitively, we say that T2 refines Tl iff the axioms 
in A2 are sufficient to guarantee that the updates 
preserve consistency with respect to the static and 
transition constraints in Al. Although this condi- 
tion is on the surface simple, it creates some tech 
nical difficulties to be formalized, mainly because 
the two languages, Ll and L2, are of different types. 
In particular, wffs of Ll may contain modalities, 
which are not part of L2. 

For simplicity, we assume that every sort of Ll is 
a parameter sort of L2 and every variable of Ll is 
also a variable of L2. 

The notion of refinement is formally defined by 
specifying an interpretation I mapping the non-lo- 
gical symbols of Ll into terms of L2 with the follow - 
ing 

(1) 

(2) 

(3) 

characteristics: 

for each n-ary db-predicate symbol p of sort 
<Sl,..., sn’ of Ll, I(p) must be a term of L2 of 
sort Boolean and free variables sl,...,xnry of 
sorts sl, . . . ,sn,E; 

for each other n-ary predicate symbol p of sort 
<sl,...,sn~of Ll, I(p) must be a wff of L2 
with free variahles xl,...,sn of sorts s~,....s~,: 

for each function symbol f of Sort isl’... .s,,. 

Sri+++ : of Ll, I(f) must be a term of L2 of sort 
s~+~ and free variables xl,...,sn of sorts 
S1,...,Sn. 
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In our running example, we might define an interpre- 
tation I that assigns to the db-predicate symbol 
oddwed the term offered(c,o) and to tied the term 
takes(s,c,o). 

Thus, the notion of interpretation defined above 
follows the general idea of first-order interpreta- 
tions. 

Given an interpretation I, we can extend I to map 
wffs of Ll into wffs of L2. However, in order to do 
so, we must extend L2 by adding a predicate symbol 
F of sort <state,state>, which will stand for the 
reachability relation R of the semantics of Ll. The 
extension of I is defined in then full paper and an 
example appears in the next section. 

Thus, at this point we know how to map wffs of Ll 
into wffs of Lg. Therefore, we can check if indeed 
the equations of T2 are enough to guarantee that all 
updates of T preserve consistency. More precisely, 
we say that I 2 is a correct refinement of Tl iff for 
any axiom P of Tl, I(P) is a theorem of T2. 

As for first-order languages, our notion of interpre- 
tation can also be used to induce a mapping M from 
structures of L 

f, 
into universes of L 

us to give an a ternative (semantica ) characteriza- 1' 
which permits 

tion of correct refinement (see the full paper). 

4.4. Proof of Correctness of Refinement - An Example 

Let Ti=(L2,A2) be the algebraic specification of the 
data base application obtained in Section 4.2. We 
must guarantee that T2 has the following properties: 

- it is sufficiently complete and correct with 
respect to the structured description; 

- it is a corr.ect refinement of the first-level 
specification given in Section 3.2. 

By construction dur equations are already correct 
with respect to the structured description. We 
proceed by proving: . 

(a) sufficient completeness 
(b) static consistency, i.e. every reachable state 

is valid 
(c) every valid state is reachable 
(d) transition consistency 

Parts (b) and (d) are equivalent to saying that the 
refinement is correct. Part (c) enables us to simpli- 
fy the verification of part (d), in addition to being 
an interesting property by itself. Notice, however, 
that by contrast not all valid transitions will be 
realized by our repertoire of update functions. 

We outline below how these properties can be proven: 

(a) Sufficient Completeness 

We can view our set of Q-equations as a system of 
mutually recursive equations defining the query fun5 
tions. From this viewpoint, sufficient completeness 
amounts to termination of this system of recursive 
definitions. There are several criteria for checking 
termination of such term rewriting systems. However, 
the basic idea is checking the absence of circularity 
in these definitions. This basic idea will do for 
cases simple as our example. 

(b) Every reachable state is valid 

Consider the set V of all valid states, i.e., the 
set defined by 

Ycfs(takes(s,c,U)=True *offered(c,U)=True) -- 

The set G of reachable states is the least set.of 
states containing initi=d closed under all the 
other update functions. So, in order to show that 
the static constraint is satisfied at the functions 
level, i.e., G c V, it suffices to show that V 
contains initiate and is closed under all other 
update functions. 

