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Formal techniques exist for the crucial specification phase in the design of systems, including database applications. We
briefly indicate the potential benefits of the so-called abstract data type discipline and show how it might be made more
palatable to the non-mathematician. This is done through the mechanism of traces. This tool is used both as a

mechanism for modelling (in an executable manner) the application and as a basis for a methodology which can be used

in the development of a formal algebraic specification.

1. INTRODUCTION

When an enterprise decides to adopt the database
approach for some application area, its first concern
should not be to determine how the data will be
structured, but to specify what kinds of data will be kept
and the usage characteristics that can be anticipated.

Formal techniques exist for this crucial specification
phase.! They have been discussed and evaluated
recently.? We shall briefly indicate some of the potential
benefits of the so-called abstract data-type discipline.

Using this discipline, we may concentrate initially on
the abstract classes of data we need and the usage of such
data, by introducing an adequate set of operations and
predicates. The descriptions of the operations and
predicates are such that it is possible to convert the
descriptions into executable procedures.® So we can
experiment with the specification, letting the users find
out if it really behaves as they imagined, before the
enterprise commits itself to a costly and time-consuming
process of structuring the data and designing the
production implementation to conform to the given
specification.

Inaddition to beingexecutable, this formal specification
lends itself well to the verification of the fact that the
ensuing implementation is correct (i.e. will exhibit the
behaviour specified), remains as good documentation for
the benefit of those users who do not want to know about
the details of implementation, and can be re-used in the
future for experimenting with possible changes.

However, the general style of the abstract data-type
literature is not directed to the practitioner, thus
diminishing the opportunity of application of these
techniques in the business data-processing area,* where
even the more immediately practice-oriented new
techniques are not meeting ample acceptance.> One
strategy — to be pursued in this paper — to bridge the gap
is to show that several notions that have been presented
in logical or mathematical terminology are translatable
into notions quite familiar to the data-processing
specialist.

Paramount among these is the notion of trace (of
operations executed). Traces constitute a widely used tool

* Partially supported by FINEP.
t To whom correspondence should be addressed.

for testing programs, being generated as a by-product of
their execution. Here we shall show that traces can play
yet another role, serving as a ‘universal’ data structure
upon which to base the previously mentioned executable
specifications. (We would point out that we intend to use
traces as a tool in building conceptual schema and do not
intend in any way to suggest that it should also be an
implementation tool. The internal schema and its
relationship to the conceptual schema is not dealt with
at all here. See ref. 6.) Using traces as a data structure
means, for example, that in order to answer the query:
‘Does Peter work for Acme?’, we inspect the trace to see
if an operation hire(Peter, Acme) has been invoked in the
presence of the required pre-conditions (in turn created
by other operations) and has not been superseded by
some subsequent operation.

Our contention is not that all the logical and
mathematical treatment is a mere embellishment to a few
trivial practical concepts. To say that the Herbrand terms
from the algebraic theory of abstract data types are ‘just’
sophisticated forms of traces is the same as saying that
relations (from the relational data model) are ‘just’ flat
files or that CODASYL sets (from the network data
model) are ‘just’ a pointer structure. Our contention is
that the deep theory underlying abstract data types is not
an impediment to the practical application of its results
and that the simple analogies proposed in this paper can
pave the way towards an intuitive understanding. In a
more formal setting the word ‘traces’, in the sense of
algebraic terms, has already been used.?

Section 2 introduces a simplified example to be used
throughout the discussion. Traces and trace levels are
treated in section 3. Section 4 contains examples
illustrating in enough detail how to write, at each trace
level, the symbolic procedures corresponding to the
updates and queries informally described in section 3. A
few connections with the theoretical fundamentals are
drawn in section 5. Section 6 presents the case for and
against the use of the formal techniques described.

2. A SIMPLE DATABASE APPLICATION

As an example of a simplified database application we
shall use the database of an employment agency. Here,
persons apply for positions, companies subscribe by
offering positions, and companies hire candidates or fire
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employees. We impose the following integrity constraints:
a person may apply once only, thus becoming a
candidate, losing his status when hired by a company, but
regaining it if fired: a company may subscribe several
times, the number of offerings — which must be positive —
being added up: finally, only persons that are currently
candidates may be hired, and only by companies having
vacant positions. We shall have queries for checking
whether a person is a candidate, whether a person works
for a company, and whether a company has a given
number of vacant positions. We assume the database to
be initialized to an empty state.

