\ONAL o
whl Oy,

STOCKHOLM
AUGUST 21-23, 1985

Mogas} ATNTTITR . 4D

XA __

005.7406
161

PIROTTE and Y, VASSILIOU

Edited by A. PIROTTE and Y.

VASSILIOU

2 DU ‘ i
STOCKHOLM
AUGUST 21-23, 1985

A TOOL FOR MODULAR DATABASE DESIGN

Luiz Tucherman*
Antonio L. Furtado**
Casanova***

Marco A.

*Latin American Systems Research Institute/IBM Brazil
**pontificia Universidade Catolica do Rio de Janeiro
***Brasilia Scientific Center / IBM Brazil

ABSTRACT

A database design method, based on the
concept of module, is first described.

The method incorporates both o a
strategy for enforcing integrity
- constraints and a tactic for
organizing lavge sets of database

structures, integrity constraints and
operations. A software tool that
helps the development and maintenance
of database schemas designed according

to the method is then specified.
Finally, a prototype expert systen
offering a partial implementation of
the teool is described.
1. INTRODUCTION

in this paper a software tool
the database administrator
maintain database schemas
discipline.

We discuss

that helps
specify and
following a modular

The tool incorporates knowledge about a
database design method, first described
in LTCF1, that provides structured
descriptions of +the more +traditional
notions of conceptual and external
schemas. Relation schemes, integrity
constraints and operations are grouped
into modules LFa,LZ] and introduced in a
structured, orderly fashion that

enhances the understandability of the
database. The method also dictates that
the relations of a module M must be

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
?I ﬂ'xe publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

436

updated only by the operations defined
in M, which corresponds +to the usual
notion of encapsulation LLZI. Hewnce, if
the operations of each module M preserve
consistency with respect to the
integrity constraints of M, the method
introduces an effective way to guarantee
logical consistency of the database.
Yet, Aqueries remain unrestrained in our
method, Jjust Like in the traditional
database design strategies.

Modular database design is not a new
idea, but all references known to us
LDMW, EKW, LMWW, SFNC, SNF, We tend to
explore the principles, theoretical and
otherwise, of the method. We are, by
contrast, interested in immediate
applications of the idea.

The design of a database schema in our
method consists of the successive
addition of new modules to a (possibly
empty) kernel database schema. FRut we

also recognize that designing a database

schema is intrinsically an interactive
process. The database designer
frequently has to 9o back and alter the
definition of a schewma, either because
the application evolves, or because his

of the application changes.
This understanding of the method led us
to divide the development of the tool
into two phases.

perception

In the
tool
store

initial
should
the

imp lementation phase, the
incorporate a dictionary to
description of modular
database schemas and should provide
facilities to add new wmodules 1o an
existing schema. A first prototype with
these characteristics, written in the
apgs extension of micro-FROLOG LHSY, is
fully operational. It incorporates
several design rules and offers a very
user—-friendly interface capable of
guiding the database administrator
through the various stages of the
definition of a module.

In the second stage of development, the
tool should account for database
redesign. That is, it should help the
DRA add, delete or modify the definition
of objects of a modular database schema.
The redesign process is somewhat move
complex, since it must necessarily map a
syntactically corvect schema satisfying
all design reguirements into another
schema with the same property. As a
consequence, the process must adequately
cope with the problem of the propagation

of changes. At the present time, the
second stage is fully specified and the
prototype is béing extended to cover
database redesign.

The paper is divided as follows.
Section 2 describes the basic concepts
of the database design method. Section
3 defines a dictionary to describe
modular database schemas. Section 4
specifies the database design tool, with
special emphasis on the problem of
changing the definition of wmodules.
Section - 5 outliines the current
prototype.) ’

Due to space Llimitations, detailed
discussions were left to the technical

report version of the paper LTFCI.

2. MODULAR DATARASE DESIGN
2.1 The Concept of a Module

A relation scheme is a statement of the

form RiAf, ..., Anl, where R is the
relation npnawe and Af,...,An are the
atiributes of the scheme. An integrity
constraint is a statement of the form
n:G&, where n is the paweg of the
constraint and R is a well-formed
formula over the relation schemes in
question. An pperatiop is a procedure
definition in s0me appropriate

We will use the
s to indicate an

programming language.
notation f(xi,...,xn):

operation named f with pavameters
X{,...,xn and body s.

A wodule is a triple M = (RS,CN,O0M
where

i. RS is a set of relation schemes such

that no two schemes in RS have the
same relation name;

2. ON is a set of integrity constraints
over the relation schemes in RS. CN
must contain, for each relation
scheme RIAT, ...,AN], a relation
schewe axiem indicating that the
interpretation of R must be a subset

437

of the cartesian product of the
interpretations of Af,...,An.
3. 0F is a set of operations over the
relation schemes in RS.
2.2 Module Consiructors
A module may be either primitive, if it
is defined without any reference to
cther modules, or derived, if it s
defined from previously existing modules

by one of the two module constructors,
subsupption and extension.

A primitive module M=(RS,CN,0OF
defined by a statement of the form:

is

(1) module M
schemes RS;
constraints CN';
operations oF;

enforcements EN;
endmodule

CN without the relation
(since these integrity
constraints are completely fixed by RS,
they may be omitted from CN') and EN is
a set of enforcement clausgs of the form

where N is
scheme axioms

'O enforges I' where O is the name of an
operation and I is the name of a
constraint of M.