(c) Every valid state is reachable 

Consider again the sets V of valid states and G of 
reachable states. We now want to show the inclusion 
V c G. For this purpose we can proceed by induction 
on the number of courses offered and the number of 
enrollments of students in courses. 

(d) Transition consistency 

The transition constraint of our example (see 
Section 3.2) is logically equivalent to 

Ysfc(O(takes(s,c) *0(3c'takes(s,c')))) 

which can be rewritten, by applying the notion of 
refinement as 

VaO(VsVcVo(F(oU,u) =(takes(s,c,a) = True = 
V&(F(U,d) *,c'taksc',b)) = True))) 

where F corresponds to the accessibility relation. 

We shall first check 

~fsVcVo(t~kes(s,c,a)=True * %'(takes(s,c',u(o))=True) 

for each update function u other than initiate. 

We illustrate this checking with the case of cancel. 
For this purpose notice that, by equation 8 

takes(s,c' ,cancel(c",o)) = takes(s,c',o) 

So, if takes(s,c,o) = True then there is c' = c 
such that takes(s,c',cancel(c",o)) = True. 

The case of offer is entirely similar. For the 
update functzenroll and transfer the checking 
can be performed by breaking into cases depending 
on the comparison of the values of the parameters. 

Thus we have that every single-update transition 
obeys the transition constraint. It follows readily 
by induction that every transition (effected by a 
sequence of updates) also obeys the transition 
constraint. 

5. THE REPRESENTATION LEVEL - THE USE OF A 
PROGRAMMING LANGUAGE FORMALISM 

5.1 Programming Language Formalism 

To qualify as a specification formalism, a programming 
language must be simple and theoretically sound. We 
shall use regular programs over relations (RPR) 
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(see CCBI), which is associated with the relational 
model and is based on the concept of regular programs 
of [Hal. 

We note that, by specifying a language associated 
with a data model, we are in a sense providing a 
formal specification of the data model itself. 

5.1.1 Syntax - The Use of a Grammatical Formalism 

Briefly, the syntax of a data base schema is defined 
as follows. Let L be a many-sorted first-order lan- 
guage with a set of distinguished constants, called 
scalar program variables. If P is a wff of L with free 
variables xl,. . , ,s, then we call an expression of. 
the form .c(x~,...,xm)/P~ a relational term of sort 
<s~,...,s~>, If Si is the sort of xi. 

A data base schema has the following format: 

schema SCL ; OPL end-schema 

SCL is a list of statements of the form RCA1,...,&1 
where R is a predicate symbol of L and Al,...& 
are unary predicate symbols of L such that, if 

<s1,...,sp7 is the sort of R, then Ai has sort <si>, 
for each l=l,...,n. Each predicate symbol R in SCL 
is called a relation name or relational program 
variable. OPL is a lizf operation declarations 
of the form "proc I(Y1 ,...,Y,> = S" where I is an 
operation identifier, Yi is either a scalar or a 
relational program variable, and S is a statement, 
called the operation body; 

The set of statements (based on L), is defined induc- 
tively as follows: 

(1) 

(2) 

(3) 

(4) 

For any scalar program variable x of L and any 
variable-free term t of L of the same sort as x, 
the expression x := t is an assignment state- 
mPn+ f -.- -- - , 
For any relational program variable R of L and 
any relational term F of the same sort as R, 
the expression R := F is a relational 
assignment statement; 
For any closed wff P of L, P? is a test 
statement; 
For any statements p and q, the expressions 
(P u q), (P ; q) and p* are statements called 
the union of p and q, the composition of p and 
q and the iterationof p, respectively. 

We may also introduce some familiar constructs by 
ddinition such as if-then, if-then-else, while, 
insert and delete. Statements constructed using 
these statements and assignments are called deter- 
ministic. 

