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ABSTRACT 

The mathematical notion of function exponentiation is used to 
introduce an iteration construct suitable to applicative 
languages. The elements of the construct are explained as well as 
its evaluation. A prototype Prolog implementation is included to 
illustrate the discussion. 

i. INTRODUCTION 

Fhe control component of applicative languages should naturally 
be congenial to the mathematical concepts that underly such 
languages, generally functions (as in LISP) or predicates (as in 
Prolog). Both LISP and Pro]og support recursion; function 
composition in LISP roughly corresponds to the conjunction of 

literals in Prolog. The if-then-else and case constructs of 
procedural languages have a powerful counterpart in the cond 
functional of LISP. 

However, the convenience of further enriching the control 
structure of applicative languages has had some recognition. LISP 
went perhaps too far, incorporating the prog feature, whereas 
many Prolog dialects, going, more justifiably, beyond the strict 
Horn-clause notation, adopted disjunction and some kind of case 
construct. 

Different programming styles result from having or not constructs 
like these. In pure LISP, it is common to have a function f 
calling other "auxiliary" functions fl, fe, etc. In many cases 
the auxiliary functions are never directly invoked, siY~ce they 
are really a part of f that the syntax of the language does not 
allow to write within the expression defining f (of. the "local" 
functions defined in where expressions of CPL [Barl]). 

The difference is even more striking in Prolog. A predicate p 
that is true under more than one conjunction of conditions must 
be expressed by an equal number of separate clauses in the strict 
notation; with disjunction and case, p can often be programmed as 
a single unit. Whether separate clauses or single units are 
preferable depends on the nature and intended use of p. If p is 
part of a rule-structured knowledge base that is supposed to grow 
incrementally, separate clauses may be more convenient. But if p 
is a driving or scheduling module of an expert system [FCT], or 
if it expresses an algorithm, then legibility is usually favored 
by expressing the entire body of p as a single block. 

In at least one situation separation remains mandatory: the body 
of a function or predicate must be interrupted whenever 
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repetition occurs. The repetitive segment of the program then 
takes the form of a~7 auxiliary recursive function or predicate, 

to be called from the point where the repetition should appear. A 
seemingly more desirable alternative, to be investigated in this 

paper, would be to provide some in-line iteration construct, as 
most procedural languages do. 

2. ITERATION IN VON NEUMANN LANGUAGES 

The reluctance to introduce an iteration construct in an 
applicative language can be understood from the example below. 

The reader will readily notice that it computes the greatest 
common divisor of two numbers, here 24 and 9. 

. . . = = . . . . . . . . . .  

n := 24; 

m := 9; 
while m ~ 0 do 

beg in 
temp := n; 
n : =  m ;  

m := temp mod m 

end; 
= = . m . J . m ~ . = . . = ~ =  

Variables n and m are first "initialized" and, inside the while 

construct, undergo destructive assignments, which happen to be 
the von Neumann machine feature most criticized by applicative 

programming supporters. The "temporary" variable is a 
particularly unpleasant machine-like feature. However, witl7out 
it, there would be no natural sequence of statements allowing the 
new values of both n and m to be computed from their previous 

values, i.e. the above sequence in fact emulates the parallel 

assignments 

[n ;~ m, m ;~ n mod m] 

Languages like Algol 68 support parallel execution, but still 
leave us with the destructive assignment problem. Indeed the 

semantics of iteration seems to depend on the possibility of 

altering the state of the environment [Ho, Pa], so that at some 

iteration the termination condition might eventually hold. 

There is at least one attempt to introduce iteration in Prolog 

without oestructive assignment (see [CCP], for example). It 
involves a predicate repeat, whose purpose is to provide an 
endless backtracking point. On backtracking, all variables become 
again uninstantiated - so they can take new values, as needed - 
but then it is not possible to associate with them new values 

computed from the previous ones, since these are lost. 