The DBA must include an enforcement
clause '0 enforces 1° whenever the
definition of operation 0 takes into
account constraint I. That is, whenever
some change +tc the definition of I
affects the definition of 0. This type
of additional information will be

important in Section 4 when we consider
the problem of redesigning the database
schema.

The rest of this
module constructors
Sections 2.3 and 2.4
can be profitably used
design.

section defines the
in detail, whereas

indicate how they
for database

Let Mi =
modules.

(RSi,CNi,QFi), i=1,...,n, be

Consider the subsumption constructor
first. Intuitively, if the DRA defines
M by subsumption over modules Mi,...,Mn,
then M may contain new relation schemes,
new integrity constraints and new
operations, and M always inherits all
the reflation schemes and intearity
constraints of Mi, ..., M. M also
inherits all operations of Mi,..., Mn,
except that M may hide some of these
operations if they vio}ate a new

constraint. Moreover, M contains all
pertinent enforcement clauses just as in
the definition of primitive wmodules.
Modules Mi, ..., Mn then become
inaccessible to the users and can no
longey participate in the definition of
rew modules.’

The following statement defines a new
module M by subsumplion over Mi,..,Mn:

M
schemes
constraints CNO;
operations 0Fo;
enforcements EN;
hidings HI;
encdmodule

subsumes M1, ...,Mn with

RS0;

(2) module

where:

set of relation schemes
no relation name in RSO
Mi,.a.,Mn, and no two

RSO have the same

RSO is a
such that
occurs in
schemes in
relation name;

2, CNoO is *a set of (named) integrity
constraints over RSO,RS1,...,R;
OFe is a set of operations over
RSO,R89, ..., RSn;

EN is a set of pnforcement clauses
of the form '0 enforces I' where O
is the name of an cperation defined
in M and I is the name of a
constraint also defined in M;
HI is a possibly enpty set of
clauses of the form
violate I4,...,Ik' where 0 is the
name of an operation of Mi, for some
i in Li,n)l, and Ij is the name of a
constraint defined in CNO, for each
i in L1,kl. We say that 0 is hidden
by M.

i.

hidina
‘0 may

More precisely, the statement in (2)
defines a module M=(RS,CN,OF) where

i. KRS is the union of RSO,...,RSn

2., CN is the union of CNO,...,CNn

3. OF is the union of OFO,0F{',...,0FNn’
where oFi! is OFi without all
operations hidden in M, for
i=f,...,n

We now turn to the definition of the

extension constructor. Informally, a

module M extends modules Mi,...,Mn if

relation scheme of M is a view over
the velation schemes of Mi,...,Mn (that
is, a relation scheme derived from those
of Mi,...,Mn) and each constraint of M
is a logical conseyuence of those of
Mi,.aa,Mn, when views are treated as
defined predicate symbols. M may also

each

438

introduce operations on views. Eut, to
avoid the so-called view update problem
LFC1, the definition of M contains, for
each view operation p, an inplementation
of p in terms of +the operations of
Mi, .0, M0, Unlike subsumption, modules
Mi,....,Mn remain accessible after the

definition of M.

A new module M is defined by exiension
over Mfi,...,Mn through a statement of
the form:
(3) module M extends Mi,...,Mn with

schemnes RSO;

constraints CNO;

operations 0OF0;

using
views VUW;
surrogates SR;

endmodule
where:
i. the triple
module M
2.4,
2. VW contains,
Riatd, ..., Akl
defipition
F\'(in‘..;Xk)
well-formed
variables,
RSY, ..., RSn.
AN contains,
flyf, .0, ym): r
which is an
flyd,.u.,ym):

(R8O,CNO,0F0) defines a
in the sense of Section
scheme
yiew
form
is a
free
aver

each
RSO, a

of the
where [
with k

x{,.0.,xk,

for
in
wapping
Q,
formula
ordered

for each operation

in OFO, a surrnaate.
operation of the fovm
s over RSf,...,RSn;

The statement in (3) then defines a new
module M=(RSO,CNO,0F0) and couples M to
Mi,....,Mn through the paiv (VW,SR). @A
view definition mapping RLA1,...,Ak]: @
in VW indicates that Q defines R in
terms of the relation schemnes of
M1, ..., M. Hence, a query over R is
translated into a query over the
relation schewes of Mi,...,Mn with the
help of Q. lLikewise, a survogate
flyi,...,ym): s in SR describes an
imp lementation of flyf,...,ym): v in
terms of the operations of Mi,...,Mn.
Thus, a call to procedure f generates an
execution of s, not r.

for Modular Database

2.3 Design ERules

Schemas

A modular database schema consists of a
set of modules that wmust satisfy a
sevies of design rules, which guarantee
that if the database is updated only by
the operations visible to the users, the
state of the database will always remain

More precisely, the set of
consistent wmodular database schewmas and

their active wodules, s recursively
defined as follows:

consistent.

i. the emnpty set is a consistent
modulay database schema with an
empty set of active modules;

2. Let D be a consistent wmodular
database schema with active modules
set A. Let M be a wmodule such that
no module in D has the same name as
M. Then D' = D U (M} is a
consistent modular database schema

iff M satisfies one of the following

conditions:

a. if M is a primitive module then

M must satisfy requivement 1§

(see Figure 2.1 at the end of

this section for the cowplete

List of requirements and a brief

explanation of their meaning).

