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ABSTRACT 

The integration of functional and logic programming is attempted, using the strategy to add a functional 
component to Prolog. The component takes the form of extended computable expressions, allowing 
user-defmed functions and operators as well as a number of functional forms. The problem of evaluating 
expressions combining functions and predicates is investigated. Examples are provided to illustrate the 
discussion. The paper includes a prototype implementation. 

1. I N T R O D U C T I O N  

Two sharply different programming paradigms have been identified [Ba]: 

® Procedural programming, based on the machine architecture originally conceived by yon Neumann; 
® Applicative programming, oriented towards mathematical computation. 

Applicative programming, in turn, may follow different but - so we argue - compatible orientations, depending 
on the chosen mathematical domain. The LISP language (see [Wi] for a comprehensive presentation) for 
example, is directed towards functions. The APL language [Iv] has a rich set of operations. A more recent 
proposal [BWW I stresses functional forms. Perhaps all these languages might be col]ected under the functional 
programming orientation. 

The other significant orientation is logic programming, exemplified by Prolog. Predicates are the driving 
mathematical concept in logic programming. Although predicates may be seen as the class of functions 
returning Boolean values, they are treated differently in Prolog, as compared to LISP for instance. In Prolog, 
a predicate does not return any value - it succeeds or fails in the situations corresponding to returning "true" 
or "false", respectively. Moreover, although the arguments of Prolog predicates may be nested functional terms, 
these are not submitted to any kind of evaluation. 

Some Prolog dialects offer a limited functional capability. IBM Prolog [VM], which closely follows the 
Edinburgh Prolog de facto standard ([WMSW], page 428), provides computable expressions, involving 
numbers, atoms, strings, the four basic arithmetic operators plus some standard numeric functions (sine, 
logarithm, etc.) and string-handling functions. The " :="  symbol, not to be confused with procedural 
assignment, effects the functional evaluation of its right-hand side operand and then tries to unify the result 
with the left-hand side operand. 

In this paper, our objective is to explore the combination of logic and functional programming. This has been 
recognized as a worthwhile objective [Ro] and several strategies to accompfish it have been proposed [BeL, Bo]. 
Our strategy is to add a functional programming component to Prolog, essentially by introducing extended 
computable expressions, via a new "<=" operator that generalizes ": = ". We claim that the powerful machinery 
underlying Prolog - namely the resolution theorem-proving technique, based in turn on the unification 
algorithm - makes it ideal to host the combined orientations. 

The paper is organized as follows. Section 2 introduces the syntax and examples of extended computable 
expressions containing user-defined functions and operators. Other features of extended computable 
expressions are treated in the next two sections. Section 3 presents a number of functionals (called elsewhere 
higher-order functions [Ro], functional forms [Ba,BWW,GJ,F1] or operations on functions [BrLI, page 18). 
Section 4 investigates how to conciliate the evaluation of functions with that of predicates. For the sake of 
readability, the presentation is mostly done through examples. Section 5 contains the conclusion. The 
complete fisting of the prototype implementation is given in the Appendix. 

* On leave from the Pontifieia Universidade Cat61ica do Rio de Janeiro 
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2. FUNCTIONS AND OPERATORS 

2.1. Extended computable expressions 

A new operator "<=" has been added, extending the ":= " operator to evaluate computable expressions. 
Extended computable expressions include (other features will be deferred to sections 3 and 4): 

1. lists; 
2. predicate terms; 
3. conditional expressions; 
4. user-defmed functions and functional operators. 

An example with a conditional expression is: 

<-  read(N) & M <= (ge(N,0) -> N; 0). 

which unifies M with the value of N if N is non-negative, or with zero otherwise. In general, the value of a 
conditional expression of the form 

<-  V <= (pl -> vl; p2 -> v2; ... ; pn -> vn). 

is the result of evaluating the first vi such that the corresponding logical expression pi is true. 

2.2. Defining and using functions 

Predicate "addfhn" adds functions to the workspace. Actually, it uses "addax" to add duly transformed clauses 
to implement the functions as predicates, plus "is function" clauses to declare their nature as well as number 
of parameters, so that they be recognized and handled correctly by "<=". 

<-addfun( 
factorial(N) <= 

(N == 0 -> 1; 
N * factorial(N - 1))). 

< - X  < = factorial(5). 

