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PROBLEM SOLVING BY INTERPRETATION OF THEORIES

Paulo A.S. Veloso

ABSTRACT. Interpretation of theories can be used to solve prob-
lems in general. A (concrete) problem, following Polya, = consists
of two sets, of data and of results, together with a relation be-

tween them, the requirement. A solution is a function assigning
results to data so as to satisfy the requirement. An abstract prob-
lem, e.g. "ordering sequences'', is a class of concrete problems

specified by axioms. A (problem-solving) method, e.g. 'divide-and-
conquer', consists of an algorithm together with axioms guarantee=
ing its correctness. In applying a method to solve a problem one
defines the primitive concepts of the former, e.g. "splitting into
simpler instances', in terms of those of the latter, so that the
axioms of the method so translated can be derived from those of the
problem. This amounts to constructing an interpretation of the
theory underlying the method into (an extension of) that of the
problem. These formulations, which are intended to capture our in-
tuitions, permit a precise investigation of questions related to
problems and problem-solving methods. Moreover, they are applica-
ble to the processes of program construction and of problem solving
in general.

1. INTRODUCTION

The concept of interpretation of theories has proved to be a powerful
tool in mathematical logic, e.g. for establishing relative consistency or un-
decidability. Here we want to show that it can have even more widespread ap-
plications, in solving problems in general. In fact, we shall argue that
solving a problem by a method actually means constructing an interpretation
of theories; or, at least, can be so regarded if properly understood.

The structure of this paper is as follows. In the next section we make
precise some ideas of Polya [1957] to define a (concrete) problem as a many-
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242 PAULO A.S. VELOSO

sorted structure and an abstract problem as a class of such structures which
are the models of a specification. In section 3 the notion of problem-solv-
ing strategy is precisely formulated as a method, which is a theory consist-
ing of an algorithm to construct solutions together with axioms guaranteeing
the correctness of this procedure. Having formulated both abstract problem
and problem-solving method as theories it is quite natural to define the ap-
plication of the latter to thevformer in terms of interpretations, which is
done in section 4. Then section 5 illustrates these ideas with two examples
of methods, namely decomposition and reduction. In section 6 we briefly in-
dicate how the logical concepts underlying these ideas can be made more pre-
cise, which leads to the comparison of methods with respect to their  power.
Finally, section 7 contains some concluding remarks.

2. THE CONCEPT OF PROBLEM

What is a problem? Certainly, everyone can recognize a problem upon
seeing one. So, let us start with a simple example. Let us consider the
problem of "finding a root of a given polynomial”. Is it well formulated? How
are we to specify more precisely this problem? Polya [1957] suggests asking
three questions in approaching a problem; Tlet us follow his suggestion and
ask the following three questions: "What are the data?", "What are the possi-
ble tesu]ts?", "What constitutes a satisfactory solution?".

Polya's first question concerns the data. We must describe the domain of
possible data (or problem instances). We want to find roots of polynomials,
but of what kind: do they have integral or real coefficients, are they quad-
ratic or can they have arbitrary degree? Clearly, the answers to these ques-
tions affect the nature of the problem and its difficulty.

Polya's next question is about the possible results to be expected,whose
domain is to be precisely described. What kind of roots do we want: inte-
gral, real, or complex? The very solvability of the problem depends strongly
on the answer to this question.

Finally, we must have a clear idea of what constitutes a solution, i.e.
which results match which problem instances according to the problem requivre-
ments. For, a polynomial in general has more than one real root: do we want
all of them, any one of them, or the smallest one? This also influences the
very nature of the problem and its difficulty.

Thus, it would not be reasonable to propose a problem as "finding a root
of a polynomial" as it is not clear enough what is meant. We should make
clear that what we want is, say, "finding any complex root of a polynomial in
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one indeterminate with real coefficients and arbitrary degree". Then, we have
described the domain of data (or instances) as D = R[x], that of results as
R =C and the requirement (or condition) for a possible result c€R to
match a data plx] €b . to be simply that the value of plx] at c be 0.