3. TRACE LEVELS

Tracing has been defined as providing ‘a record of each
processed instruction, by the recording of all instructions,
operands and results for analysis of computer runs’.®
Here, an instruction is the invocation of an update
operation, and the recording will be produced on what
we shall simply call a sequence.

For us, the idea of state or database instance is crucial
in both the formalization of the concepts to be outlined
and the understanding of the intuitive and less formal
notions we use to develop the concept of trace. A
database can be seen as a series of states where the
transition from one state s to another s’ is accomplished
by means of updates applied to the state s. Thus updates
have meaning only in the context of the state to which
the update is applied. Similarly, queries are applied to
particular states and have a meaning only in this context.
Hence a given query applied to two different states may
yield different results. What we shall in fact attempt to
do is to represent various states of the database by traces
of update operations.

Note that, in a rigorous sense, the state to which an
update or query is applied is an argument of the applied
operation. However, it is often left implicit, as is the
environment in conventional programs when an assign-
ment is performed.

The execution of an update operation, recalling that
traces are assumed to be recorded somehow on
‘sequences’, consists of adding to the sequence the name
of the operation with the actual parameters used. The
execution of queries will consist of scanning (analysing)
the sequence and determining information based on this
scan.

If a trace in fact includes all update operations invoked,
the resulting sequence will contain more information than
Jjust what is needed for answering a query related to the
current state attained. An analysis of the sequence would
disclose what operations were attempted but failed to
alter the state (by not meeting some pre-condition), what
intermediate states were traversed and by means of what
operations (‘historical data’), and the chronological
order of the operations. This extra information may or
may not be useful. If it is not, we gain the freedom of not
keeping the record of such updates or, in general, of
restructuring the sequence in convenient ways. These
considerations lead us to identify different levels of trace.

The reader will notice that, for higher levels, the
difficulty of the operations increases for updates and
decreases for queries. Another interesting property is that
the queries as ‘programmed’ for a level will work over
traces of all the subsequent levels (although less efficiently
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Table 1. Example series of updates

initag;
apply(Peter);
subscribe(Acme, 1);
apply(John);
hire(John, Acme);
hire(Peter, Acme);
fire(John, Acme);
hire(Peter, Acme);
subscribe(Acme, 2);

| OO nNnHWN —

than those pertaining to those levels). Table 1 shows the
series of updates to be referred to in the discussion.

We note here again that formally each operation has
an extra argument, namely the state to which the update
is applied. Thus, we have apply(Peter, present-state) and
hire(Peter, Acme, present-state). Assignmentsin programs
do not explicitly mention environments but can be
thought of as mapping a given environment into a new
one (e.g. (x: =e) (present-environment) results in an
environment in which if we queried the value of x, we
would get back as the answer the value of e evaluated
in present-environment). Analogously, we may think of
updates as defining maps between states and so we obtain
operations such as:

(apply(Peter))(present-state), (hire(Peter, Acme))(pre-
sent-state).

Now a sequence of updates opl(argl), op2(arg2), ...,
opn(argn) applied to the state any_state takes the
following form:

(op)r;(argn))((opn- 1(argn-1))(...((opl(argl))(any_state))

However, this reverses the sequentiality of operations in
time and so we convert from the above prefix notation
to a variant of the postfix notation to get:
(...(((any_state)(opl(argl)))(op2(arg2)))...)(opn(argn))
Removing obtrusive bracketing and using the ‘;” symbol
for ‘concatenation’ of operations we obtain the simpler
form:

any_state; opl(argl); op2(arg2);...; opn(argn)

3.1 Level 1: the intended trace

The intended trace includes all update operations,
regardless of whether they succeed or fail to change the
database. The trace must also start with the initialization
update.

At this level the symbolic execution of updates is trivial.
Each new operation is simply recorded at the end of the
sequence that represents the trace. Processing the queries,
on the other hand, is a somewhat more involved task. For
example, if we want to find whether Peter works for Acme
it is not sufficient to find a HIRE(Peter, Acme) in the
recorded sequence; we have to check if the preconditions
for the operation hold, and such tests may propagate
backwards until the beginning of the sequence.

Fig. 1 gives an informal description of updates and
queries as ‘programmed’ to work on sequences, and
Table 2 contains the sequence obtained by the execution
of the series of updates in our example (of Table 1). In
Fig. 1, ¢ denotes the present state, whose trace repre-
sentation is the sequence recording the updates thus far
executed.