In the next section we recall a well-known result from the theory 
of computation: the transformation of recursive into iterative 

programs. Our objective is to find an applicative counterpart to 

the destructive assignment of conventional iteration. 
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3. ITERATION ORIGINATED FROM TAIL RECURSION 

We start with a preliminary step: the transformation of a sub- 

class of the primitive recursive functions into taii-recursive 
functions [BW]. The simplest example is factorial, usually 

expressed by: 

factorial(n) ~ n = 0 -> 1 ; n * factorial(n-l) 

This initial formulation is not tail recursive, since something 
remains to be done after the recursive call, namely the 
multiplication of its result by the current value of n. The 
execution of non-tail recursive functions requires a stack 
discipline to recover the values of parameters on finishing a 
recursive call. Keeping a stack can be avoided, thus enhancing 
efficiency, if an equivalent tail recursive expression is used: 

factorial(n,m) = n = 0 -> m ~ factorial(n-l,n*m) 

where the function is to be initially called to compute, say, the 
factorial of 5, as follows: 

factorial(5,1) 

By contrast, the example function below, to compute the greatest 

common divisor, is already in tail recursive form, and hence no 
transformation is required: 

gcd(n,m) ~ m = 0 -> n ; gcd(m,n mod m) 

to be called by: 

gcd(24,9) 

Clever Prolog interpreters recognize and take advantage of tail 
recursion [Ca]. For procedural languages one is advised to 
further transform tail recursive into iterative programs [Bar2, 
BW]. Indeed, this transformation is illustrated by the two 
programs that we have shown to evaluate the greatest common 
divisor (the above function and the while loop at the beginning 
of section 2). 

The simple point to note in comparing the two programs is that 
the gcd function contains no destructive assignment to variables. 
Instead, the variables are treated as parameters that, at each 
call, may take different values, usually derived from the values 
they had in the previous call. Initialization of variables takes 

the guise of the original call to the function. On termination of 
the evaluation no value remains associated with the parameters, 
as opposed to what happens to ordinary variables that are part of 
the environment in yon Neumann languages. Needless to say, 
"temporary" variables are no longer needed to emulate parallel 
execution, although one still might have local variables in the 
body of a function, whenever convenient, without the problems 
attributed to global variables. 

At this point, the reader might conclude that what we have done 
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was to find a motivation for a restricted use of destructive 

assignment. It would seem that some cases of destructive 

assignment are as justified as certain uses of go-to's. One could 

admit them inside while-like constructs in LISP or Prolog as a 

tolerable exception to the principles of applicative programming. 

Yet, we shall insist that iteration can be introduced without 

destructive assignment. Having found that destructive assignment 

is not needed if, inside recursive functions, variables are 

treated as parameters, what is still missing in our argument is a 

transformation that eliminates recursion without leading to the 
standard yon Neumann iteration. 

In the next section, we do this transformation in two stages. At 

the first stage, we obtain a non-recursive function and show what 

it means to evaluate it repeatedly. At the second stage, the in- 
line iterative construct is finally obtained. 

4. ITERATION AS EXPONENTIATION 

Iteration has been considered as a possible functional form to be 

incorporated into functional programming languages. In [Bac], the 
while form is defined as follows: 

(while p f):x 

p:x = T -> (while p f):(f:x); 

p:x = F -> x; 
L 

The same form is defined in terms of functional exponentiation in 

IF1], noting that the author uses postfix notation: 

x:(while b do f) 

if there exists n>O. so that ×: f~n & b~ = F and 

for all O<m<n, x:(fgm & b) = T 

> x : f ~ n ;  

Exponentiation means the composit on of a function with itself an 

indicated number n of times. Alternatively, one can leave n 

unspecified and require that composition should proceed until a 

certain criterion is met [BL]. Fixed exponents resemble for 

iterators, whereas variable exponents correspond to while 
iterators. 

For the case of variable exponents, consider a function # applied 

to a list of parameters X. Recall that, according to the usual 

conventions for exponentiation, we may regard its application as 

generating a sequence XO, XI, ..., where Xi = f~'i(X), so 

XO = X 

Xi+l = f(Xi) 

Then, two termination criteria seem especially appropriate: 

(a) f(Xi) = Xi - the fixed-point criterion 

(b) f(Xi) = .L - the failure criterion 
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In both (a) and (b) we take Xn as the result of applying f~n to 

X, letting n be the value of the least i2o for which either (a) 

or (b) holds. 

We can use function exponentiation directly, rather than as a 

device to introduce other concepts. With exponentiation we now 
give a third, not explicitly recursive, characterization of 

factorial. Notice that, to facilitate composition, the function 
is unary, and both its single argument and its result take the 

same list format: 

factorial([n,m]) 

n = 0 -> [n,m]; 

#[n-l,n*m] 

where #L denotes the list resulting from evaluating each member 

of L. This notation stresses the possibility of parallel 

evaluation. 