. With the hindsight provided by this example we can formulate our defini-
tion of problem [Veloso and Veloso 1981]. A (concrete) probLem 1is a many-
sorted structure P of the form (D,R,p, ..., where. b and R are nonempty
sets (called the domains of data and results, respectively), and p is a bi-
nary relation from D to R (called the requirement). A sofution for P is a
function f:D — R, assigning to each data d€D a result f(d)€ER satis-
fying the requirement in the sense (d, f(d)>ep, or in short fCp.

We should remark that the above definition of problem tries to capture
the idea of a general problem and not of specific instances: for instance,
finding a complex root of 2% +3x% +5x+7 is an instance of the general
problem illustrated above of finding a complex root of a polynomial with real
cdefficients in the indeterminate x. As such, this formulation was influ-
enced by the concept of decision problem from recursive function theory [Rog-
ers 19671. It is, however, general enough to encompass many kinds of prob-
1éms, as for instance, Polya's "problems to prove" and "problems to find", as
well as “cohstruction problems", puzzles and everyday 1ife problems.

Let us examine another quite simple example of problem, that of "sorting
sequences of integers (without repetitions) into increasing order”. Here, a
possible data is a sequence like (5,1,2,7), with corresponding result
{(1,2,5,7). In describing a solution for this problem one sees that the
fact that the sequences contain integers does not matter too much. Probably
the same basic ideas used in obtaining a solution for it would apply if the
sequences contained elements from some other linearly ordered domain E  in-
stead. Thus, we might solve a whole class of sorting problems, all at once,
namely, the class of all the concrete problems where D and R consist of se-
quences (without repetitions) of elements from a set E which is linearly or-
dered and whose requirement p 1is defined by (d,r)>ep iff r is increasing
and r has the same elements as d. Thus we are naturally led to consider
classes of similar concrete problems sharing a common specification.

An abstract problem is a theory A, presented by a set I of axioms
(called its specification) in a many-sorted language £ including sort sym-
bols D and R and a binary predicate symbol p from D to R.. The models of
an abstract problem are the concrete problems with this language that satisfy
the axioms in the specification. One can solve each one of these concrete
problems separately obtaining a solution for it. Usually, each such solution
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is obtained by describing a function from data to results. What should we
regard as a solution for the abstract problem? An apparent1y'natura1' answer
is a common description of the solutions for all of its the concrete problems.
Thus we define a sofution for an abstract problem to be a description f of a
function — written in an appropriate formalism, as a programming language or
Togical definitions — such that, on each concrete problem P = {(D,R,p,...7
satisfying the specification I', f defines a function from D to R which is
actually a solution for P.

3. THE CONCEPT OF PROBLEM-SOLVING METHOD

As mentioned above, in solving a problem one generally defines a func-
tion in a stepwise manner [Nilsson 1971]. There are several strategies for
solving problems, one of the most powerful ones being the so-called "divide-
and-conquer". The basic idea of this strategy is dividing hard problems into
hopefully simpler ones. For instance, the task of proving a theorem may be
divided into those of proving some propositions, which in turn may require
proving a few lemmas, and so forth; all these proofs, if put together, would
provide a proof for the theorem.

Let us illustrate how the divide-and-conquer strategy works on our exam-
ple of sorting. In order to sort a sequence as ¢5,1,2,7), which is not
simple .enough, we split it into two halves (5,1) and (2,7). This proc-
ess of splitting is repeated until we have only simple data, in this case the
4 unit-length sequences {57, (1), (2), and (7), which are simple enough
to be sorted immediately, actually resulting in themselves. Now we start
merging these results: <5 and (1> into ¢1,5), and (2) and (7 in-
to (2,7). This process of merging continues until we recombine the re-
sults for all the data that were split, obtaining in the end a result for the
original problem instance. The final step, in this case, consists of merging
(1,5 and (2,7 into ¢1,2,5,7), which is a result for the original
data. This algorithm for sorting is as follows: given a sequence, if it is
not'simple then split it into two halves and recursively sort these halves
and merge the sorted results, otherwise the result is the input sequence.
This is the well-known "mergesort" algorithm for sorting [Horowitz and Sahni
1978] .

