
ITERATION FOR APPLICATIVE LANGUAGES

Antonio L. Furtado and Paulo A. S. Veloso

Departamento de Informatica
Pontificia Universidade Catolica do R.J.

22.453 Rio de Janeiro, R.J.
Brasil

ABSTRACT

The mathematical notion of function exponentiation is used to
introduce an iteration construct suitable to applicative
languages. The elements of the construct are explained as well as
its evaluation. A prototype Prolog implementation is included to
illustrate the discussion.

i. INTRODUCTION

Fhe control component of applicative languages should naturally
be congenial to the mathematical concepts that underly such
languages, generally functions (as in LISP) or predicates (as in
Prolog). Both LISP and Pro]og support recursion; function
composition in LISP roughly corresponds to the conjunction of

literals in Prolog. The if-then-else and case constructs of
procedural languages have a powerful counterpart in the cond
functional of LISP.

However, the convenience of further enriching the control
structure of applicative languages has had some recognition. LISP
went perhaps too far, incorporating the prog feature, whereas
many Prolog dialects, going, more justifiably, beyond the strict
Horn-clause notation, adopted disjunction and some kind of case
construct.

Different programming styles result from having or not constructs
like these. In pure LISP, it is common to have a function f
calling other "auxiliary" functions fl, fe, etc. In many cases
the auxiliary functions are never directly invoked, siY~ce they
are really a part of f that the syntax of the language does not
allow to write within the expression defining f (of. the "local"
functions defined in where expressions of CPL [Barl]).

The difference is even more striking in Prolog. A predicate p
that is true under more than one conjunction of conditions must
be expressed by an equal number of separate clauses in the strict
notation; with disjunction and case, p can often be programmed as
a single unit. Whether separate clauses or single units are
preferable depends on the nature and intended use of p. If p is
part of a rule-structured knowledge base that is supposed to grow
incrementally, separate clauses may be more convenient. But if p
is a driving or scheduling module of an expert system [FCT], or
if it expresses an algorithm, then legibility is usually favored
by expressing the entire body of p as a single block.

In at least one situation separation remains mandatory: the body
of a function or predicate must be interrupted whenever

86 SIGPLAN Notices, Vol. 23, No. 12

repetition occurs. The repetitive segment of the program then
takes the form of a~7 auxiliary recursive function or predicate,

to be called from the point where the repetition should appear. A
seemingly more desirable alternative, to be investigated in this

paper, would be to provide some in-line iteration construct, as
most procedural languages do.

2. ITERATION IN VON NEUMANN LANGUAGES

The reluctance to introduce an iteration construct in an
applicative language can be understood from the example below.

The reader will readily notice that it computes the greatest
common divisor of two numbers, here 24 and 9.

. . . = =

n := 24;

m := 9;
while m ~ 0 do

beg in
temp := n;
n : = m ;

m := temp mod m

end;
= = . m . J . m ~ . = . . = ~ =

Variables n and m are first "initialized" and, inside the while

construct, undergo destructive assignments, which happen to be
the von Neumann machine feature most criticized by applicative

programming supporters. The "temporary" variable is a
particularly unpleasant machine-like feature. However, witl7out
it, there would be no natural sequence of statements allowing the
new values of both n and m to be computed from their previous

values, i.e. the above sequence in fact emulates the parallel

assignments

[n ;~ m, m ;~ n mod m]

Languages like Algol 68 support parallel execution, but still
leave us with the destructive assignment problem. Indeed the

semantics of iteration seems to depend on the possibility of

altering the state of the environment [Ho, Pa], so that at some

iteration the termination condition might eventually hold.

There is at least one attempt to introduce iteration in Prolog

without oestructive assignment (see [CCP], for example). It
involves a predicate repeat, whose purpose is to provide an
endless backtracking point. On backtracking, all variables become
again uninstantiated - so they can take new values, as needed -
but then it is not possible to associate with them new values

computed from the previous ones, since these are lost.

In the next section we recall a well-known result from the theory
of computation: the transformation of recursive into iterative

programs. Our objective is to find an applicative counterpart to

the destructive assignment of conventional iteration.