The call to "addfun" adds the clauses below to the workspace. Note that an extra parameter, V, is included 
to receive the value that the function would yield. If a function (or operator) will be needed again in later 
sessions, it may be convenient either to "save" or "bloc save" it, or to write it directly in predicate format, rather 
than re-executing "addfun" (or "addop" - section 2.2) ~ each time. 

factorial(V,N) <-  
V < = ( N = = 0 - >  1; 

N * factorial(N- 1)). 

is function(factorial(*)). 

Other useful examples follow: one numerical (square root) and the others LISP-like. 

<-addfun( 
sqrt(X) <= sqrt 1 (X,9,1 .E- 8)). 

<-addfun( 
sqrt I(X,R,T) <= 

( ( D : =  abs(R - X/R) & 
lt(D,T)) -> R; 

sqrtl(X,(R + X/R)/2.0,T))). 

< -  X <= sqrt(225). 

<-addfun( 
head(X.Y) <= X). 

<-addfun( 
tail(Z) <= 

(Z == n i l  - >  nil; 

Z = (X.Y) -> Y)). 

<-addfun( 
cons(X,Y) <= 
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(is_•t(Y) ->  (X.Y); 
true ->  (X.Y.nil))). 

<-addflm( 
subst(X,Y,Z) <= 

((Y == Z) ->  X; 

is_elmt(Z) ->  Z; 
tree ->  cons(subst(X,Y,head(Z)), 

subst(X,Y,tail(Z))))). 

< -  L = (a.b.a.c.d.a.nil) & 
X <= subst(p,a,L). 

As happens with predicates, functions do not  have to be defined as a single block. The definition of a function 
f may be done through more  than one "addfun", resulting in the addition of an equal number of f predicate 
clauses. A single qs_function" clause will be created, however. 

2.3. Defining and using functional operators 

Similarly, there is an "addop" predicate to add functions associated with an operation symbol. An "op" clause 
must be added separately. To  define an operator  to raise a number  to an integer power, one enters: 

op("xx",lr, 130). 

<-addop(  
(X xx Y) <= 

(Y = 1 - >  X; 
true ->  (X * (X xx (Y - 1))) )). 

< - B < = 2 x x 3 .  

We might prefer an upward-pointing an'ow instead of "xx", but the choice is limited of course to the symbols 
available on the keyboard being used. 

3. FUNCTIONALS 

Higher-order constructs are often useful to avoid explicit control structures. A few have been provided, in order 
to 

Distribute a binary operator  over n arguments, supplied as a list. The  symbol denoting distribution is the 
inverted slash. Examples are: 

< -  X <= ("*"\ ( 3 . 5 . 6 .  nil)). 
< -  Y <= ([l\( 'a'. "b ' .  ' c ' .  nil)). 

which unify X with 90 and Y with "abc'. The  minus and the times operators must  be written between 
single or  double quotes. 

Apply fists of  extended computabIe expressions to fists of  arguments. Several possibilities are offered by 
the "map" functionals below: 

• map(e,a) - the (trivial) case of one  expression, one argument; 
• map_ln(e ,a l . a2  . . . . .  an.nil) - one expression, n arguments 
• map n l (e l . e2  . . . . .  en.nil,a) - n expressions, one argument 
• map_bi(el .e2 . . . . .  en.nil,al.a2 . . . . .  an.nil) - n expressions, n arguments, so that each ei will be appfied 

to the respective ai; 
• map_cart(el .e2 . . . . .  en.nil,al.a2 . . . . .  am.nil) - n expressions, m arguments, with each ei being appfied 

to aUaj. 

On the other hand, the extended computable expressions used as the first argument of  the map functionals 
offer several possibilities. If they contain one or more  variables, all occurrences of  the first variable will 
be instealtiated with elements taken from the second argument, according to the type of  map. If the 
extended computable expression consists of a single constant, the constant will be the result; an interesting 
example is the map to compute  the cardinality of  a fist (see below), where as many ones as there are 
dements  in the fist are produced and then counted. The expression may involve conditionals, function 
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composition, operators, etc. Once their variables are instantiated with values from the second argument, 
the expression is evaluated by "<="; however, if any variable remains, there may be problems, which 
requires some delayed or lazy evaluation device, to be introduced in section 4. 

An example is the computation of the standard deviation, defined as the square root of the sum of the 
squared deviations (between each value and the average) divided by the cardinality minus one. 