The above method is naturally formulated as a (recursive) algorithm for
sorting sequences. It does embody the basic ideas of the divide-and-conquer
strategy. However, it is not the strategy itself, being rather the applica-
tion of the strategy to the problem of sorting. We would like to consider the
strategy per se in order to study it independently of its many possible ap-
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plications.

The basic idea of divide-and-conquer can be expressed by .the following
(recursive) definition of a function (symbol)

f=(Ad:D) [ b(d) = k(d)
Ab(d) = c(f(hy(d),f(ha(d)))]

The intended meaning of the predicate symbol b on sort D is that of "being
a simple data" whereas those of the function symbols h; and c are, respec-
tively, "the first split of a data" and "the recombination of the results".
These intended meanings can be expressed by axioms including e.g. the follow-
ing two

(¥#d:D)Ib(d) — p(d,k(d))]
{¥d:D)(¥ri,rp : R){B(d) — [p('hl(d),rl) &plha(d),ra) — pld,cri,r2))1}

The idea is that on any concrete problem which satisfies the axioms the algo-
rithm defines a function which is actually a solution for the concrete prob-
lem.

We define a (problem-s0fving) method M to consist of an algorithm &
defining a function symbol ¢ (perhaps together with and in terms of some
auxiliary ones) together with a specification A consisting of axioms gquaran-
teeing its correctness in the sense that on any concrete problem P =<(D, R,
p,...) which is a model of A the algorithm G will define a total func-
tion from D to R which is a solution for P. The language of the method M
consists of the (nonlogical) symbols of the algorithm together with those of
the specification. ' ‘ '

4. THE CONCEPT OF APPLICATION OF A METHOD TO A PROBLEM

The basic idea of the "divide-and-conguer" strateqy was captured in a
method as an algorithm describing how the solution is obtained (in terms of
some auxiliary function and predicate symbols) and axioms (involving these
auxiliary function and predicate symbols) which guarantee the correctness of
this algorithm. In applying this idea to the problem of.sorting we . defined
these auxf]iary functions and predicates in terms of those of the problem,
namely sequences, thereby obtaining the mergesort algorithm. For instance,
we defined the predicate symbol b to mean that the sequence has length (at
most) one and the function symbol c to mean merging of sequences. In order
to ensure that this algorithm does sort correctly it suffices to show that
the specification of the method so translated does hold, i.e. it can be de-
rived from the specification of the problem. This is the idea behind inter-
preting a theory into another [Enderton 1972, Shoenfield 1967].
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A method M consists of a syntactic part (its language) together with an
algorithm G and a specification A, the latter guaranteeing'correctness of
the former. SimﬂaHy; an abstract problem A consists of a syntactic part
(its language £) together with a specification I'. Now, the application of
a method to a problem will consist of a syntactic part enabling the transla-
tion from the language of M into £ together with the condition that this
translation preserves specifications.

Consider a (problem-solving) method M consisting of an algorithm G and
specification A and an abstract problem A with language £ and specifica-
tion I'. An application of the method to the abstract problem 1is an algo-

. rithmic interpretation of the theory A into I'. As such, it consists of an
mapping I assigning to each symbol of the larguage of M a definition for it
in terms of the symbols of £ and satisfying a correctness criterion. This
mapping I induces a translation of expressions of the language of A into
corresponding ones of £ . The correctness criterion is that each axiom of A
so translated is a consequence of the specification T, in short T = 1(A).

As a net result we have the following consequence of an analog of the
interpretation theorem:

"If I 1is an application of the method M =(G,A) to the abstract prob-
lem A =(L,T) then on any model P of T, 1(f) defines a function which
is a solution for P, where f is the function (symbol) defined by G."