The active module set of D' is

A = A U (M}

if M is a module obtained by

extending Mi,...,Mn then M aust

satisfy requirements 22,3,4,5.

The active module set of D' is

A' = A U (M)

if M is a module obtained by

subsuming Mi, ..., Mn then:

1) the relation wnames of the
new relation schemes defined
in M must be different from
those of the retation
schemes in Mi, ..., HMn.

2) M must satisfy requivements

6,7,8,9.

active wmodule set of D!
AU (MY ~ (M1,...,Mn).

The is

Al =

l.et D be a modular database schema with
active wmodules set A. The set C of

conceptual wodules of D is the subset of
A consisting of all primitive modules
and all active modules defined by
subsumption; the set E of extiernal
wmedules of D is the set of all modules
defined by extension in D. An operation

p of D is active. conceptual or external
iff p is an operation of an active,
conceptual or external module of D,

respectively.

A user has in principle access to all
active modules of a modular database
schema. Hence, he sees all relation
schemes and integrity constraints
.defined in all modules, but he can only
update the database wusging the active
operations. He can also freely query

any relation scheme.

439

As for
schenas,
closely
gradually
initially
must

the design of modular database
the process we suggest follows
the formal definition. The DRA
adds new modules to an
empty database schema. He
pay attention to two aspects: how
to define a vew module and how to
satisfy the design requirements (see
Section 2.4 for an example).

To conclude this section, we state a

theorem to the effect that the choice of

the design requirements suffices +to

guarantee consistency preservation.

THEOREM 2.1 LTCF1: Let D be a modular
database schema. Suppose that D
satisfies vrequirements 4 through 9.
Then, every active operation of D
preserves consistency with respect
to the set of all constraints
defined in modules of D.

Figure 2.1: List of Requirements
FRIMITIVE MODULES

Besuirenent i each opervation defined in
a module M must preserve consistency

with respect to all integrity
constraints defined in M.
This requirement reflects the
fundamental preoccupation that the
database should always be left in a

consistent state LCCFJ.

MODULES DEFINED RY EXTENSTON

lLet M be a module defined by extension
over modules Mi=(RSi,CNi,0OF),
i=f,...,n. Let RSO,CNO,0FO,VW and SR be
the new relation schemes, integrity
constraints, operations, view
definitions and surrogates,
respectively, defined in M.
Eerauirewent 2: if f(yi,...,ym): 5 is the
surrogate of f(yf,...,ym): v defined

in Sk then s
of v LFCI.

is a faithful translation

Requirement 2 guarantees that 5
correctly implements r in the sense that
v and s must have the same effect as far
as the views are concerned.

flvd, .o, ym): s is a
surrogate defined in SR, then s can
only modify +the values of relation
schemes in Mi,...,Mn through calls to
the operations defined in Mf,...,Mn.

Eeiuirement 3: if

Requirement 3 guarantees that each
surrogate s preserves consistency with
respect to CNi since s updates the
schemes of Mi through calls to
operations of Mi, for each i={,...,n.
Egagirement. 4: for each integrity
constraint I in CNO, I' wust be a
logical consequence of the integrity
constraints of Mi,...,Mn, where I' is
obtained from I by replacing each
atomic formula of the form
R{tf,...,1tk) by Qit4/x9,...,tk/xk],
where RLAY, ..., Akl: @ is the view
definition of R described in VW, and
the Llist of free variables of Q is
X4, 004, XK
Requirement 4 guarantees that the
integrity constraints of M follow from

those of Mi,...,Mn when each view is
interpreted as a defined predicate
symbol. Thus, no really new local
constraints can be defined in a module

created by extension.

Beauirement S: Mi,...,Mn must be active

modules of D.

Requirement 5 avoids defining view
opevations using inactive operations,
which may violate consistency.

MODULES DEFINED RY SUEBRSUMFTION

Let M be a module defined by subsumption
over modu les Mi=(RSi,CNi,OFi),
i=f,...,n. Let RSO, CNO, OF0, HI be the
new relation schemes, integrity
constraints, operations, and hidden
operations, respectively, defined in M.
lLet CN be the union of CNO,...,CNn and
OF be the union of OFO,0F{',...,0FN',
where 0OFi' is the set OFi, except for
those operations that weve hidden by M,
for i=1,...,n.

Beauirement 4. each operation in QOF
preserves consistency with respect to
the integrity constraints in CNO.

Beauiresent 7: each operation in OFO can
only modify the wvalues of velation
schemes in Mfi,...,Mn through calls to
the operations defined in Mi,...,HMn.

Requirements é and 7 suffice +to
guarantee that each operation in OF

Ereserves consistency with respect to
N.

must not contain a
defined by extension using Mi,
some i in Li,nl.

Beauirement B8: D
module
for

LLo

Requirement 8 forbids the DEA to define
a new module M by subsuming a module Mij

if there is a third module M®" that
extends Mi. This requirement is
necessary since it avoids the

undesirable situation where M subsumes
Mi and vyet M" offers direct paths to the

objects and operations of Mi. 1In fact,
if Requirement 8 is violated, we cannot
assure that calls to operations of M®

will not violate constraints of M.

Beauirement. 2. Mi,...,Mn must be
conceptual modules of D

Retuirement ? does not permit the
subsumption of external modules, again
to guarantee that all new opevrations of
M, and those of modules defined by
subsuming M, preserve consistency.