The formal definition of the syntax of data base 
schemas is given in the full paper, using W-grammars 
(see also [FVC]). W-grammars (as also other compara- 
ble formalisms, such as attribute gramanars and affix 
grammars) go beyond BNF in that they can express 
context-sensitive restrictions (e.g., that all rela- 
tional program variables in the OPL part of a schema 
have been declared in the SCL part), and can be used 
to build compiler generators. A correspondence between 
W-grammars and logic has been established in CHel. 
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5.1.2 Semantics - The Use of a Denotational Formalism 
Formalism 

Let L be the underlying many-sorted first-order 
language. For a given structure A of L and a given 
non-logical symbol s of L, let A(s) denote the value 
of s in A. Likewise, let A(t) be the value of a 
variable-free term t of L in A and let A(F) be the 
relation denoted by F, if F is a relational term. 

A universe U for L is a set of structures of L 
satrsfying three conditions: 

W 

(ii) 

(iii) 

any two structures in U differ only on the 
values of the scalar or relational program 
variables; 
for any A in U, any scalar program variable 
x and any element e of the domain of the 
sort of x, there is B in U such that 
A and B differ only on the value of x, 
which is e in B; 
for any A in U, any relational program 
variable R of sort <sl,...,sn> and any n-ary 
relation r c D, x...xDs , where D 5. is the 

1 n 1 
domain of sort si, there is B in U such that 
A and B differ only on the value of R, which 
is r in B. 

IV I 
For a fixed universe U of L, the meaning of state- 
ments is given by a function m assigning to each 
statement in RPR a binary relation in U as follows: 

'v 

(1) m(x:=t) = ((A,B) / B is zq;;:)o A, except that 
B(x) 

(2) m(R:=((xl,...,x,) / PI) = {(A,B) / B is equal 
to A, except that B(R) = A(F)) 

(3) m(P?) = ((A,A) / P is true in Al 
(4) m(p u 9) = m(p) u m(q) (union of both relations) 
(5) m(p ; q) = m(p) 0 m(q) (composition) 
(6) m(p*) = (m(p))* (closure of m(p)) 

The meaning of procedure declarations is given by a 
function k assigning to each procedure declaration 
d of the form proc I(YL,...,Y,)= S a function 
from DslX...XDsm into the set of all binary rela- 

tions over the universe, where D si is the domain of 

of sort Si and Yi is of sort si. The function k is 
defined as follows: 

(7) k(d) = f iff for any (cl,...,cm) in Dsl~...xDsm 

f(CL,...,cnJ is the set of all pairs (A,B) in 

UxU such that (A~cL/Y~,...,c,/Y,I,B) is in m(S) 

If the procedure bodies'are deterministic programs,. 
then the range of k is the set of all functions 
from U int0.U. 

The formal definition of the functions m and k is 
given in the full paper using the denotational 
approach CBJ!. 

5.2 Obtaining a Representation Level Specification - 
An Example 

Obtaining the third level specification means to 
express in the programming language introduced in 
the previous section both the kinds of predicates 
to be used, under the guise of relations, and the 



ouerv and uudate functions that will act uoon them. 
&ery functions are trivially introduced by noting 
that the language allows logical-valued exnressions 
of the form R(t) that yield True if t is in R, and 
False otherwise. 

In order to obtain in a constructive manner proce- 
dures that implement the desired update functions, 
we first correlate the four parts of our structu- 
red (semi-formal) description of update functions 
with the semantics of the statements of the pro- 
gramming language. 

From the semantic definitions, one readily sees 
that, in the simpler cases, an update function f 
will follow the pattern: 

proc f(x) = (pre-conditions?;effects;side-effects) 
u lpre-conditions? 

which can also be written using the if-then construct. 

More complex updates may require (possibly nested) 
tests and iterations. The latter are useful, in parti 
cular, to check a universally quantified pre-condi- 
tion. Explicitly quantified pre-conditions and the 
general form of assignments lead to a more "set-ori- 
ented" style of programming, whereas the use of ite- 
ration and insert/delete statements favor a "tuple- 
oriented style. 