Intended traces bring to mind the notion of audit trails,
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familiar from the database area. In fact, for auditing and
for the study of usage patterns it may actually be useful
to register such full traces.

Updates at the intended trace level

initag ¢ < — INITAG

c; apply(x) ¢ <—c*APPLY(x)

c; subscribe(y, v) ¢ < — ¢ * SUBSCRIBE(y, v)
c; hire(x, y) ¢ < — ¢ * HIRE(x, y)

c; fire(x, y) ¢ <— c *FIRE(x, y)

Queries at the intended trace level

iscandidate(x) = true, if APPLY(x) occurs in ¢ and, for
no y appearing in HIRE(X, y)’s,
worksfor(x, y) is true in ¢

false, otherwise

true, ifn = m—k and m > 0, where m
is the sum of all positive mi in the
SUBSCRIBE(y, mi)’s occurring in c,
and k is the number of distinct x’s
appearing in HIRE(x, y)’s such that
worksfor(x, y) is true in ¢

false, otherwise

true, if c’*HIRE(x, y)*c” occurs in c,
where the indicated occurrence of
HIRE(x, y) is the last one in ¢ such
thatiscandidate(x)and haspositions(y,
n) for n > 0, are true in ¢/, and if
FIRE(x, y) does not occur in ¢”’
false, otherwise

haspositions(y, n)

([

worksfor(x, y)

Il

Figure 1

Table 2. Intended trace

‘INITAG *

APPLY (Peter) *
SUBSCRIBE(Acme, 1) *
APPLY(John) *
HIRE(John, Acme) *
HIRE(Peter, Acme) *
FIRE(John, Acme) *
HIRE(Peter, Acme) *
SUBSCRIBE(Acme, 2)’

3.2 Level 2: the effective trace

The effective trace includes only the updates that succeed
in changing the database.

The execution of updates is still relatively easy, because
only concatenations to the end of the sequence are
performed, with the requirement, however, that the
concatenation is not performed if the preconditions for
the operation fail. A particular kind of precondition is
that the desired effects should not already be present; for
instance, one precondition for apply(x) is that x should
not already be a candidate, for otherwise the (redundant)
apply(x) would not succeed in changing the database.
Queries become simpler than in the previous level; now
for example, if we find HIRE(Peter, Acme) (and
FIRE(Peter, Acme) does not appear after that) we can be
sure that Peter works for Acme, without having to check
the preconditions for the hire operation (i.e. without
having to inspect the initial portion of the trace).

Fig. 2 defines the updates and queries, and Table 3
contains the sequence representing the trace for our
example. As before, effective traces remind us of a
familiar database concept: the logs that are kept for
recovery purposes. More importantly one could think of
databases where past information is not deleted but,
instead, all information is time-stamped.®

Updates at the effective trace level

initag ¢ < — INITAG
c; apply(x) ¢ <— ¢ * APPLY(x) if iscandidate(x) is
false and for no y worksfor(x, y) is
true in c
< — ¢, otherwise
c; subscribe(y, v) ¢ <— ¢ * SUBSCRIBE(y, v)if v> 0
< — ¢, otherwise
c; hire(x, y) ¢ < — c * HIRE(x, y) if iscandidate(x)
and haspositions(y, n) for n > 0
are true in ¢
< — ¢, otherwise
c; fire(x, y) ¢ < — ¢ * FIRE(x, y) if worksfor(x, y) is
true in ¢
< — ¢, otherwise

Queries at the effective trace level

iscandidate(x) = true, if APPLY(x) occurs in ¢ and,
for no y’s appearing in
HIRE(x, y)’s, worksfor(x,y) is
true in ¢

false, otherwise

true, if n=m—k and m> 0,
where m is the sum of all mi in the
SUBSCRIBE(y, mi)’s occurring
in c and k is the number of distinct
x’s appearing in HIRE(x, y)’s such
that worksfor(x, y) is true in ¢
false, otherwise

true, if ¢’*HIRE(x, y)*c”’ occurs
inc, wheretheindicated occurrence
of HIRE(x, y) is the last one in c,
and if FIRE(x, y) does not occur
inc”

= false, otherwise

haspositions(v, n)

worksfor(x, y)

Figure 2

Table 3. Effective trace

‘INITAG *

APPLY (Peter) *
SUBSCRIBE(Acme, 1) *
APPLY(John) *
HIRE(John, Acme) *
FIRE(John, Acme) *
HIRE(Peter, Acme) *
SUBSCRIBE(Acme, 2)’

3.3 Level 3: the current trace

At levels 1 and 2 the traces are ever-increasing. If we are
not interested in keeping historical information but only
those elements in a trace which are sufficient to
characterize the current state of the database, we may
want to consider ways to obtain compressed sequences.
In fact, we may want to substitute a different but
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equivalent trace for the one if the second expresses the
present state of the database in a more succinct manner.