<-addfun( 
card(L) <= 

(L = n i l - > 0 ;  
(+\ 

map_ In( I ,L)))). 

<-add fun( 
avg(L) <= 

(L = n i l - > 0 ;  
N <= card(L) + 0.0 -> 

( + \  L) / N)). 

<-add fun( 
std(L) <= 

((A <= avg(L) & N <= card(L)) ->  
sqrt( ( + \ 

map_ln( (*1 - A) xx 2 ,  L) ) / 
( N -  1.0) ))). 

< - L  = ( 8 . 5 . 4 .  1 2 . 1 5 . 5 . 7 . n i l ) &  
Z <= map_nl(card(* 1).avg(* l).std(* 1).nil, L). 

The goal computes the cardinality, average and standard deviation of  a set of numbers. 

Perform function exponentiation with fixed-point conditions. Function exponentiation, here denoted by 
"@", is the composition of a function with itself either 

1. a given number of  times, or 
2. a variable number of times. 

The latter case is useful to fred the smallest exponent of a function f for which some condition is true. 
However, if the condition cannot be met, an infinite loop would occur. If f has a fixed-point, our evaluator 
is able to check if ever f(X) = X at some step, in which case a failure stops the process. Especially with 
this provision, function exponentiation is most convenient to express repetition [BrL] in a pure functional 
programming style (by contrast see the "while" construct in [Ba] and its definition in terms of exponents 
m [F1]). 

Two examples are supplied. In the first, one checks if the atoms a and c appear together somewhere in a 
fist. N will be instantiated with 2 and the expression N + 1 will be equal to 3. ff the condition were not 
met, a loop would not occur because of the fixed-point tail(nil) = nil. Note the use of"<=" as a predicate, 
to check if the result of  evaluating the right-hand side expressions is a and c, respectively. 

<-  L = (a.b.a.c.d.a.nil) & 
a <= head(N@tail(L)) & 
c <= head((N + 1)@tail(L)). 

The second example has an interesting interpretation: given an iterative command in a conventional 
programming language: 

for i :=  20 to 10 by -3 

it answers the questions: 

• how many iterations will normally be executed? (given by I) 
• what will be the last value of i? (given by M) 
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Function decr3 is defmed on the natural numbers, whence the fixed-point decr(N) = 0 if N-3 is less than 
or equal to 0, and decr(0) = 0. Notice that we chose to write function decr3 directly in predicate format. 

decr3(Z,X) <-  
W : = X - 3 &  
(l t(W,0) - >  z = 0; 
z = w ) .  

is_function(decr3(*)). 

< - N  = 20& 
M <= I@decr3(N) & it(M,10). 

4. C O M B I N I N G  P R E D I C A T E S  A N D  F U N C T I O N S  

In functional languages, a "predicate" is a function that returns Boolean values. In Prolog, however, predicates 
do not return values - they succeed or fail. Further, the arguments of functional language predicates can be 
computable expressions, a particularly important case being calls to other functions. In Prolog, predicate 
arguments are not evaluated. Finally, functions (Boolean-valued or not) may be partial, i.e. undefined for 
certain values of their arguments. 

Towards the integration of predicates and functions we provide three main features: 

* A prefix operator "$", which, when appfied to a predicate causes the evaluation of its arguments, as 
extended computable expressions, before the predicate itself is evaluated. 

® A prefix operator "> ", which, when applied to a function, makes the evaluation of the function 
conditional on all its arguments being fully instantiated (a case of "lazy" evaluation). 

o A function "%oo1", whose argument is a predicate expression. As the expression is evaluated one of the 
built-in predicate symbols "tree" or "fail" is returned, depending on whether or not the evaluation succeeds. 

An example previously introduced in section 3 can be slightly rewritten with "$", so that the built-in "eq" 
predicate can be used instead of "<=". 

<-  L = (a.b.a.c.d.a.nil) & 
$eq(a,head(N @tail(L))) & 
$eq(e,head((N + l)@tail(L))). 

Similarly, the "sqrt 1" function of  section 2.2 becomes: 

<-addfun( 
sqrt I(X,R,T) <= 

($1t(abs(R - X/R),T) -> R; 
sqrtl(X,(R + X/R)/2.0 ,T))) .  