2.4 on Exanele

We will itlustrate our method by
designing a micro database that stores
information about products, warehouses

and shipments of products to warehouses.

We begin by cveating a schema with just
one primitive module, FRODUCT, that
represents data about products and
contains the operations allowed on
products. FRODUCT is defined as
follows:

module FRODUCT
schemes
FROD LF%, NAME]
constraints
ONE_N: ¥p¥n¥n'(FROD(p,n) & FROD(p,n')
=) n=n') .
operations
ADDFROD(p , 1) :
if 7dn' FROD(p,n') & F¥{p) & NAME(N)
then insert <(p,n) intce FROD;
DELFROD(p) :
delete PROD(x,y) where x=p;
enforcements
ADDFROD enforces ONE_N;
endmodule

indicates that
account the

clause
into

The enforcement
ADDFROD takes
constraint ONE_N.

modular database schema contains at
point only one module, FRODUCT,
is obviously active. We then add
primitive module, WAREHQUSE, to
warehouses and the operations

The
this
which
another
represent

on warehouses. We define WAREHOUSE as

follows:

module WAREHOUSE

schemes WAREHSELWS,L0C]
constraints
ONE_.C:
Vw¥edc ' (WAREHSE(w,c) & WAREHSE(w,c')
=) ¢=c')

operations

OPEN(w,c): .

if 74c' WAREHSE(w,c') & We(w) & LOC(c)
then insert (w,c) into WAREHSE;

CLOSE(w):

delete WAREHSE(x,y) where x=w;
enforcements

OFEN enforces ONE_C;
endmodule

The modular database schema now has two
active modules, PRODUCT and WAREHOUSE.
We continue the design by defining a new
module, SHIFPMENT, that introduces a
relationship, shipment, between products

and warehouses. Note that a shipment
(p,w) requires that product p and
warehouse w indeed exist. Since the

operations DELFROD and CLOSE may violate
this constraint, we must define SHIFMENT
by subsumption over FRODUCT and
WAREHOUSE and redefine DELFROD and CLOSE

appropriately:

module SHIPMENT
subsumes FRODUCT, WAREHOUSE with
schemes SHIFLFE, W, QTY]
constraints

ONE_QR:

¥Yp¥u¥a¥yg ' (SHIF(p,w,1) & SHIF(p,w,q')

=) q=q"')
vp(Fwdqy SHIF(p,w,q)

=) 3n PROD{(p,n))
INC_W: ¥w(3pdq SHIF(p,w,q)

=) dc¢ WAREHSE(w,c))

INC_F:

operations
ADDSHIF(p,w,q):
if In FROD(p,n) & 3c WAREHSE(w,c) &
“3q' SHIP(p,w,1') & RTY ()
then insert (p,w,q) into SHIF;
CANSHIF(p,w):
delete SHIF(x,y,z) where (x=p & y=w);
CLOSEf (w):
if T4piq SHIF(p,w,q)
DELFRODY (p):
if “twidq SHIF(p,w
enforcements
ADDSHIF enforces ONE_R,
CLOSEA enforces INC_W;
DELFROD4Y enforces INC_F;
hiding
DELFROD may violate INC_F;
CLOSE may violate INC_W;
endmodule

then CLOSE(w);
,1) then DELFROD(p);

INC_F, INC_W;

Lk

database schema now has
three modules, SHIFPMENT, WAREHQUSE and
FRODUCT, but onty SHIFMENT is active.
Note that SHIFMENT containg all relation
schemes and constraints of FRODULT and
WAREHOUSE, plus a newly defined relation
scheme and three new constraints. The
active operations (that is, those
available to users) after the definition
of SHIFMENT are: ADDSHIF, CANSHIF,
CLOSEA and DELFRODY , defined in
SHIFMENT, and ADDFROD and OFEN,
inherited from FRODUCT and WAREHOUSE,
respectively. Since the operations
DEL.FROD and CLOSE may violate
constraints INC_F and INC_W of SHIFMENT,
vespectively, they are hidden in
SHIFMENT. Hence, CLOSE and DELFROD are
no longer visible to users.

The modular

Finally, we introduce the module

DELIVERY by extending SHIFMENT:

module DELIVERY extends SHIFMENT with
schemes DELVRYLF&,W%]1;
constraints /% (none) %/
operations
DEL(p,w):
delete DELVRY(x,y) where
using
views
DELVRY(p,w)
surrogates
DEL(p,w):
endmodule

(x=p & y=w)

49 SHIF(p,w,q)

CANSHIF(p,w)

The final database schema therefore has
two active modules, SHIFMENT and
DEIL.LIVERY, and two other modules, FRODUCT
and WAREHOUSE. Users have access to
three base relation schemes (using
traditional terminology), FRODLF%,NAME],
WAREHSE LW*L.OCY, and SHIFLF#%,Ws,QTY), and
one view, DELVRYIF%,WE]l. The active
operations are ADDSHIF, CANSHIF,
ADDFROD, DELFRODY, OFEN, CLOSEY and DEL.
A user has access to any of these
operations, but note that a call to DEL
invokes the procedure asscciated with
DEL in the surrogates clause of
DELIVERY. The procedure associated with
DEL in the gpgrations clause of DELIVERY
just informs the user the meaning of DEL
in terms of its effect on the velation
scheme DELVRY.