5. EXAMPLES OF PROBLEM-SOLVING METHODS

We have sketched the formulation of the divide-and-conquer strategy as a
problem-solving method, where each data is split into two. In general, we may
want to split each problem instance into n instances. The corresponding
method is called n-ary decomposition and is denoted by Dey [ Veloso 1984].
Its language consists of 2 sort symbols D and R; a unary predicate symbol
b (on D) and a binary predicate symbol m (from D to D); a unary func-
tion symbol k (from D to R), an n-ary function symbol c (from R™ to R),
and n unary function symbols hy,...,h, (from D to D). Its algorithm is

£ = (Ad:D) [b(d) = k(d)
b(d) = c(flh (d),...,Flhy(d))]

Its specification consists of the following 4 axioms
(m (¥#d:D) [b(d) — pld, k(d)]

(2) (¥d:D)(¥ri,...,rp:R){7 b{d) —[p(h1 (d),r1) & ... & plhy(d),ry) —
— pld, clry,e.e,rp)l}
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(3) (%#d:D) [ b(d) = mlhy (d),d) & ... &m(h,(d),d)]
(4) m is well founded.
It is easy to see that on any model P =(D,R,p, ...} of these axioms

the algorithm for f actually defines a total function f:D-—R [with do-
main D, because of (3) and (4)] which is a solution for P _[because of (1)
and (2)].

A very useful strategy in approaching a problem is trying to Tlook for a
similar one. In the words of Polya "Here is a problem related to yours and
solved before". Let us formulate it as a method, reduction, in our sense
[Veloso ]984]. Its language consists of 4 sort symbols D, R, E, and S; 2
binary predicate symbols p (from D to R)-and q (from E to S) and a
unary function symbol g (from E to S) and its algorithm defines f as the
composite v.g.t

f=(Ad:D)[v(g(t(d))]
Its specification consists of the following two axioms

(¥d:D)(¥s:S) [q(t(d),s) — p(d,v(s))]
{"... a problem related to yours ..."}

(¥e:E) qle,g(e)) {"... solved before ..."}

A model for this specification can be regarded as consisting of 2 con-
crete problems (D,R,p,...?> and (E,S,q,...>, the latter being solved
by g (in view of the second axiom). The first axiom guarantees that the com-
position effects a correct transfer of solutions.

6. SOME LOGICAL ASPECTS

We have been deliberately vague about some details concerning formalisms
and notations. In this section we shall be a 1ittle more precise about these
matters in order to provide a framework where the concepts of the preceding
sections can be formulated with more rigor.

Our theories were seen to involve two kinds of definitions, namely, al-
gorithm-Tike constructions and formula-l1ike axioms. Accordingly, we consider
the symbols of a (many-sorted) fLanguage £ to be categorized into two sets: a
set £' of constauctive symbols and a set L£" of declarative symbofs.  The
idea is that constructive symbols should be given algorithmic definitions,say
by means of procedures, whereas declarative symbols can be given classical
definitions by means of formulas.
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A theony W in a language £ =<¢L',£") consists of a set F of explicit
algorithmic definitions for the symbols of £', and a set of T of axioms
stating properties of the symbols of £' and £". A modef for such a theory
W dis a structure P for the declarative (sub)language <£" — thus giving re-
alizations for the declarative symbols — such that all the algorithms in F
actually define total functions and predicates on P, thus expanding it to a
structure P1F for the language £, which satisfies all the axioms in T.
Now, given two theories W and V in a language £ we say that V 1is a conse-
quence of W and write W E=V iff whenever P is a model of W then it is a
model of V as well.

“When N'cg' and N"cL" a theory W in the language N = (N',N") can
be extended by definitions to a theory in the language £ = (L',L") by adding
a theory V consisting of, for each symbol y'e (£'-N'), an algorithm in N
defining it in terms of the symbols already in N' and, for each  symbol
y''e (£" -N"), a formula in N" defining it in terms of those already in N".
The resulting theory is called the extension of W by the deginitions V and
is denoted by W[vV]. In this case every model P for W expands uniquely to
a model, denoted P 1V, for the extended theory.