87

3. ITERATION ORIGINATED FROM TAIL RECURSION

We start with a preliminary step: the transformation of a sub-

class of the primitive recursive functions into taii-recursive
functions [BW]. The simplest example is factorial, usually

expressed by:

factorial(n) ~ n = 0 -> 1 ; n * factorial(n-l)

This initial formulation is not tail recursive, since something
remains to be done after the recursive call, namely the
multiplication of its result by the current value of n. The
execution of non-tail recursive functions requires a stack
discipline to recover the values of parameters on finishing a
recursive call. Keeping a stack can be avoided, thus enhancing
efficiency, if an equivalent tail recursive expression is used:

factorial(n,m) = n = 0 -> m ~ factorial(n-l,n*m)

where the function is to be initially called to compute, say, the
factorial of 5, as follows:

factorial(5,1)

By contrast, the example function below, to compute the greatest

common divisor, is already in tail recursive form, and hence no
transformation is required:

gcd(n,m) ~ m = 0 -> n ; gcd(m,n mod m)

to be called by:

gcd(24,9)

Clever Prolog interpreters recognize and take advantage of tail
recursion [Ca]. For procedural languages one is advised to
further transform tail recursive into iterative programs [Bar2,
BW]. Indeed, this transformation is illustrated by the two
programs that we have shown to evaluate the greatest common
divisor (the above function and the while loop at the beginning
of section 2).

The simple point to note in comparing the two programs is that
the gcd function contains no destructive assignment to variables.
Instead, the variables are treated as parameters that, at each
call, may take different values, usually derived from the values
they had in the previous call. Initialization of variables takes

the guise of the original call to the function. On termination of
the evaluation no value remains associated with the parameters,
as opposed to what happens to ordinary variables that are part of
the environment in yon Neumann languages. Needless to say,
"temporary" variables are no longer needed to emulate parallel
execution, although one still might have local variables in the
body of a function, whenever convenient, without the problems
attributed to global variables.

At this point, the reader might conclude that what we have done

88

was to find a motivation for a restricted use of destructive

assignment. It would seem that some cases of destructive

assignment are as justified as certain uses of go-to's. One could

admit them inside while-like constructs in LISP or Prolog as a

tolerable exception to the principles of applicative programming.

Yet, we shall insist that iteration can be introduced without

destructive assignment. Having found that destructive assignment

is not needed if, inside recursive functions, variables are

treated as parameters, what is still missing in our argument is a

transformation that eliminates recursion without leading to the
standard yon Neumann iteration.

In the next section, we do this transformation in two stages. At

the first stage, we obtain a non-recursive function and show what

it means to evaluate it repeatedly. At the second stage, the in-
line iterative construct is finally obtained.

4. ITERATION AS EXPONENTIATION

Iteration has been considered as a possible functional form to be

incorporated into functional programming languages. In [Bac], the
while form is defined as follows:

(while p f):x

p:x = T -> (while p f):(f:x);

p:x = F -> x;
L

The same form is defined in terms of functional exponentiation in

IF1], noting that the author uses postfix notation:

x:(while b do f)

if there exists n>O. so that ×: f~n & b~ = F and

for all O<m<n, x:(fgm & b) = T

> x : f ~ n ;

Exponentiation means the composit on of a function with itself an

indicated number n of times. Alternatively, one can leave n

unspecified and require that composition should proceed until a

certain criterion is met [BL]. Fixed exponents resemble for

iterators, whereas variable exponents correspond to while
iterators.

For the case of variable exponents, consider a function # applied

to a list of parameters X. Recall that, according to the usual

conventions for exponentiation, we may regard its application as

generating a sequence XO, XI, ..., where Xi = f~'i(X), so

XO = X

Xi+l = f(Xi)

Then, two termination criteria seem especially appropriate:

(a) f(Xi) = Xi - the fixed-point criterion

(b) f(Xi) = .L - the failure criterion

89

In both (a) and (b) we take Xn as the result of applying f~n to

X, letting n be the value of the least i2o for which either (a)

or (b) holds.

We can use function exponentiation directly, rather than as a

device to introduce other concepts. With exponentiation we now
give a third, not explicitly recursive, characterization of

factorial. Notice that, to facilitate composition, the function
is unary, and both its single argument and its result take the

same list format:

factorial([n,m])

n = 0 -> [n,m];

#[n-l,n*m]

where #L denotes the list resulting from evaluating each member

of L. This notation stresses the possibility of parallel

evaluation.

To evaluate the function repeatedly, corresponds to raising it to

an exponent, as in:

factorial#if[5,1])

We are now in a position to perform the last step towards an in-

line iterat~ve cnnstrt~ct, l o this end, we note that the same non-
recursive function definition above can be readily embedded in a

larger program. One can regard this embeddino as an appltcattoY~
of the idea of "nameless" functions, introduced with the lambda

calculus [La]. The exponentiat~on operation ~tself also becomes
part of the construct.

t a o . . . I W i I . .

[nl,ml] := it[n:5,m:l]--

n = 0 -> [n,m] ;

#[n-inn*m]
. . . o m J . . m ~ . .