To evaluate the function repeatedly, corresponds to raising it to 

an exponent, as in: 

factorial#if[5,1]) 

We are now in a position to perform the last step towards an in- 

line iterat~ve cnnstrt~ct, l o this end, we note that the same non- 
recursive function definition above can be readily embedded in a 

larger program. One can regard this embeddino as an appltcattoY~ 
of the idea of "nameless" functions, introduced with the lambda 

calculus [La]. The exponentiat~on operation ~tself also becomes 
part of the construct. 

t a o . . . I W i I . .  

[nl,ml] := it[n:5,m:l]-- 

n = 0 -> [n,m] ; 

#[n-inn*m] 
. . . o m J . . m ~ . .  

The first line is the heading and what follows is the body of the 

iteration construct, the latter consisting of one simple or 
composite command. The syntax used above is not the important 

issue, being largely a matter of taste. Far more relevant is to 

recognize the various notions that participate in the construct: 

(a) parameters: n and m 
(b) initial values of the parameters: 5 and 1 
(c) results: nl and ml 

(d) exponent: i 

Parameters are initialized on entering the construct and may have 

different values at each iteration. Such values are usually 

computed from the previous ones. On exit, the final values of the 

parameters are associated with the results whereas the parameters 
themselves revert to the undefined condition they had prior to 

initialization. The exponent registers the current iteration, 
during execution; on exit, it indicates the number of iterations 

performed before a termination criterion is satisfied. 
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Other possible components are: 

(e) exponent valuer whenever it is known beforehand, as in 
i:v # ...~ where i is the exponent and v is the value 

(f) local variables, whose value is undefined at the beginning of 
each iteration and on termination. 

If two (or more) iterations are nested, the exponent and results 
of the inner iteration are regarded as local variables of the 
outer iteration. Accordingly, their values are available within 
the scope of the outer iteration, but become uninstantiated when 
the latter ends. 

5. A PROTOTYPE IMPLEMENTATION 

In order to demonstrate these ideas, we wrote a prototype 
implementation in Prolog. It works on predicates, as usual in 
Prolog, rather than on functions. We also produced an 
implementation to handle functions, as introduced in Prolog in an 
earlier report [Fu]; space considerations prevent its inclusion 
here. 

To be run by the prototype, in predicate notation, the factorial 
example must be rewritten as indicated below. The conventions are 
compatible with those of the Edinburgh Prolog de facto standard 
[CCP]. The operators "=" and ":=" denote unification, in the 
case of the latter preceded by the evaluation of the right-hand 
side expression. When used in the iteration body, the result 
variables (NI and M1 in the example) refer to the new values of 
the parameters (N and M, respectively, in the example). 

. . . I m n m . m . i .  

[NI,Mi] \ \  I~[N:5,M:I]-- 
case([N == 0 -> [NI,Mi] = I N , M ]  

[NI,Mi] := #[N-i,N~M]]), 
, m R . m , . m . i . .  

The implementation regards the operator "\\" as a meta-predicate, 
behaving as an extension of the Prolog interpreter for commands 
inside its scope. To handle parameters, local variables and 
exponents, a copy utility (which is built-in for some Prolog 
dialects) reproduces expressions with new variables substituted 
for the original ones, thereby making it possible to iterate with 
different values. Nesting is handled as expected, by meta- 
predicate from, thanks to the depth-first execution order 
inherent in Prolog. When the value of the exponent is not fixed, 
we allow bactracking into an iteration loop; this can be used, 
for instance, to find all positions where a given element occurs 

in a list. 

The "\\" operator emulates iteration by tail recursion. A more 
practical implementation would produce a new interpreter that 
would directly recognize and handle the construct. In particular, 
it would process parameters and local variables by an efficient 
technique, which might even lead to overwriting the corresponding 
memory cells in case of an underlying von Neumann machine. 
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Appendix A contains additional examples° 

prototype is listed in appendix B~ 

The code for the 

6. CONCLUSION 

We have shown that exponentiation provides a kind of iteration 

congenial to applicative languages~ Exponentiation can be applied 

to (non-recursive) functions defined separately, as done in [Fu], 

or to nameless expressions embedded in larger programs° 

The fundamental idea is that certain variables~ that are 

initialized before entering an iteration construct and 

destructively modified inside it~ should instead be treated as 

parameters. 