The complete programming language specification for 
the example is given below: 

schema 

OFFERED(Students); 
TAKES(Students, Courses); 

proc initiate0 = 
(TAKES := 0 ; OFFERED := 8) 

proc offer(c) = 
insert OFFERED(c) 

proc cancel(c) = 
if -13s TAKES(s,c) 

then delete OFFERED(c) 

proc enroll(s,c) = 
if OFFERED(c) 

then insert TAKES(s,c) 

proc transfer(s,c,c') = 
if TAKES(s,c) A lTAKES(s,c') AOFFERED 

then (delete TAKES(s,c); 
insert TAKES(s,c')) 

end-schema 

5.3 Second to Third Level Refinements 

Let T2 = (L2,A2) and T3 be the functions and repre 
sentation level specifications of the same data ba 
se application. Then, the operations defined by - 
procedures in T3 must satisfy all equations in A2. 
Again, we must face the fact that T2 and T3 use 
different formalisms, so we do not have a notion of 
interpretation readily available. 

Recall that T3 uses a programming language, which 
is in turn based on a first-order language, say, L3. 
For simplicity, we assume that every parameter sort 
of L3 and every variable of sort s of L2 is also 

a variable of L3. 

The notion of refinement is again formally defined 
by specifying a mapping K from the non-logical 
symbols of L2 into non-logical symbols of L3, wffs 
of L3 and procedure declarations of T3. The mapning 
K must satisfy the following requirements: 

(1) 

(2) 

(3) 

(4) 

for each n-ary update function symbol u of L2 
of sort <sl,...,sn-l,state,state> K(u) is a 
procedure declaration proc U(Yl,...,Y,-1) = S 
in T3 such that Yi is of sort Si, for i=l,..., 
n-l. 

for each n-ary query function symbol q of L2 
of sort csl,..., s,-l,state,Boolean>, K(q) is a 
wff of L3 with free variables xl,...,x 
sorts sl n-l of 

,.*.,sn-1 
for each n-ary function symbol f of L2 of 
sort <sl,...,sn,Boolean>, except those above 
and those representing logical connectives and 
Boolean constants, K(f) is a wff of L3 with 
free variables xl,...,xn of sorts sl,...,sn. 

for each n-ary function symbol f of L2 of 
sort <s l'...'Sn'Sn+ > with sn+., not equal to 
Boolean or State, Klf) = f. 

note: the requirement in (5) could be generalized 
to K(f) being a wff of L3 with free variables 
Xl,. . .,x ,y of sorts sl,...,s 
force thz wff K(f) to define E+ 

if we could 
1' unction as 

for first-order interpretations. 

Ne now pause for a comment from our formalism depar 
- tment. If the reader remembers section 4.3, the 

next natural step would be to extend K to map wffs 
of.L2 into wffs of L3. However, L3 is not powerful 
enough to permit us to carry on such extension. In 
order to do so, we would need a full programming 
logic, such as Dynamic Logic (a separate paper will 
explore this possibility). To circumvent this diffi 
culty, we adopt a semantic definition of correct 
refinement. 

Thus, using an interpretation K, we define a mapping 
N from universes of L3 into finitely generated 
structures'of L2 (see full paper). 

Now, using N, we say that T3 is a correct.refinement 
of T2 iff for every universe of L3, N(U) 1s a model 
of T2. 

5.4 Proof of Correctness of the Refinement - An 
Example 

On analysing the constructive strategy (section 5.2) 
we observe that the semi-formal considerations that 
resulted in the algebraic equations of the second 
level were used but not the equations themselves. 
Similarly, our understanding of the syntax and se- 
mantics of the programming language helped us, but 
the formal definition of these notions were not 
directly used. 

The formaldefinitions of the syntax and semantics 
of the programming language are necessary when we 
want to prove that the 'third-level, soecification 
is correct. We illustrate this process by taking 
the specification of Section 5.2 as examnle. 
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In order to verify that the specification in Section 
5.2 is syntactically correct, we have to guarantee 
that it can be generated by the corresponding 
W-grammar, which creates no difficulty (see full 
paper). 

We now outline how we can verify that the represen 
tation level specification T3 (see'section 5.2) is 
a correct refinement of the functions level speci- 
fication T2 = (L ,A ) ( see Section 4.2) under the 
interpretation K de lned below: 2 P* 

K(offered) = OFFERED(c) 
K(v = TAKES(s,c) 
K(u) =u , where u is an update function 

and U is the homonym procedure 

Let L3 be the underlying language of T3. 