The current trace contains only the updates whose
effects still hold and, if fewer operations can produce the
effects of a given series of operations, then the former is
substituted for the latter. Two examples will illustrate
such reductions.

(1) Since John has been fired from Acme, the effects
of HIRE(John, Acme), no longer hold and can be
removed from the sequence: notice that the combined
effect of HIRE(John, Acme)*FIRE(John, Acme), for the
purposes of characterizing the present state, is nil and so
the second operation ‘cancels’ the first and none need be
kept in the sequence.

(2) The net effect of Acme offering 1 position and
then 2 more positions is the same as having offered
3 positions, and thus SUBSCRIBE(Acme, 1) *
SUBSCRIBE (ACME,2) can be replaced with
SUBSCRIBE(Acme, 3).

Updates at the current trace level

initag ¢ < — INITAG
c; apply(x) ¢ < — ¢ * APPLY(x) if iscandidate(x) is
false and for no y worksfor(x, y) is
true in ¢
< — ¢, otherwise
¢ <— ¢ * SUBSCRIBE(y,v) if v>0
and for no w haspositions(y, w) is
true in ¢
< — cwithSUBSCRIBE(y, n)replaced
by SUBSCRIBE(y, n+v) ifv> 0
and for some n haspositions(y, n)
is true in ¢
< — ¢, otherwise
¢ <— c* HIRE(x, y) if iscandidate(x)

c; subscribe(y, v)

c; hire(x, y)

and haspositions(y, n) for n >0’

are true in ¢
< — ¢, otherwise
¢ < — ¢ without HIRE(x, y) if works-
for(x, y) is true in ¢
< — ¢, otherwise

c; fire(x, y)

Queries at the current trace level

iscandidate(x) true, if APPLY(x) occurs in ¢ but
not HIRE(x, y), for any y

false, otherwise

true, if c contains an occurrence of
SUBSCRIBE(y,m) and m-—n
occurrences of HIRE(x, y)’s
false, otherwise

true, if HIRE(x, y) occurs in ¢
false, otherwise

haspositions(y, n)

worksfor(x, y)

Figure 3

At this level the updates become considerably
less simple, because an internal manipulation of the
sequence is needed. For instance, the execution of
subscribe(Acme, 1) is still simply a concatenation at the
end of the sequence but subscribe(Acme, 2) causes the
recorded SUBSCRIBE(Acme, 1) to be replaced (where it
stands inside the sequence) by SUBSCRIBE(Acme, 3).
Conversely, the execution of the queries is further
simplified, since we do not have to search for ‘negative’
operations (such as fire) and because the information that
remains is more concentrated (e.g. there is now a single
SUBSCRIBE per registered company). Fig. 3 defines the
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updates and queries, and Table 4 the current trace for our
example. Current traces can be related to efforts to
optimize transactions, ! that is, user interactions involving
several operations within a single session.

Table 4. Current trace

‘INITAG *

APPLY (Peter) *
SUBSCRIBE(Acme, 3) *
APPLY(John) *
HIRE(Peter, Acme)’

3.4 Level 4: the re-ordered trace

Even with the reductions at level 3, there may be more
than one (reduced) series of operations leading from the
ititial state to the current state. This happens because, for
some operations leading from the initial state to the
current state, the end effects are the same regardless of
the order of their execution. For instance, it does not
matter who applies first, Peter or John, as also there is
no fixed precedence between candidates applying and
companies subscribing. On the other hand a hire(x, y)
operation depends on the previous execution of apply(x)
and subscribe(y, n), with n > 0.