The meta-predicate-based prototype simply demonstrates that the 

approach is feasible. For practical uses a syntax appropriate to 

each applicative language under consideration should be devised, 

as well as efficient implementation algorithms at the interpreter 

or compiler level. 
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APPENDIX A - Examples 

% *** greatest common divisor 

:- [NI,MI] \\ l@[N:24,M:9]-- 

case([M == 0 -> [Ni,MI] = [N,M] I 

[Ni,Mi] := #[M,N mod M] ]), 

write(Nl), nl. 

result written: 3 

% *** F i b o n a c c i ~ n u m b e r s  

:- [Mi,AI,BI] \\ I~[M:8,A:i,B:O]-- 

case([M == 1 -> [MI,Ai,Bi] = [M,A,B] 

[Mi,AI,BI] := #[M-i,A+B,A]]). 

result written: 21 

% *** Cartesian product - nested iterations 

[Xtail,Tl] \\ l:3~[X:[a,b,c],T:[]]-- 

(X = [XllXtail], 

append(T,FI,Tl) from 

[Ytail,Fl]\\ J:2 @[Y:[p,q],F:[]]-- 

(Y = [Yl~Ytail], 

append(Xi,YI,P), 

append(F,[P],Fl)) ), 

write(Tl), nl. 

result written: [[a,p],[a,q],[b,p],[b,q],[c,p],[c,q]] 

% *** standard deviation - iterations plus other commands 

std(L,S) :- 

[Ti,Xtail] \\ I@[T:O,X:L]-- 

(X = [XllXtail], 

TI := T + XI), 

Av := Ti/I, 

[T2,Xrest] \\ J:I@[T:O,X:L]-- 

(X = [XllXrest], 

T2 := T + (Xi - Av) ~ 2), 

S := sqrt(T2 / (I-l)). 

"- std(E12,6,?,3,15,10,18,5],X), write(X), nl. 

result written: 5.209880?2 

% *** finding occurrences of z - iteration and backtracking 

"- [R] \\ l@[L:[z,b,z,c]]-- 

(L = [z~_], L = R ; L = [_:R]), 

not(R == []), 

write(I), nl, 

fail. 

results written: 0, 2, no 
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APPENDIX B - Listing of Prolog prototype 

% **** special symbols 

:- op(7OO,xfx,\\). 

:- op(3OO,xfy,8). 

:- op(lOO,xfy,:). 

-- op(2OO,xfy,--). 

:- op(8OO,xfy,from). 

"- op(7OO,xfx,:=). 

:- op(2OO,fy,#). 

p_it2(Z,X,E) :- 

(E, Z = X; 

not(E), !, 

Z = 'fails'). 

fr-om(X,Y) "- 

Y, 

X. 

¼ *** iteration processor % *** utilities 

iter(X,E) -- 

is iter(E,I,P,A,C), 

p_iter(I,C,P,A,X). 

copy(X,Y) "- 

string_term(S,X), 

string_term(S,Y). 

X \\ E :- iter(X,E). 

is iter(E,I,LL,A,C) -- 

nonvar(E), 

E = I @ (L -- C), 

is iterl(L,LL,A). 
w 

is iterl([],[],[]). 

is iterl([V : A ~ P], 

[VIQ]~[AIR]) .- 

is iterl(P,Q,R). 

p_iteF(K,E,P,V,X) :- 

(nonvar(K), K = I:N, ! ; 

K = I), 

p_iti(I,N,E,P,V,X,O). 

p_itI(I,N,E,P,B,X,C) "- 

copy([E,P,I,X], 

[EI,PI,II,XI]), 
II is C + I, 

P1 = B, 

(C == N, !, X = B , I = C; 

p_it2(Z,XI,El), 

((Z == 'fails'; 

not(Z == "fails'), 

vat(N), B == Z), 

X = B, I = C; 

not(Z == "fails'), 

not(Z == B), 

D is C + i, 

p_itI(I,N,E,P,Z,X,D))). 

X := E . . . .  

case([E = #El -> ev I(X,E), 

is list(E) -> X = E i 

X is E]). 

is list([]). 

is list([ ; ]). 

ev I([],#[]). 

ev i([XIR],#[Y=S]) "- 

X is Y, 

ev i(R,#S). 

append(X,Y,Z) -- 

case([is list(X) -> X1 = X 

X i  = [ X ] ] ) ,  
case([is list(Y) -> Y1 = Y 

Y1 = [ Y ] ] ) ,  
appendl(XI,Yi,Z). 

appendl([],X,X). 

appendl([AIR],X,[AIY]) "- 

appendl(R,X,Y). 

Obs.: the c o p y  utility may be 

affected by an inadequate 

maximum size fixed for the 

character string argument 

o$ s t r ing_term.  
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