3. A DICTIONARY DEFINITION

introduce in this section a
that describes the objects -
schemes, constraints, and
and relationships between
induced by a wodular

We
dictionary
modules,

operations
these objects

database schema. The conceptual schema
of the dictionary will be described in
terms of an entity-relationship model.
Although it is not essential, we will
consider that the dictionary contains
only the entities and relationships

derived from a single modular conceptual
schema D. It is also iemportant to
observe that the state of the dictionary

representing a database schema D s
fully determined by the declarative
syntax of the wmodules of D (that
introduced in Section 2y, and

vice-versa.

We will use B(Af,...,AN) to
entity type mnamed B whose Llist of
attributes is A1,...,ANn; we will in turn
use RCES , oo a , Em) to describe a
relationship type, whose name is R,
without attributes, over +the entity
types mnamed E{,...,En. Keys will be
under L ined whenever necessary. The
conceptual schema of the dictionary,
together with the intended
interpretation of the entity and
relationship types, is described below:

indicate an

ENTITY TYFES

is-primitive(name), is-sub(name) and
is~external (name)

each module M, either primitive,
defined by subsumption or defined by
extension, of the modular conceptual
schema D, corrvesponds to an entity of
type is_eprimitive, is_sub or
iszexternal, respectively. The only
attribute is the module name.

module(name)
generalization
sets. The
module name.

of
only

the three previous
attribute is the

scheme{name, lList,def)
each relation scheme R defived in a
module of D corresponds to an entity
of this type. The attributes are the

name and the attribute list of R, as
well as the view definition mapping of

R, if R belongs to a module defined by
extension, otherwise the value of
attribute def is nil.

constraint(pape,def)
each integrity constraint I defined in
a modute of D corresponds to an entity
of +this type. The attributes are the
name and the defining formula of I.

Llp

operation{pawne,def,surrogate)

each operation 0 defined in a module
of D corresponds to an entity of this
type. The attributes are the name and
the procedure defining 0, as well as
the surrogate associated with O, if 0O
belongs to a module defined by
extension, otherwise the value of
surrepgate is nil.

RELATIONSHIF TYFES

subsumes(module,module) and

extends(module,module)
the pair (M,N) will be
relationships of type
extends iff and N represent two
modules such that M is defined by
subsumption or by extension,
respectively, over N.

in the set of

subsumes or
M

iS*scheme~defined—in(scheme,mbdule)

the pair (S,M) will be in the set of
retlationships of type
is=scheepe-defined-in iff § is a name
of a scheme defined in M.

is—constraint-defined-in{constraint,module)

(same, when I is constraint defined in

M.)

is—operation~defined-in(operation,module)
(same, when 0 is operation defined in
M.)

is-view-over{(scheme,scheme)
the pair (V,S) will be in the set of
relationships of type js-vigw-over iff
v represents a view whose view
definition mapping involves scheme §.

is-constraint-over{constraint,scheme)
the pair (I,S) will be in the set of
relationships of type
iszconsiraini-over iff I represents a
constraint whose definition involves
schene §.

is~operation-over(operation,schene)
the pair (0,8) will be in the set of
relationships of type
is-operationzover iff O represents an

operation whose definition or whose
survogate (if 0 is an operation
defined in a module introduced by

extension) involves scheme S.
enforces(operation,constraint)
the paiv (0,I) will be in the set of
relationships of type enforces iff the
definition of operation 0 guarantees
that constraint I will be wnot
violated.

may-violate(operation,constraint)
the pair (0,I) will be in the set of
relationships of type may-violate iff
0 represents an operation which has an
execution that may violate constraint
I.

calls(operation,operation)

the pair (0,0') will be in the set of
relationships of type cgalls iff 0O
represents an operation whose

definition or whose surrogate (if 0 is
an operation defined in a module
introduced by extension) calls

operation 0'.

4. REDESIGNING DATABASE SCHEMAS
This section discusses in general terms
how the design tool should help the DEA
redesign a database schema. Section 4.1
addresces the problem of redesigning the
modular structure of a schema, including
the insertion and deletion of cowplete
modules. Section 4.2 discusses the
problem of redesigning the schenes,
constraints, operations and
relationships of modules.

4.1 Eedesigning the Modular Structure of
a fchewa

To add a new module M to an existing
modular database schema D, the DRA must
successively add the schemes,
constraints and operations of M, in this
order, to the dictionary. The design
tool "should +then quide the DRA in the
process, verifying that he does not
violate any of the vequivements listed
at the end of Section 2.3. However,

since we do not assume a general PYogyam

verifier capable of detecting if an
opevation violates a constraint, or if
two operations are equivalent (for a set
of wvariables), requivrements {1, 2, 4
cannot be enforced. A geneval theorem
prover would also be needed to enforce

Thus, the DBA has to be
as these requivements go.

requirement 4.
trusted as far

The tool can, at most, inform the DEA
when these requirements must be obeyed.
As for requirements 3, 5, 7, 8 and 9,
gince they depend on the current state
of the dictionary and on syntactic
conditions, they can in principle be

verified without undue effort.

is quite
suffices
in M and
M' whose

module M
since it
all objects defined
delete all modules

The deletion of a

simple to account for,
to delete
vecursively

uh3

definition depends directly or
transitively on M.