An interpretation 1 of a language N =<(N',N") into a theory A=(g,I"
in a language £ =(L£',L") consists of two mappings: J assigning to each
symbol y'eN' a symbol J(y') in £' and K assigning to ‘each  symbol
yeN' a symbol K(y") in £", satisfying the usual closure conditions.
These mappings permit syntactical translations of algorithms in N*  to algo-
rithms in £' and of formulas in N" to formulas in £"; thus any theory M
iyn N is translated into a theory I(M) in £ . Also, each model P of A
is a structdre for £ which induces a structure I°'(P) for N. Now, an
intenpretation 1 of a theory M =(F,A) in a language N = (N' ,N") into
a theory A =<¢G,I') ina language £ =<(L',L") is an interpretation of the
language N into the theory A such that A B I(M). Finally, an afgo-
rithmic interpretation (1,V) of a theory M in the language N into a
theory A in the language £ consists of an interpretation I of the theory M
into the extension A [V] by definitions of A.

We have an analog of the interpretation theorem, namely:

“If (I,V) 4s an algorithmic interpretation of a theory M in the language
N into a theory A in the language £ then every model P for A induces a
model I-'(®71V) for M such that for every classical sentence o of the de-
clarative (sub)language of £ I7'(Pty) =g iff P k= I(0)."
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We have defined both abstract problem and (problem-solving) method in
terms of theories and the application of a method to an abstract problem as
an algorithmic interpretation. Thus, we have the following consequence:

"If M is a method with function symbol f defined by its algorithm and
(I,V) 1ds an application of M to an abstract problem A then I(f) is a so-
lution for A."

Given some problem-solving methods one is led to ask about their rela-
tive power. When should say that a method is more powerful than another one?
A natural answer is provided in the following definition. A method M Is
at Least as powerful as a method M' (denoted M>M') iff M applies to
solve any abstract problem that ‘M' does. Naturally enough, we say that M
is as powernful as M (denoted M=M') iff M<M' and M' <M,

The above concepts of method as theory and application as algorithmic
interpretation provide a sufficient condition for a method to be at least as
powekful as another one, in fact in a strong sense in that the comparison s
"uniform“:

"If there exists an algorithmic interpretation of a method M into a
method M' then M>M'."

For, whenever M' 1is applied, via an algorithmic interpretation, to solve an
abstract problem A, then we can construct a composite algorithmic interpre-
tation to apply M directly to A.

Let us examine an application of these ideas. In section 5 we have pre-
sented the method of n-ary decomposition as a theory Dc,. It is clear that
unary decomposition Dc; s a special case, thus D¢y <Dc,,. On the other
hand, we can define an algorithmic interpretation of De, into Dey (based
on the idea of replacing the problem domains by domains consisting of finite
sequences of these elements) [Veloso and Veloso 1981], thus Dc,<De;. There-
fore, unary decomposition is as powerful as n-ary decomposition.

7. CONCLUSION

Based upon some ideas of Polya [1957] we have presented some precise
definitions for the concepts of problem and problem-solving method in  order
to show that applying a method to a problem amounts to interpreting theories.
Both abstract problems and methods were defined as theories and the applica-
tion of a method to an abstract problem as an appropriate interpretation of
their theories.
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At first it seems that we followed a path composed of many degrees of
abstraction: first a concrete problems as a many-sorted structure, then an
abstract problem as a class of concrete problems satisfying a specification,
followed by a problem-solving method which is supposed to solve many diverse
abstract problems; and we also wanted to compare methods. However, our for-
mulation flattened these various levels to just two: structures (concrete
problems) and theories (abstract problems and methods). Thus, it was quite
natural to employ the concept of interpretation both to define application of
a method to an abstract problem and to compare methods with respect to their
relative power.

The formulations presented here are intended as “"rational reconstruc-
tions" of our intuitions about these ideas permitting precise investigation
of questions related to them. They appear to be applicable to program con-
struction and to problem solving in general.
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