Intuitively, given a universe U for T3, the inter- 
pretation K induces a finitely generated structure 
A for L2. At this point, it suffices to clarify 
that each element p of the domain of the sort 
state of A will be in fact a structure in U. From 
now on, we will refer to such elements simply as 
states and use p,q,r,... with subscripts if nece- 
ssary to denote them (the reader must bear in mind 
that states are structures of L3). 

It is also important to stress that the domain of 
sort state is finitely generated by construction. 
That rs, each element p of this domain is the value 
of a term of L2, which is schematically of the form: 

u&l,-,L..ul(uoL..)> 

where UC is the update function symbol initiate of 
L2 and Ui with i=l,..., n are also update function 
symbols of L2. 

Intuitively, since the data base application is 
encapsulated by the query and update functions, 
the current data base state can be represented by 
the sequence-composition (trace) of the operations 
used thus far. 

To prove that T3 is a correct refinement of T2 
amounts to proving that each of the conditional 
equations in A2 is (universally) valid in A. Now, 
since A is finitely generated and in view of the 
previous discussion, we can in fact do an induction 
on the lenght of the term u,(u,-,(...(initrate)...)) 
corresponding to each element p of the domain of 
sort state of A. That is, for each P in A2, we will 
provemnduction on n that P is valid in A when 
the state variable u receives as value some state p 
and p is in turn the value of a term 
Un("n-l (...(initiate)...>) of L2. 

The basis.is trivial. So assume that each P in A2 is 
valid in A when the state variable receives as 
value some state r and r is the value of a term 
v,-l(v,-2(...(initiate)...)) of L2. We will shown 
that the result holds when we consider terms of length 
n. 

Now, let q be an element of S and assume that q 
is the value of a term un(urrl(...(initiate)...)) 
of Lq. 

As an example of the induction hypothesis case ana- 
lysis, consider equation 6, namely, 

(1) offered(c,cancel(c,q)) =True z - - 
%(takes(s,c,o) = True) - 

In view of the construction of A (which the reader 
will find in the full paper), equation 6 is uni- 
versally valid in A when U is valued as q iff the 
following condition holds (from now on, C will 
denote the domain of sort course of A, T will deno 
te the domain of sort student of A and S will den: - 
te the domain of sort state of A): 

(2) for each beC, bEq(OFFERED) iff 
(t,b)Ep(TAKES), for some tET 
where (p,q) Ek!cantiel(c)B(b) 

note: q(OFFERED) denotes the value of OFFERED in 
the structure q, and similarly for p(TAKES) 

Now, by definition of the procedure cancel, we have: 

(3) (p,q) skflcancel(c)l(b) iff 
(3.1) 

Ol? 

(3.2) 

if (t,b) # p(TAKES), for any JET 
then q is equal to p, except that 
q(OFFERED) = p(OFFERRD) - {b) 

if (t,b) E p(TAKES), for some t&T 
then q is equal to p 

In view of the form of (3) (consisting of the dis- 
junction of two conditionals) it is natural to divi 
de this verification into two cases: 

case 1: (t,b) $ p(TAKRS), for any t ET. 

Thus, by (3.1), state q is equal to p except that 
q(OFFERED) = p(OFFERED) - {b}. Therefore, 
b 6 q(OFFERED), which suffices to establish (2) in 
view of the conditions of the case. 

case 2: (t,b)Ep(TAKES), for some tsT. 

Then, by (3.2), state q is equal to p. Thus, 
bsq(OFFERED) iff b E~(OFFERED). We will now show 
that bfzp(OFFERRD), under the assumption that 
(t,b)&p(TAKRS), for some t ET. 