The other features are illustrated in the examples below. The first involves a multiple-choice school test 
consisting of  five questions, the correcct answers being M = (a,c,b,c,a). One may wish to compare to M the 
sequence A of the answers supplied by some student. The goal below first yields a sequence C where Ci is 
"tree" if Ai = Mi, and "fail" otherwise. C is produced in two stages: the appfication of "map ln" results in the 
fist 

> bool(eq(a,*)). > bool(eq(c,*)). > bool(eq(b,*)). > bool(eq(c,*)). > bool(eq(a,*)).nil 

where the "> ~ operator keeps the member expressions unevaluated in view of the remaining variable, and at 
the second stage the appfication of  "map_bi" instantiates each second operand variable with the corresponding 
element of A whereupon the evaluation takes place, giving: 

true .fail.fail.true.fail.nil 

Next, C is used in the comparison: (I) within an APL-like "compress" to indicate which answers are correct 
(in the example, the first and the fourth); (2) in an "or-expression" and in an "and-expression" over the "true" 
and "fail" predicates, to see whether "at least one answer" and whether "all answers" are correct. 
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<-add fun( 
compress(T,L) <= 

(T == nil -> rill; 
tme<=(head(T)) -> 

cons(head(L),comprcss(tail(T),tail(L))); 
true -> 

compress(tail(T) ,tail(L)))). 

<-addfun( 
iota(I) <= 

iota(1,I.nil)). 
<-addfun( 
iota(T,I) <= 

(T.nil == I -> I; 
cons(T,iota(T + 1,I)))). 

< -  A = (a.b.a.c.b.nil) & 
M = (a.c.b.c.a.p21) & 
C <= map bi( 

map ln( > bool(eq(*,*)),M), A) & 
OK <= compress(C,iota(5)) & 
SOME_OK <= boot(] \C) & 
ALL_OK <= bool(& \C). 

The next example shows how to compute the outer product of two vectors, V1 mad V2, to obtain a matrix 
M, such that Mij = Vii  * V2j. The application of "map_In" produces a fist of > (vli * X) terms, where the 
vli  are (constant) elements from Vli and X denotes a variable. The "> " operator inhibits the execution of the 
multiplications until the application of "mapcart"  instantiates each second operand variable with each element 
from V2. 

<-C <= map_cart( 
map_ln( > (V1 * V2), (1 . 2 . 3 .  nil)), 
(4.  5 . 6 .  nil)). 

Map composition is a powerful and flexible device. Comparing the map composition to compute the standard 
deviation (section 3) with both map compositions above, one notes that they follow different patterns: 

map(.,map(.,.)) - in the former 
map(map(.,.),.) - in the latter 

As a last example (taken from [BrL]), let us consider again the "decr3" function, defined at the end of section 
3. If we now define over the natural numbers a function ,/g,,, by 

<-addfun( 
g(V) <= 

($eq(I@decr3(Y + 1),1) -> I)). 

<-  X <= g(12). 
<-  L <= bool(X <= g(11)). 

then g(Y) yields Y/3 for all Y that are multiples of 3. Otherwise g(Y) fails, due to the fixed-point condition 
imposed on "decr3". This seems an appropriate way to express, in the extended Prolog, that function "g" is 
undefined for numbers that are not multiples of 3. 

5. CONCLUSION 

The examples presented along the preceding sections show how to define and use functions and function-based 
constructs in a functional notation that harmonizes well with the notation used for predicates. Predicates and 

48 



functions can thus be combined to solve problems involving both mmhematical domains. 
implementation demonstrates the feasibility of  the strategy. 

REFERENCES 

The prototype 

[Ba] J. Backus - Can programming be liberated from the Von Neumann style? a functional style and its 
algebra of programs - Comm. of the ACM - vol. 21, n. 8 (1978) 613-641. 

[BeLl M. Bellia and G. Levi - The relation between logic and functional languages: a survey - The Journal 
of  Logic Programming-  vol. 3 (1986) 217-236. 

[Bo] H. Boley - RELFUN:  a relational/functional integration with valued clauses - SIGPLAN Notices, 
vol.21, n.12 (1986) 87-98. 

[BrL] W . S .  Brainerd and L. H. Landweber - Theory of Computat ion - John Wiley (1974). 
[BWW] J. Backus, J. H. Williams and E. L. Wimmers - FL language manual (preliminary version) - T.R. 