The first line is the heading and what follows is the body of the

iteration construct, the latter consisting of one simple or
composite command. The syntax used above is not the important

issue, being largely a matter of taste. Far more relevant is to

recognize the various notions that participate in the construct:

(a) parameters: n and m
(b) initial values of the parameters: 5 and 1
(c) results: nl and ml

(d) exponent: i

Parameters are initialized on entering the construct and may have

different values at each iteration. Such values are usually

computed from the previous ones. On exit, the final values of the

parameters are associated with the results whereas the parameters
themselves revert to the undefined condition they had prior to

initialization. The exponent registers the current iteration,
during execution; on exit, it indicates the number of iterations

performed before a termination criterion is satisfied.

90

Other possible components are:

(e) exponent valuer whenever it is known beforehand, as in
i:v # ...~ where i is the exponent and v is the value

(f) local variables, whose value is undefined at the beginning of
each iteration and on termination.

If two (or more) iterations are nested, the exponent and results
of the inner iteration are regarded as local variables of the
outer iteration. Accordingly, their values are available within
the scope of the outer iteration, but become uninstantiated when
the latter ends.

5. A PROTOTYPE IMPLEMENTATION

In order to demonstrate these ideas, we wrote a prototype
implementation in Prolog. It works on predicates, as usual in
Prolog, rather than on functions. We also produced an
implementation to handle functions, as introduced in Prolog in an
earlier report [Fu]; space considerations prevent its inclusion
here.

To be run by the prototype, in predicate notation, the factorial
example must be rewritten as indicated below. The conventions are
compatible with those of the Edinburgh Prolog de facto standard
[CCP]. The operators "=" and ":=" denote unification, in the
case of the latter preceded by the evaluation of the right-hand
side expression. When used in the iteration body, the result
variables (NI and M1 in the example) refer to the new values of
the parameters (N and M, respectively, in the example).

. . . I m n m . m . i .

[NI,Mi] \ \ I~[N:5,M:I]--
case([N == 0 -> [NI,Mi] = I N , M]

[NI,Mi] := #[N-i,N~M]]),
, m R . m , . m . i . .

The implementation regards the operator "\\" as a meta-predicate,
behaving as an extension of the Prolog interpreter for commands
inside its scope. To handle parameters, local variables and
exponents, a copy utility (which is built-in for some Prolog
dialects) reproduces expressions with new variables substituted
for the original ones, thereby making it possible to iterate with
different values. Nesting is handled as expected, by meta-
predicate from, thanks to the depth-first execution order
inherent in Prolog. When the value of the exponent is not fixed,
we allow bactracking into an iteration loop; this can be used,
for instance, to find all positions where a given element occurs

in a list.

The "\\" operator emulates iteration by tail recursion. A more
practical implementation would produce a new interpreter that
would directly recognize and handle the construct. In particular,
it would process parameters and local variables by an efficient
technique, which might even lead to overwriting the corresponding
memory cells in case of an underlying von Neumann machine.

91

Appendix A contains additional examples°

prototype is listed in appendix B~

The code for the

6. CONCLUSION

We have shown that exponentiation provides a kind of iteration

congenial to applicative languages~ Exponentiation can be applied

to (non-recursive) functions defined separately, as done in [Fu],

or to nameless expressions embedded in larger programs°

The fundamental idea is that certain variables~ that are

initialized before entering an iteration construct and

destructively modified inside it~ should instead be treated as

parameters.

The meta-predicate-based prototype simply demonstrates that the

approach is feasible. For practical uses a syntax appropriate to

each applicative language under consideration should be devised,

as well as efficient implementation algorithms at the interpreter

or compiler level.

REFERENCES

[Bac] J. Backus - Can programming be liberated from the Von

Neumann style? a functional style and its algebra

of programs - CACId 21~ 8 (1978) 613-641.
[Barl] D. W. Barron et al - The main features of CPL - Computer

Journal 6 (1963) 134-i~3.

[Bar2] D. W. Barron - Recursive techniques in programming -

Mcdonald (1968).
[BL] W. S. Brainerd and L. H. Landwebel Theory of computation

- John Wiley (1974).
[BW] F. L. Bauer and H. Wdssmer - Algorithmic language and

program development - Springer (1982).
[Ca] J. A. Campbell (ed.) - Implementations of Prolog - Ellis

Horwood (1984).
[CCP] H. Coelho, J. C. Cotta and L. M. Pereira - How to solve it

with Prolog - Laboratorio Nacional de Engenharia Civil,

Lisboa (1982>.
[FCT] A. L. Furtado~ M. A. Casanova and L. Tucherman - A

framework for design/redesign experts - in Expert Database

Systems - L. Kerschberg (ed.) - Benjamin Cummings (1987)

q23-438.
[FI] A. C. Fleck - Structuring fp-style functional programs -

Computer Languages II, 2 (1986) 55-63.