Recall that q is the value of a term 
Un("n-l (....(initiate)...)). Let ri be the state 
denoted by the term ui(u;,,(...(inltiate)...)), 
for i=l,...,n (hence rn=q). By the induction hypo- 
thesis, each equation P in A2 is valid in A when 
u is valuated as ri and c is valuated as b, for 
i=l ,...,&-I-1. (We will use A k PCb/c,ri/UYl to 
indicate this condition). Let us proceed in a backward 
direction to examine the various possibilities for 
each Ui, for any b',b"sC and t,ti ES: 

(4.1) if u. is initiate then, by equation 2, 
A = ttakewitiate) = False)Ct/s,b/cl 

(4.2) if u* is offer then, by equation 5, 
A k ttakeG,offer(c',U)) = 

takes(s,c,m/s,b'/c',b/c,ri-l/o] 

(4.3) if ui is cancel then, by equation 8, 
A k (takexcancel(c',U)) = 

takes(s,c,ms,b'/~?,b/c,r~-l/o] 

(4.4) if u' is enroll then, by equation 10, 
A ]= ttakeGenroll(s,c,o)) = 

offered(c,~s,b,bc,ri-l/U] 

and by equation (ll), if t#t' and b#b': 
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A 1 (~(s,c,enroll(s',c',U)) = 
takes(s,c,a))(:s,t'/s',b/c,b'/c',ri_l/Ul 

(4.5) if 
A k 

ui is transfer then, by equations 13,14,15 
((s(s,c,transfer(s',c',c",a)) => 
(dffered(c,o)Vtakes(s,c,o)) = True) 

Ct~',b/c,b~b"Ic",ri-1~ 

The backward induction uses (4.1)-(4.5) repeatedly. 
In many cases we are simply led to examine a previous 
state , since the expression says that b is offered 
after the application of ui if it was offered at 

2-l - 
However this process cannot reach initiate, 

w ere b would not be offered, contrarily to the 
condition of case 2. We can verify that the only 
way to fulfill this condition, rewritten as 

(5) A k (3s takes(s,c,o))Cb/c,rn-l/o1 

is either by enrolling some t in b or by transferring 
some t to b, in any case in a state r. where b is 
offered. Moreover, by equations 9 and? 1 , b will 
still be offered after any of the two operations is 
applied. Hence, we conclude that 

(6) there exists j <n such that 
A (&(takes(s,c,o) = True)rb/c,r /U! iff 
A 

1 
(%.(G(s,c,u) = %&Cb/c,r"?bl and 

A, (offsc,U) = True)Cb/c,rj/Uj 

Let k be the minimum such j. So, from (5) and (6), 
we have that: 

(7) A b (3s takes(s,c,u) = True)Cb/c,rk/u] and 

A k (offered(c,o) = True)Cb/c,rk/bl 

Now, we can proceed in a forward direction to show 
that indeed 

-. 

(8) A b (offered(c,o) = True)Cb/c,r,-l/u1 

since the only way to reach from r* a state where 
b is no longer offered is by cance 1 ling b, which 
fails as long as there is a student taking b (here 
we are using, among others, equation 6, the very 
equation that we are about to prove; this is legi- 
timate because we are assuming by hypothesis its 
validity up to state r,-1). 

That is, using the notation of T3 and the cons- 
truction of A, and since p = rn-1, we have that 
b E p(OFFERED), as was to be shown. 

Proceeding similarly we can verify that all the 
equations of the functions level are satisfied by 
our specification of.the representation level. 

6. CONCLUSIONS 

In spite of marked differences in notation, the 
five formalisms discussed in this paper have a cha- 
racteristic in common: they are all related to logic. 

The one-to-one correspondence between db-predicate 
symbols (first level), query functions (second level) 
and relation names (third level) provided a certain 
uniformity that facilitated going through the 'diffe- 
rent notations. This coincidence, although not a . . mandatory design decision, p roved to be convenient. 

One of the more significant differences across the 
three levels of specification is the treatment of 
states. States are implicitly described by their 
properties at the information level. They are ex- 
plicit parameters at the functions level. At the 
representation level they are defined in terms of 
the value of the entire collection of data base 
relations; each statement mentions only the relations 
that it affects. Intermediate states may be consi- 
dered as an operational (machine-like) aspects of 
the representation level, resulting from the execu- 
tion of single statements. 

We believe that the discussion and the example 
substantiate the claim that each formalism does play 
a relevant role in the formal specification of data 
bases, especially when used for the objective that 
originally motivated its proposal. 
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