Fig. 4 sketches the partial order characterizing the
interdependences among operations, in the sense that
operations that produce as effects the preconditions for
other operations must be executed before the latter.

appiy?‘;) hire(x’, y)

; apply(x :

Initag subscribe(y, 1) hire(x, y) fire(x, y)
subscribe(y’, n’) hire(x, y’)

Figure 4

Given these considerations, we can say that the
re-ordered trace includes the updates that would appear
in a current trace, arranged in a way that is compatible
with the partial ordering of the operations, and for
operations whose order does not matter arbitrary
ordering criteria are chosen.

Our arbitrary criteria are that all apply’s are placed
before all subscribe’s and occurrences of the same
operation are ordered lexicographically by the first
argument. Thus, in the trace we shall have APPLY (John)
before APPLY (Peter), assuming John < Peter.

At this level, the execution of updates involves, more
than before, the manipulation of the sequence, since each
additional update will be recorded in its proper place
according to the chosen order. The execution of queries
is as simple as at the previous level: the only difference
is that one can take advantage of the order for speeding
up the task of scanning the sequence. Suppose that we
want to know if John currently works for Acme: we start
scanning from the end of the sequence until one of the
following cases occurs.

— HIRE(John, Acme) is found: worksfor(John, Acme)

is true;

— HIRE(x, Acme) is found, where x < John: works-

for(John, Acme) is false;



INFORMAL APPROACH TO FORMAL SPECIFICATIONS

— an operation is scanned that is not a HIRE (this is
the case in our example): worksfor(John, Acme) is
false.

Fig. 5 defines the updates and queries, and Table 5
contains the sequence representing the re-ordered trace.

Updates at the re-ordered trace level

initag ¢ < — INITAG
c; apply(x) ¢ < — ¢ with APPLY(x) inserted in its
proper place according to the
order, if iscandidate(x) is false and
for no y worksfor(x, y) is true in ¢
< — ¢, otherwise
¢ < — ¢,with SUBSCRIBE(y, v)inserted
in its proper place, if v> 0 and,
for no w, haspositions (y, w) is
true in ¢
< — ¢,withSUBSCRIBE(y, n)replaced
by SUBSCRIBE(y, n+v), if
v > 0 and, for some n, hasposi-
tions(y, n) is true in ¢
< — ¢, otherwise

c; subscribe(y, v)

c; hire(x, y) ¢ < — ¢, with HIRE(x, y) inserted in its
proper place, if iscandidate(x) and
haspositions(y, n), for n > 0, are
true in ¢

< — ¢, otherwise
c; fire(x, y) ¢ < — ¢, without HIRE(x, y) if works-

for(x, y) is true in ¢
< — ¢, otherwise

Queries at the re-ordered trace level

Same as at the previous level, with the time-saving possibility
to stop searching for the indicated occurrences as the scanning
goes beyond their proper places according to the ordering.

Figure 5

Table 5. Re-ordered trace

‘INITAG *
APPLY(John) *

APPLY (Peter) *
SUBSCRIBE(Acme, 3) *
HIRE(Peter, Acme)’

Re-ordered traces provide a unique way to represent
equivalent series of operations. Again this has a parallel
in data processing: if you want to compare two sets of
items of information, perhaps stored on different tapes,
you first perform a sort on both sets, using the same
ordering criterion; then the comparison can be simply
and efficiently performed in a merge-like fashion.

4. FROM THE INFORMAL DESCRIPTIONS
TO SYMBOLIC PROCEDURES

Figs 6 and 7 contain procedural specifications of an
update (subscribe) and a query (haspositions),
respectively.® A procedural specification treats the trace
as a sequence of symbols and ‘implements’ queries and
updates as symbol manipulation procedures defined on
the traces. The procedures (called ops) are fairly easy to
understand for anyone with some experience of symbol
manipulation, and can be promptly translated into any
existing symbol manipulation language (e.g. SNOBOL,

ICON, LISP, REDUCE, etc.). The statements in the
body of a procedure are examined sequentially and the
first one with a valid precondition (the condition to the
left of the ‘ = >’ symbol) is executed. The procedure is
then exited. By execution, we mean that the value of the
expression specified on the right of the ‘ = >’ symbol is
returned as the value of the procedure. If ‘ = > has no
precondition, then it is executed whenever it is
encountered. The match statement is executed by
matching in order the input sequence of type agdb against
the alternative patterns specified to the left of the ‘= >~
symbols; the value of the expression specified to the right
of the ‘= >’ symbol whose precondition was the first
successful match is the result of the entire statement.