[Fu] A. L. Furtado - Towards functional programming in Prolog -

SIGPLAN Notices 3 (1988) 43--51.
[Ho] C. A. R. Hoare -- An axiomatic basis for computer

programming - CACM 12, i0 (1969) 576-583.

[La] P. J. Landin - A lambda-calculus approach - in Advances in

programming and non-numerical computatioon - L. Fox (ed.)

- Pergamon Press (1966).
[Pa] F. G. Pagan - Formal specification of programming

languages~ a panoramic primer - Prentice-Hall (1981).

92

APPENDIX A - Examples

% *** greatest common divisor

:- [NI,MI] \\ l@[N:24,M:9]--

case([M == 0 -> [Ni,MI] = [N,M] I

[Ni,Mi] := #[M,N mod M]]),

write(Nl), nl.

result written: 3

% *** F i b o n a c c i ~ n u m b e r s

:- [Mi,AI,BI] \\ I~[M:8,A:i,B:O]--

case([M == 1 -> [MI,Ai,Bi] = [M,A,B]

[Mi,AI,BI] := #[M-i,A+B,A]]).

result written: 21

% *** Cartesian product - nested iterations

[Xtail,Tl] \\ l:3~[X:[a,b,c],T:[]]--

(X = [XllXtail],

append(T,FI,Tl) from

[Ytail,Fl]\\ J:2 @[Y:[p,q],F:[]]--

(Y = [Yl~Ytail],

append(Xi,YI,P),

append(F,[P],Fl))),

write(Tl), nl.

result written: [[a,p],[a,q],[b,p],[b,q],[c,p],[c,q]]

% *** standard deviation - iterations plus other commands

std(L,S) :-

[Ti,Xtail] \\ I@[T:O,X:L]--

(X = [XllXtail],

TI := T + XI),

Av := Ti/I,

[T2,Xrest] \\ J:I@[T:O,X:L]--

(X = [XllXrest],

T2 := T + (Xi - Av) ~ 2),

S := sqrt(T2 / (I-l)).

"- std(E12,6,?,3,15,10,18,5],X), write(X), nl.

result written: 5.209880?2

% *** finding occurrences of z - iteration and backtracking

"- [R] \\ l@[L:[z,b,z,c]]--

(L = [z~_], L = R ; L = [_:R]),

not(R == []),

write(I), nl,

fail.

results written: 0, 2, no

g3

APPENDIX B - Listing of Prolog prototype

% **** special symbols

:- op(7OO,xfx,\\).

:- op(3OO,xfy,8).

:- op(lOO,xfy,:).

-- op(2OO,xfy,--).

:- op(8OO,xfy,from).

"- op(7OO,xfx,:=).

:- op(2OO,fy,#).

p_it2(Z,X,E) :-

(E, Z = X;

not(E), !,

Z = 'fails').

fr-om(X,Y) "-

Y,

X.

¼ *** iteration processor % *** utilities

iter(X,E) --

is iter(E,I,P,A,C),

p_iter(I,C,P,A,X).

copy(X,Y) "-

string_term(S,X),

string_term(S,Y).

X \\ E :- iter(X,E).

is iter(E,I,LL,A,C) --

nonvar(E),

E = I @ (L -- C),

is iterl(L,LL,A).
w

is iterl([],[],[]).

is iterl([V : A ~ P],

[VIQ]~[AIR]) .-

is iterl(P,Q,R).

p_iteF(K,E,P,V,X) :-

(nonvar(K), K = I:N, ! ;

K = I),

p_iti(I,N,E,P,V,X,O).

p_itI(I,N,E,P,B,X,C) "-

copy([E,P,I,X],

[EI,PI,II,XI]),
II is C + I,

P1 = B,

(C == N, !, X = B , I = C;

p_it2(Z,XI,El),

((Z == 'fails';

not(Z == "fails'),

vat(N), B == Z),

X = B, I = C;

not(Z == "fails'),

not(Z == B),

D is C + i,

p_itI(I,N,E,P,Z,X,D))).

X := E

case([E = #El -> ev I(X,E),

is list(E) -> X = E i

X is E]).

is list([]).

is list([;]).

ev I([],#[]).

ev i([XIR],#[Y=S]) "-

X is Y,

ev i(R,#S).

append(X,Y,Z) --

case([is list(X) -> X1 = X

X i = [X]]) ,
case([is list(Y) -> Y1 = Y

Y1 = [Y]]) ,
appendl(XI,Yi,Z).

appendl([],X,X).

appendl([AIR],X,[AIY]) "-

appendl(R,X,Y).

Obs.: the c o p y utility may be

affected by an inadequate

maximum size fixed for the

character string argument

o$ s t r ing_term.

94