RJ 5339 - IBM Almaden Research Center-  (1986). 
IF1] A . C .  Fleck - Structuring FP-style functional programs - Computer Languages, vol. 11, n. 2 (1986) 

55-63. 
[GJ] C. Ghezzi and M. Jazayeri - Programming language concepts - John Wiley (1982). 
[Iv] K . E .  Iverson - A progran'aning language - John Wiley (1962). 
[Ro] J . A .  Robinson - The future of  logic prograrmning - Information processing 86 - H. J. Kugler (ed.) 

- North-Holland (1986) 219-224. 
[VM] VM/Programming in logic - program description and operations manual -doc .  IBM SBli-6374-0 

(1985). 
[Wi] P . H .  Winston - LISP - Addison-Wesley (1984). 
[WMSW] A. Walker, M. McCord, J. F. Sowa and W. G. Wilson - Knowledge systems and Prolog - 

Addison-Wesley (1987). 

A C K N O W L E D G E M E N T  

I am grateful to my colleague Ramiro Guerreiro for many suggestions and comments. 

APPENDIX 

PROGRAM TO IMPLEMENT THE EXTENSION 

/* special symbols */ 

op("<=",lr,50). 
op("$',prefix, 150). 
op("@",lr,500). 
op("\",rl,33). 
op(" > ",prefix, 150). 

/* evaluator for */ 
/* extended computable expressions */ 

cexp(X,E) <-  
(is_elmt(E) I is hst(E)) -> X = E; 
is cond(E) - >  c_cond(X,E); 
is_nfunction(E,P,N,A) - > 

nfunct(N,A,X,P); 
is function(E) ->  funct(X,E); 
is_operation(E) ->  oper(X,E); 
is_pred(E) ->  X = E; 
true ->  

(E = . .  ( O P .  A) & 
f_arg(A,B) & 

F = . . ( O P . B ) &  
ev(X,F)). 

<=(X,E) <-  cexp(X,E). 

ev(X,F) <-  
(x:= F&/I 
X = F). 

is elmt(X) < -  

var(X) [atomic(X) I stringp(X). 

is_fist(nil). 
is_fist(*.*). 

is pred(P) < -  
(is_function(P) I 

is operation(P)) & 
P = .. (OP.*) & 

op(OP,*,*) & 
-" is f_predef(O P). 

is f_predef(F) <-  
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on( F ,max.rain .abs. sin .co s .pi. 
exp.log.len.strip.upper. 
lower.substring.nil). 

on(X,(X.V)). 
on(X,(Y.Z)) <-  on(X,Z). 

is cond(* -> *). 
is_cond(* ; *). 

is_nfunction(E,P,N,A) <- 
E = .. ("@".P.R.nil) & 
R = .. (N.A.nil). 

c_cond(X,C -> E) < -  / & 
C &  
eexp(X,E). 

c_cond(X,E1 ; E2) < -  / & 
c_cond(X,E1) -> true; 
cexp(X,E2). 

funct(X,F) < -  
F = .. (OP.A) & 
((OP == map In [ O P  == map [ 

OP == bool [ O P  == "> "3 -> 
(A = (S.AA) & 
f arg(AA,C) & 
B = ( S . C ) )  ; 

f arg(A,B)) & 
((OP == " > ") & 
G = .. (wait no var.X.B) & / I 
G =.. (OP.X.B)) & 
G. 

oper(X,F) <-  
F = .. (OP.A) & 
f arg(A,B) & 
H =. .  (OP.B) & 
G = opr(X,H) & 
G. 

Carg(nil,nil). 
f arg(A.R,A.S) <- 

is_pred(A) & / & 
f_arg(R,S). 

f_arg(A.R,B.S) <-  
cexp(B,A) & 
Carg(R,S). 

/* addition of functions and */ 
/* functional operations */ 
/* to the workspace */ 

addfun(F <= B) <-  
F = .. (OP.A) & 
G = .. (OP.X.A) & 
arg_patt(A,AA) & 
H = .. (OP.AA) & 
Z = (G <-  (X <= B)) & 
addax(Z) & 

(is_function(H) & / I 
addax(is_function(H))). 

addop(F <= B) <-  
F = .. (OP.A) & 
arg_patt(A,AA) & 
n = .. (OP.AA) & 
addax(opr(V,F) <-  (V <= B)) & 
(is_operation(H) & / [ 
addax(is operation(H))). 

arg__patt(X,Y) < -  
compute(list,E,on(*,X),nil,Y). 