Changing the relationships between
modules makes sense in only one case
which we discuss in the resf of this
section. Recall that, by requirement 8,
the DBA cannot define a new module M by
subsuming a module M' if there is a
third module M* that extends M'.
Requivrement 8 avoids +the undesirable

situation where M subsumes M' and yet M*
offers direct paths to the objects and
operations of M'. In fact, if
requivement 8 is violated, we carmot
assure that calls +to operations of M"
will not wviolate constraints of M. On
the other hand, requirement 8 is too
strong in several situations. For
example, suppose that we let M subsume
M' as long as M does not hide any
operation used tc define surrogates of
M. Then, the definition of M* remains
valid, provided that we consider that M*
now extends M, instead of M'. Since
this type of change is quite useful, we
introduce a new module constructor,
sirang subsumeption.

We say that a module M strongly subsumes
Mi, ..o, Mn iff:

. M subsumes M{,... exactly asg
defined in Section except that
requivrement 8 is replaced by

, Mn

-

oy

Beauirement 8!': M does not hide any
operation p used to define a
survogate of any module M* that
extends Mi, for any i=1,...,n.

the
any module M*
considered to
=1, 000, 0.

dictionary is changed so that
that extends Mi is now
extend M, for each

Thus,
change

is indeed a
database schema in the
double sense that it introduces a new
module M and may change the definition
of several other modules.

strong subsumption

of the

4.2 Bedesianing Qbiects within HModules

In order to help the DBRA insert, delete
or modify the definition of objects
within modules, +the design tool must
verify the correctness of object

definitions and determine how chanaes on
a group of objects propagate to others.
We focus our discussion in this section
‘on the second problem.

We first observe that fixing how changes

must propagate is equivalent to
determining a policy governing how
updates propagate through the
entity-relationship diagram of the
dictionary. The policy we adopted is
expressed as a set of detailed rules,

but in general it reflects a precedence

relation on objects as follows:

i. relation schemes have the highest
precedence, which implies that a
relation scheme § is: .
a. never affected by changes on

other objects, if § is defined
in a primitive module or a
module defined by subsumption;
b. affected only by changes on the
relation schemes § is defined
on, if § is defined in a module

introduced by extension;
2. constraints have the second highest

precedence, which implies that a

constraint I is affected only by

changes on:

a. the relation schemes I is
defined on;

b. the constraints of the extended
modules, if I is defined in a
module introduced by extension

(tp satisfy requirement 4);
operations have the lowest
precedence, which implies that an
operation 0 is affected by changes

on:

a. the schemes 0 is defined on;

b. the constraints that 0 enforces
or may violates, or the
constraints of the module where
0 is defined;

C. the operations O calls.

The redesign process is organized in two
steps. The design tool begins the first
step by asking the DBA to supply the set
of changes he wants to apply to the
current schema, and then it takes over
and helps the DBA detect and fully
specify additional changes that must be
made to produce a new consistent schema.
This step is itself divided into stages
as exenplified below. During the second
step, the design tool applies all
changes to the curvent schema.

In what follows, we adopt the notation
'Ef R E2! te indicate that there is a
binary relationship of type R between
entities E{1 and E2 in the curvent state

of the dictionary.

referring to the database
in Section 2.4, suppose

decides to add a new

As an example,
schema defined

that the DEA

Lk

attribute, WEIGHT, to the relation
schemne FROD. The design tool then
begins stage 1 of step 1 of the redesign
process by looking up in the dictionary
which schemes may be affected by the
change on FROD. Since there are no
views defined on FROD, the tool proceeds
to stage 2 where it determines which
constraints are affected by the change
on FROD. Using the following
relationships involving FROD (that can
be found in the state of the dictionary
describing the database schema in
question):

ONE_N
INC_F

igzconsiraint-over FROD
iszconsiraini=-over FROD

and using
design tool
to check
constraints
that the
decides
to

the propagation rules, the
informs the DEA that he has
the definition of the
ONE_N and INC_F. Assume

DREA, when inspecting ONE_N,
to modify its defining formula
accomodate the new attribute WEIGHT
of FROD and also to retain F% as a key
of FROD. Also assume that the DEA
decides modify the definition of
INC.F just to include a third argument
into the occurvence of FROD,
corresponding to the new attribute
WEIGHT (these are purely syntactical
changes that have +to be introduced
anyway) .

to

Next, the design tool starts stage 3 of
step 1. It first determines how the
changes defined on schemes and
constraints propagate to the operations.

Using the following dictionary
relationships involving FROD, ONE_N and
INC_F:

ADDFROD ig-operation-over FROD

DELFROD is-operation-over FROD

ADDSHIF jg-pperationzover FROD

ADDFROD enforces ONE_N

ADDSHIF enforces INC_F

DELFRODY enforces INC_F

DELFROD mayzyielate INC_F
and using the propagation rules, the
design tool detects that the DEA must
check the definition of ADDFROD,
DELFROD, ADDSHIF and DELFRODY. However,
the information contained in the
dictionary is not sufficient to disclose
all conseqluences of the changes
specified on constraints. Indeed, since

ONE_N, of module FRODUCT
the design tool must ask

the DBA if its enforcement now depends
also on the opevation DELPROD. A

similar remark applies to the operations

a constraint,
was modified,

CANSHIF and CLOSEf, when constraint suitable for micro-FROLOG. The key idea

INC_F is considered. Assume that the is to translate the state of the

DEA decides that CANSHIF and CLOSE{1 need dictionary describing D (see Section 3)

not be changed. into a set of axioms. Each axiom will
be a ground atomic formula of the form