Procedural specifications of subscribe

Level 1
op subscribe (y:company, m:natural, s:agdb):agdb
= > SUBSCRIBE[y|m|s]
endop

Level 2
op subscribe (y:company, m:natural, s:agdb):agdb
m > 0 = > SUBSCRIBE[y|m|s]
=>s
endop
Level 3
op subscribe (y:company, m:natural, s:agdb):agdb
var z:person, t:agdb, w:company, n:natural
m>0=>s
match s
HIRE[z|w|t] = HIRE[x|w]|subscribe (y, m, t)]
SUBSCRIBE[w|n|t] = >
fy=w
then SUBSCRIBE[y|m + n|t]
else SUBSCRIBE[y|n| subscribe(y, m, t)]
APPLY([z|t] = > APPLY|[z|subscribe(y, m, t)]
INITAG = > SUBSCRIBE[y|m|s]
endmatch
endop
Level 4
op subscribe(y:company, m:natural, s:agdb):agdb
var x:person, t:agdb, w:company, n:natural
m>0=>s
match s
HIRE[x|w|t] = > HIRE[x|w|subscribe(y, m, t)]
SUBSCRIBE[w|n|t] = >
fy=w
then SUBSCRIBE[y|n + m|t]
elseif y > w
then SUBSCRIBE[w|n|subscribe(y, m, t)]
else SUBSCRIBE[y|m|]s]
APPLY[x|t] = > SUBSCRIBE[y|m|s]
INITAG = > SUBSCRIBE[y|m]s]
endmatch
endop

Figure 6

Note the use of upper- and lower-case names for the
queries and updates. The lower-case versions clearly
describe procedures which implement the operation. The
upper-case versions denote the record of the operation
in the trace. Note also the use of the normal bracketing
and commas for procedures as compared to square
bracketing and vertical bars in the trace. Again, this arises
from the need to distinguish an operation’s implementa-
tion (and invocation) from the occurrence of operations
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Procedural specifications of haspositions

Level 1
op haspositions(y:company, m:natural, s:agdb):logical
var x:person, t:agdb, w:company, n:natural
match s
INITAG = > false
APPLY/[x|t] = > haspositions(y, m, t)
SUBSCRIBE[w|n|t] = >
ifw=y
then haspstns(y, m—n, t)
else haspositions(y, m, t)
HIRE[x|w|t] = >
if w = y and iscandidate(x, t)
and haspositions(y, n, t) and n > 0
then haspositions(y, m+ 1, t)
else haspositions(y, m, t)
endmatch
endop

Level 2
op haspositions(y :company, m:natural, s:agdb):logical
var n:natural, t:agdb, w:company, z:person
match s
INITAG = > false
APPLY/[z|t] = > haspositions(y, m, t)
SUBSCRIBE[w|n|t] = >
ify=w
then haspstns(y, m—n, t)
else haspositions(y, m, t)
HIRE[z|w]|t] = >
ify=w
then haspstns(y, m+1, t)
else haspositions(y, m, t)
FIRE[z|w|t] = >
ify=w
then haspstns(y, m—1, t)
else haspositions(y, m, t)
endmatch
endop

Level 3
op haspositions(y :company, m:natural, s:agdb):logical
var z:person, w:company, t:agdb, n:natural
match s
INITAG = > false
HIRE[z|w|t] = >
ify=w
then haspositions(y, m+1, t)
else haspositions(y, m, t)
APPLY][z|t] = > haspositions(y, m, t)
SUBSCRIBE[w|n|t] = >
ifw=y
thenifm—n =0
then true
else false
else haspositions(y, m, t)
endmatch
endop

Level 4
op haspositions(y:company, m:natural, s:agdb):logical
var z:person, w:company, t:agdb, n:natural
match s
INITAG = > false
APPLY[z|t] = > false
SUBSCRIBE[w|n|t] = >
ifw#y
then haspositions(y, m, t)
elseif m =n
then true
else false
HIRE[z|w|t] = >
fw=y
then haspositions(y, m+ 1, t)
else haspositions(y, m, t)
endmatch
endop

Figure 7

and arguments as subsequences of the trace. Finally,
notice that we have again formally included the trace
(state) as a formal argument of the operations; in turn
each update operation is described as a function
returning a new state as its value. The resulting nested
prefix notation is particularly suitable to recursive
handling.