/* distribution of  binary operators */ 
/* over n argumems */ 

distr(O,L,X) < -  
(stringp(O) -> st to_at(O,P); 
P = o ) &  

distrl (P,L,R.nil) & 
X <= R. 

distrl(O, A.B.R, S) <-  
M = .. (O.A.B.nil) & 
distrl(O,M.R,S). 

distrl(O,A,A). 

opr(X,(OkL)) <- 
X <= 

(distr(O,L,X) -> X). 

is operation(*\*). 

\(O,L) <- 
distr(O,L,X) & 
X. 

/* application of  sets of  fimctions */ 
/* over sets of arguments */ 

map(Y,F,A) <-  
prnap(F,A,X) & 
Y = X .  

map_ln(Y,F,A) < -  
pmap_In(F,A,X) & 
Y = X .  

map_n 1 (Y,F,A) < -  
pmap_nl(F,A,X) & 
Y = X .  

map_bi(Y,F,A) < -  
pmap_bi(F,A,X) & 
Y = X .  

rnap_cart(Y,F,A) < -  
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pmap_cm~(F,A,X) & 
Y = X .  

is function(map(X ,Y)). 
isfunction(map_ 1 n(X,Y)). 
isfunction(map_n 1 (X,Y)). 
is_function(map_bi(X,Y)). 
is_function(map_cart(X,Y)). 

pmap(F,A,X) <-  
listvar(F,nil) & / & 
X < =  F. 

pmap(F,A,X) <-  
copy(F,G) & 
listvar(G,Y.R) & 
Y < = A &  
X < = G .  

pmap_ln(*,nil,nil) <-  / . 

pmap_ln(F,A.R2,X.R3) < -  / & 
copy(F,G) & copy(F,H) & 
pmap(G,A,X) & 
pmap_ln(H,R2,R3). 

pmap_ln(F,A,X) <-  
copy(F,G) & 
pmap(G,A,X). 

p m a p n  1 (nil,*,nil) < -  / . 

pmap_nl(F.R1,A,X.R3) <-  / & 
copy(F,G) & copy(R1,H) & 
pmap(G,A,X) & 
pmap_n 1 (tt,A,R3). 

p m a p n  1 (F,A,X) < - 
copy(F,G) & 
pmap(G,A,X). 

pmap bi(nil,nil,nil) < - / .  

pmap bi(F.RI,A.R2,X.R3) <-  / & 
copy(F,G) & copy(RI,H) & 
pmap(G,A,X) & 
pmap_bi(H,R2,R3). 

pmap_bi(F,A,X) <-  
copy(F,G) & 
pmap(G,A,X). 

pmap_cart(nil,*,nil) < -  / . 

pmapeart(F.R1,A,X.R3) <- / & 

copy(F,G) & copy(R1,H) & 
pmap_ ln(G,A,X) & 
pmap_cart(H,A,R3). 

pmap_cart(F,A,X) < -  
copy(F,G) & 
pmap_cart(G,A,X). 

/* function exponentiation */ 

nfunct(F,A,X,N) <-  
(-~ vat(N) -> M <= N; 
M = N ) &  

copy(M,NN) & 
nfunct i(F,A,X,M,NN). 

nfunct I(F,A,X,N,NN) <-  
B < = A &  
(X = B & N  = 0 I 
W = .. (F.B.nil) & 
(var(NN) & 
Z < = W &  
-'(B ==Z) I 
-' var(NN)) & 

nfunct I(F,W,Y,M,NN) & 
( ~ var(NN) & 
ge(M,NN) & / & fail [ 
true) & 

N : =  M + l &  
X = Y), 

/* combination of functions */ 
/* and predicates */ 

pval(P) <-  
P = .. (OP.A) & 
f_arg(A,B) & 
Q = .. (OP,B) & 
Q. 

$P <-  pval(P). 

bool(X,P) <-  
X <= 
(P -> true; 
f a u ) .  

is_function(bool(*)). 

wait no var(Z,E)<-  
((hstvar(E,N) & N == nil) => 

(Z <= E); 
Z = > (E)). 

isfunction( > (*)). 
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