The tool' proceeds with stage 3 by ‘LY tab L2', where tab is a binary

recursively using the galls relationship predicate symbol (infix notation is

to. detect consequences of possible used) and Lf and L2 are lists.

rhanges on operations. The only such

velationship in the dictionary involving The general format of an axiom

ADDPROD, DELFROD, ADDSHIF or DELPRODf representing a relationship is
is:
({type)X{type)) tab ((named{mamedl{version))

DELFRODY galls DELFROD
where the List ({type){type)) expresses

Thus, the final set of operations that the relationship type, indicated by the
must be inspected is ADDFROD, DELFPROD, types of the objects connected, and the
ADDSHIF and DELFRODI. The tool then list ((named{named{version)) expresses
prompts the DRA to supply the changes he the individual relationship, indicated
wants to apply to these operations. by the names of the objects ({version)
Note that DELPRODY has to be Llisted denotes the particular version of the
after DELFROD, since the former calls database schema).

the latter.
0f all entities, only those designating

Assume that, when asked how to modify modules are represented in the present

ADDFROD, the DEA replies that ADDFROD version of the tool. An axiom standing

has to be wodified to accommodate the for a module has the following format:

new attribute of FROD and to continue to

enforce ONE_N. DELFROD and ADDSHIF need (mod) tab ({(mame) <(kind) {(version))

be modified only to add the new column

to FROD. Finally, assume that the DEA where {kind> is one of (primitive,

decides that DELFRODY need wnot be subsumption, extension}.

changed at all (since the change on

DELFROD does not affect DELFRODI). This In Table 5.1 we present the

conc ludes stage 3 and step 1. correspondence between the entries of
the dictionary and their axiomatic

Finally, the design tool enters step 2 representation, as implemented by the

and asks the DRA if all rvesulting tool.

changes are indeed satisfactory and, if

50, creates a new schema accordingly. Tabie 5.1 —~ Axiomatic Representation

5. AN EXFERT HELFER FOR DATARASE DESIGN Type / Entry Axiomn

In this section we briefly describe a lgzprimitive ;

prototype software +tool that helps the M) (mod) tab (M 'primitive’ n)

DEA interactively add new modules to a is=-gub

database schema. The prototype also (M) (mod) tab (M 'subsumption' m)

partially implements the dictionary is-external

described in Section 3. (M) (mod) tab (M 'extermnal' n)
schewne

The prototype is an example of an gxpert (S,L, &) not ionplemented

heleer, a concept introduced in LFM] to consiraint

designate relatively small intelligent (I, not implemented

tools to help in the design, usage and geeration

maintenance of large conventional (Q,F,F')Y not implemented

systems. The curvent wversion of the subsunes

tool vuns on an IBM personal computer (M,N} (mod mod) tab (M N n)

and was written using the apes extension exiends

of micro-FROLOG LCMI. Thanks to the use T (M,N) (mod mod) tab (M N w)

of apres, the prototype is highly is-schenexdefined=in

interactive. (§,M) (sch mod) tab (§ M n)
iszeconsivainizdefined-in

The design of the tool begins by (I,M) (con mod) tab (I M n)

choosing a representation for a schema D is-geeration-defined-in

4hs5

(0,M) (ope mod) tab n)

LEzvigwo-ouer
(V,S8) (sch sch)
is-consiraint-over
(1,8 (con sch)
is-pperation-nyver
(0,8) (ope sch)

enforces
(0, 1)

may=violate
0,1

tab n)

tab n)

tab <0 n)

(ope con) tab (O I n)

{(hid ope) con) tab (0 I wn)

calls
(0,F) (ope ope) tab (0 F n)

Note: n is the version number

sketch how the
by a DRA to add a
schema. To begin

module, the DRA

In the sequel we
prototype can be used
module +to a database
the definition of a
types wodule <{nawme. From this paint
on, the prototype prompts the DRA to
supply atl information needed to define
the schemes, constraints and opevations

of the module. The “program® consists of

the predicate ’'module' which in turn

calls other predicates to create the

several module components. A particular
module may or may not have schenes,
constraints and operations. However:

° if the module M is notl primitive,
the DRA must list the wmodules M
subsumes or extends;

e if the wmodule M is defined by

extension, each scheme § is a view.
So, the DEA must define a mapping of
S into the schemes of the modules M
extends;

e for each constraint or operation 0,
the DBA must Llist all schewmes 0O
references;

° only operations of non-prinitive
modules may call other operations;
moveover, all operations of modules
created by extension are survogates
and must, therefore, include such
calls. The DEBA must then inform the
calls relationship.

So, the presence of certain

relationships (indicated by the

insertion of the corresponding axiom) is
compulsory, and the predicate 'module'
willt fail if the DRBA declares that they
do not exist (by typing "end" when the

Juery is posed to him).

The fixes, procedurally, the

be followed by the DEBA in

creating the wvarious relationships and
their compulsory or optional nature. On
the other hand, using the apes features
unigue—answer and valid-~answer, the

prototype
sequence to

L46

profutype. separately defines, in a
declarative style, the criteria to
decide whether the values supplied by

the DBA as answers are acceptable.

per type of
the criteria that

We enumerate below,
relationship created,
are presently enforced.