In the implementation of haspositions at the intended
trace level, we search the trace and, depending on what
subsequence we encounter next, return a new pattern (in
this case just representing either true or false). Note that
we need to use the hidden query (i.e. one that cannot be
used directly by users of the database) haspstns. This
query computes the number of positions represented by
the trace by adding up subscribe’s to the same company
and subtracting hire’s by the same company. We have
also used the notation ‘n’ in the Level 1 definition of
haspositions to indicate that the value of n is obtained
from the matching process and is not an input to the
procedure haspositions.

5. SOME BRIEF THEORETICAL
REMARKS

Since the purpose of this paper is to provide a framework
for a non-technical understanding of some concepts we
believe will be useful to the practitioner, we have
generally restricted our remarks on theoretical questions.
We take this opportunity to provide for the interested
reader a bridge from the earlier sections to relevant
theoretical concepts. Reordered traces derive their
importance from their connection with techniques for
data type verification.

Thus the techniques we presented attempt to provide
a methodology for developing axiomatisations which
capture relevant intuitive details, simplify the specification
problem by reducing the generality of the situations that
have to be treated in the specification, and offer a
criterion for determining whether a specification is in
some sense complete by specifying relatively few
standard sets of combinations of operations or queries on
the re-ordered expressions. Each re-ordered trace denotes
uniquely one valid data base state.

Techniques based on the concept of abstract data types
also exist for defining implementations, proving the
correctness of an implementation and studying other
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relevant properties of the specifications. Thus it is
important that we establish some connection between the
concept of traces as we have outlined it and the normal
specification of data types. In fact, the transformations
undergone by traces in moving from one level to the next
can be formally expressed as equational axioms.
Equational specifications are the basis of the current
theories of abstract data types.

Asin the notation used for the procedural specifications
of the last section, we use the nested, prefix notation for
equations and we again include the database state as a
formal argument (parameter) of the updates and queries.
Let us now examine the passage between the various
levels to determine the kinds of equations needed in an
axiomatization.

(a) Level 1 to level 2. If the preconditions for the update
op to be applied to the state s fail, then the database state
is unchanged. That is, op(..., a) = s. We used this kind
of rule to eliminate from the trace operations which fail.
Thus we could write the axiom
n < 0— > subscribe(y, n,s) = s
where n is a natural number, y a company and s a
database state. Thus, if the number of positions offered
is non-positive, the effect of subscribe on the database
state is nil. :

(b) Level 2 to level 3. If, for two sequences of

operations
andopl(...,opZ( ...... ,opn(...,8)...)...)...)
opl’(...,0p2(...... ,opm’ (...,8)...)...)

the precondition for initiating their execution is the same
and their final effects are the same, we can then state that
they are equivalent. This kind of equivalence is often used
to reduce the length of the trace (and hence of the
re-ordered trace eventually used) by substituting the
shorter of two sequences for the longer one. Notice that
the shorter sequence may be the empty sequence (i.e. just
the database state with no update applied). For example,
the final effect of hiring and firing the same person with
respect to the same company is nil. A formal example
using the subscribe operation is:
m>0andn>0—>
subscribe(y, m, subscribe(y, n, s))
= subscribe(y, m+n, s)
where m, n are naturals, y a company, and s a database
state. Thus the cumulative effect of various subscribes
performed one after the other is reflected using one
subscribe with the total of the positions being offered.
¢) Level 3 to level 4. If, for two sequences of operations
opl(...,op2(... ... ,opn(...,8)...)...)
opl’(...,0p2(... ... ,opm’(...,8)...)...)
the precondition for initiating their execution is the same
and their final effects are the same and, moreover, m = n
(i.e. the sequences are the same length) and one is just a
permutation of the other, then we can say that they are
equivalent. This kind of equivalence is often used to
achieve the total ordering of all possible update
operations discussed in section 3.4. This is used to achieve
the canonical form which is our objective in going through
the various traces. As an example, we have:
m>0andn>0andy #w—>
subscribe(y, m, subscribe(w, n, s))
= subscribe(w, n, subscribe(y, m, s))
Thus two subscribes by two different companies can be
re-ordered (they should be to achieve a re-ordered trace
if the lexicographic order for the companies, which are
the first argument, is incorrect).

and

We have had some experience with this methodology
for defining canonical forms and then extracting an
axiomatization from the procedural specification, and we
can say that this experience has proved to be encouraging.
The specification method based on canonical expressions
has been put forward in a variety of places!!- 2 but it is
not always clear how to choose canonical forms and how
to choose what should go into the specification.