(mod) tab (x y 4)
Yy € {primitive,
extension}

subsumption,

(mod mod) tab (x y 1)

y is an active module, which must
neither have been created by
extension nor extended if x is being

created by subsumption

(sch sch) tab (x y 1)
scheme ¥y is accessible to some module
used in the definition of the module
in which the view x is being defined

(con sch) tab (x y 1y
scheme vy is accessible to the module

in which constraint x is being
defined
(ope ope) tab (x y 1)

operation y is accessible to some
module wused in the definition of the
module in which opevation x is being
defined; if the latter is defined by
extension, Yy is related to some
scheme underlying its views

(ope sch) tab (x y)
scheme vy is accessible to the module
where opevation x is being defined.

(ope con) tab (x y)
operation x and constraint
some scheme in common

y have

(¢hid ope) con) tab (x y §)
operation x ig called by an opevration
of which constraint y depends

The prototype poses the relevant
questions to the DEBA using natural
language sentences, and adopts static
and dynamic menus to restrict his
answers; it also ensures that names avre
unique throughout the database schema.
Additional features of apes

(which-temnplate, in-menu, is-template)

are used for these purposes.

’

2.9 at the end of
may now compare the

to

243 ’

Figure
we

Returning
Section

implemented criteria with the
requirements for corvect module design.
Requirements 1, 2, 4, 6 and 7 are not

require detaited
the components.
8 and 9 are explicitly
implemented criteria.
refervring to modules

enforced; they would
descriptions of
Requirements 5,
enforced by the
Requirement 3,

created by extension, is enforced by
restricting the views and operations
declared in the wmodule to the schemes

and operations involved in the modules

extended.

To conclude, we could certainly do more
in terms of checking the consistency of

modular designs using the information
that is now extracted from the DEA.
However, what we already check is

sufficient to demonstrate the usefulness
of this kind of expert helper.

6. CONCLUSIONS

We described in this paper a software
tool to support the modular database
design method first introduced in LTCF].
The method itself was enhanced by
incorporating the hiding and enforcement
clauses, and by polishing some design
rules. The software tool is implemented
to the point of helping the database
administrator add new modules to an
existing database schema. The rvedesign
process, although wnot imnplemnented, was
specified in detail. Future plans
include transforming the +tool into a
full-fledged dictionary system
incorporating as much knowledge as
possible about the design method.

REFERENCES

LCCF1 M.A. Casanova, J.M.V. de
Castilho and Al Furtado.
"Froperties of Conceptual and
External Database Schemas”.
Froc. of +the TC 2 -~ Working
Conference on Formal Description
of Frogramming Concepts 1II,
Garmish-Fartenkirchen (1982)
K.L. Clark and F.G. McCabe.
micro-FROLOG: programming in
logic®. FPrentice-Hall ¢1984)
W. Dosch, G. Mascari, M. Wirsing
"On the Algebraic Specification
of Databases”". Froc. 8th Int'l
Conf. on Very Large Data FRases
(1982)
LEKW] H. Ehvig, H.-J. Kreowski, H.
Weber. "Algebraic Specification
Schemes for Data Rase Systems®.

LCM1

LDMW]

LFC1

LFM1

LHS]

LLMWW]

tLZ1

LFal

LSFNC]

LENF1]

LTCF]

LTFC]

lWe 1l

L7

Froc. 4th Int'l Conf.
lLarge Data Rases (1978)

A.L. Furtado and M.A. Casanova.
*Updating FRelational Views", in
*Query Frocessing in Database
Systems*, Springer Verlag (in
print).

A.L. Furtado and C.M.0. Moura.
"Expert helpers to data-based
information systems®. Proc. of
the First International Workshop
on Expert Database Systems
(1984), 298-313 i

F. Hammond and M. Sergot. "apes:
augmented FROLOG for expert
systems - reference manual®,
Logic Rased Systems Ltd. ({1984)

F.C. Lockemann, H.C. Mayr, W.H.
Weil, W.H., Wohlleber. “Data
Abstractions for Data Base
Systems®". ACM Transactions on
Database Systems 4:1 (1979)

on Very

K. Liskov, S. Zilles.
*Specification Techniques for
Data Abstractions". TEEE
Transactions on Software

Engineering SE-1 (1975)

D. Farnas. "On the Criteria to
be Used in Decompasing Systemns
into Modules®. Comm. of the ACM
15:42 (4972)

U. Schiel, A.L. Furtado, F.J.
Neuhotd, M.A. Cazanova.
“Towards Multi~level and Modular

Conceptual) Schema
Specifications®. Inform. Systems
?:4 (1984), 43-57

C.5 dos Santos, E.J. Neuhold,
A.L. Furtado. "A Data Type
Approach to the
Entity-Relationship Maodel®.
Int'l. Conf. of the
Entity-Relationship Approach to
Systens Analysis and Design
(1980)

L. Tucherman, M.A. Casanova and

A.L. Furtado, "A Fyagmatic

Approach to Modulay Databacse
Design", Froc. of the ?th Int'l.
Conf. on Very Large Data Races,

Italy (1983), 219-234
A.L. Furtade and
"An Expert System
Database Design®,
Technical Report CCRrO30,
Brasilia Scientific Center, IEM
Brazil (198%)
H. Weber. "Modularity
Rase Systems Design".
Joint IEBM/Univ. Newcastle
Tyne Seminar ({1979)

Florence,
L. Tucherman,
M.A. Casanova,
for Modular

in Data
Froc.
up O