In this respect, we should note the connection between
our assumptions and aims and those of reports where
canonical forms and ideas of observability are assumed.
For databases, it is quite reasonable to assume that
database states differ only if queries can differentiate
between them. We might call this concept observational
completeness. Note that the traces at the very lowest level
exhibit a very pure form of observational completeness.
Any well-formed expression denoting a state can be
examined by queries, and our specifications at this level
must guarantee complete observability. This complete
observability must be guaranteed at each subsequent
level, but at each level the domain of expressions over
which the queries are defined is reduced in scope. This is
because we are defining equivalences among traces and
providing ways of transforming traces which are not in
the ‘legal’ set for that level to ones which are. These
sequences are defined by stating equivalences between
sequences of update operations, as in the examples
presented above.

At the final level, expressions denoting states must be
in canonical form before a query can be applied. The
queries at this level guarantee observable completeness
only for states denoted by canonical expressions. (This
seems to be the meaning of Guttag’s sufficient complet-
eness criterion used in his work.!3 It is also what is meant
by ‘completeness criterion’ in ref. 7.) However, we have
defined enough rules of transformation via our procedural
specifications and the equations obtained from them to
guarantee the existence of an equivalent canonical
expression denoting each state.

In summary, at the lowest level two expressions
denoting a database state are equivalent if and only if
there are no queries (predicates) which can differentiate
between them. At the highest level, two expressions
denoting a state are equivalent if and only if they have
the same canonical form. Note that ‘observational
equivalence’ is generally quite hard to prove, since one
has to use some general form of reasoning about all
queries. Testing whether two expressions have the same
canonical form is generally much easier.

In future work, we hope to study the process outlined
above for obtaining a specification in terms of canonical
expressions. Each level of trace above can be seen as
choosing a smaller and smaller class of representatives of
each equivalence class of expressions, eventually ending
up with the single canonical representative, and at the
same time providing ways of transforming expressions
not in the designated subset into equivalent ones within
the subset. And, although we have used four levels of
trace here, in the more general theory it is not necessary
to fix the number of levels before applying the
methodology. The nature of the application, the nature
of the canonical form, and the transformations chosen
will determine the number of levels needed. Moreover, we
may not want to assume the observational completeness
property if our application is not a database one.

Finally, we note that with the use of predicates in our

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 65

cpy 28



A.L.FURTADO AND T.S. E MAIBAUM

axiomatization, we avoid the usual combinatorial
explosion of selectors necessitated to query a relation. For
instance, instead of needing 2**2 = 4 selectors to test the
relation defined by haspositions (we do not count the state
argument) for the various combinations of constants
(given) and variables (to receive the selected values) which
we can possibly use as arguments for a query, we use
existentially quantified versions of the predicate in place
of the selectors. For example, In haspositions(Acme, n)
should select the non-negative number of positions which
Acme has available. Jy 3In haspositions(y, n) returns
some company with the number of positions offered by
that company.

6. AN ‘ABSTRACT’ DIALOG

AUTHORS. To summarize, we would say that it pays off
to produce an executable specification and experiment
with it, perhaps changing it several times as demanded by
the future users, before committing oneself to a lengthy
and costly implementation. Further, it is useful to have
this specification cast in a style that favours rigorous
verifications of correctness. Finally, the executable
specification can be re-activated during the maintenance
phase, in order to experiment with changes necessitated
by shortcomings in the original design or by new needs
of the user community.

PRACTITIONER. It is certainly nice to have an executable
specification available with all those features. The idea of
producing a first version for experimentation only has
been in fact defended by software engineers!4 and has
been used with good results reported.'®* However, I have
certain misgivings as to the effort needed to produce it,
particularly when formal methodologies are employed.
First, let me point out the matter of scale. You were
discussing a very small example. I fear that producing a
specification for any realistic database application and
making it reliably consistent would be a very difficult job
indeed.

A. There are examples of non-trivial applications being
specified using these techniques!® and at least one of them
(ref. 7) helped finding errors that several people had failed
to detect in a previous informal specification, errors that
would be tricky and expensive to correct in the program-
ming phase.

P. Yes, but the specifications were done by university
people. Also it is convenient to employ symbol-
manipulation languages for handling the traces, whereas
most professional programmers are not trained to use
such languages. The size itself of the programming task
in the case of realistic applications could be such that, for
having the executable specification, we would perhaps
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