W Expert
Database

Systems

Proceedings from the Second
International Conference

Editor

Larry Kerschherg

Proceedings From the Second International Conference on
EXPERT DATABASE SYSTEMS

LARRY KERSCHBERG, EDITOR

George Mason University

THE BENJAMIN/CUMMINGS PUBLISHING COMPANY, INC.

Redwood City, California « Fort Collins, Colorado

Menlo Park, California * Reading, Massachusetts « New York
Don Mills, Ontario = Wokingham, UK. « Amsterdam » Bonn
Sydney « Singapore « Tokyo » Madrid « San Juan

UPDATE-ORIENTED DATABASE STRUCTURES

by

Luiz Tucherman and Antonio L. Furtado*

Rio Scientific Center
IBM Brasil

ABSTRACT

The paper proposes a non-conventional update-oriented
structure and an update discipline for rule-driven
temporal database applications. The rules incorporate,
in a declarative form, (a) knowledge related to the up-
date discipline and (b) knowledge of specialists in the
given application area. Essentially, the rules of type (a)
determine how to apply the type (b) rules to the manip-
ulation of the database specified, so as to preserve cor-
rectness. Specifications in terms of these rules are
immediately executable under a prototyping tool. The
tool is written in Prolog, employing meta-level program-
ming techniques, and SQL. :

1. INTRODUCTION

Database structures are usually query-oriented, in the sense that they
store sets of facts of some database application, in a form as close as
possible to what will be presented to users as the result of query op-
erations. In a relational database, sets of facts are assigned to dif-
ferent tables and the individual facts in each set correspond to tuples
of the respective table.

The entire collection of facts that hold at a certain instant of time is
a database state. A state is said to be valid if it obeys all the static
integrity constraints prescribed for the database application. Not all
transitions between valid states are in turn valid, but only those that
obey the declared transition integrity constraints.

Transitions are effected by update operations. If we assume that a
database starts with an initial (valid) “empty” state, then if a disci-
pline is imposed on the updates it should be possible to ensure the

* On leave from the Pontificia Universidade Catdlica do Rio de
Janeiro
185

186 EXPERT DATABASE SYSTEMS

validity of both the states reached and of -the transitions leading to
them.

On the other hand, the time dimension is an important attribute of
facts in some applications [BADW,Sn2}]. We may want to maintain
the history of a database, keeping all states rather than only the cur-
rent one. To this end, a common solution is to include in each tuple
a timestamp to express when the respective fact started to hold. Ex-
isting tuples are never deleted or modified.

Besides becoming an attribute of interest, time may be involved in
several kinds of transition constraints, which imposes new demands
on how updates should be disciplined. '

In this paper we propose one such discipline. Taking the abstract data
type approach [Gu,VF1,FN], it relies on a specification of the update
operations pertaining to the database application on hand, and it in-
volves a non-conventional update-oriented data structure. The major
contribution of this discipline is that it leads to specifications whose
style is declarative and that can be immediately used for prototyping.
Section 2 describes the structure. Section 3 presents the specification
techniques. These and their use within a prototyping tool are illus-
trated in section 4 on an example academic database application.
Section 5 shows an extension for an alternative treatment of temporal
databases. Section 6 contains the conclusion. An implementation of
the tool, combining Prolog and SQL, is given in the Appendix.

2. UPDATE-ORIENTED ORGANIZATIONS

In the usual query-oriented structures, which are repositories of facts,
records of operations executed are not part of the database, even
though they are sometimes kept on a temporary basis, usually to help
recovery. Such records are termed logs or traces.

The organization that we shall use originates from two separate re-
search lines: the formal treatment of database states as traces, seen
from an abstract data type viewpoint {BP,VF1], and an approach to
temporal databases first suggested by Bubenko [Bul].

Abstract data type specifications are based on the properties of the
operations associated with the type rather than on how its instances
are represented. The more formal methods often denote an instance
of a type by a Herbrand term, consisting of a sequence of update
operations. able to create the instance. Such terms correspond to the
intuitive notion of traces. If we view a database application as a data

TUCHERMAN AND FURTADO 187

type whose instances are the database states, then it is natural to use
traces to denote them.

However, to readily derive a running version of a formal specifica-
tion, traces must be adapted to the record-driven data structures
available in database management systems (DBMSs). To see how
this can be done, consider the trace partially shown below of a state
of an academic database application (we used a “flat” format rather
than the more common but less readable nested format):

initiate().enroll(John,c1).enroll(Mary,cl).transfer(John,c1,c2). ...

In a relational DBMS we can simply assign a table to each update
operation; thus we would have tables named ENROLL, TRANS-
FER, etc. Their tuples are the lists of arguments, e.g. <John,cl >,
over which the operation is executed, plus a timestamp, marking the
instant of execution of the operation, under the format
year/month/day concatenated with the time of the day, as hour :
minute : second. Notice that without the timestamp the tables would
not fully capture a trace, since the order of execution of the constitu-
ent operations would be lost.

But we only store a tuple if the application of the update operation
is valid, that is, if the established pre-conditions for its execution cur-
rently hold. Besides, we require that the operation be productive
[VF2}, i.e., none of the facts that it should add already holds and all
those it should remove currently hold. Finally, triggers may be asso-
ciated with some operations in order to restore integrity [Es].

Our structures are update-oriented, in the sense that, instead of stor-
ing the facts, we record which update operations were executed and
when. The facts themselves are inferred from an analysis of the up-
. dates. In [Bu], updates are kept in base tables and facts correspond
to views. In that reference a distinction is established between the
time when an operation takes place in the outside world and the time
when the operation is registered in the database. Here we take the
simplifying assumption that these times coincide, which is realistic in
some situations, especially in office automation environments. The
duality and complementarity of query-oriented and update-oriented
approaches to database specifications and their possible impact on
database structuring were discussed in [VCF, page 419]. The work
in [KS] is similar to ours but treats time in a different way, mentioned
in section 5.

/

188 EXPERT DATABASE SYSTEMS

Apart from the convenience of update-oriented structures for specifi-
cation and rapid prototyping purposes (which are our primary inter-
est), we briefly indicate their possible advantages for operational
usage. One can expect that update-oriented structures will tend to
perform more efficiently for update-intensive applications. Also, they
may compare favorably with query-oriented time-stamped tables
whose tuples contain many items; to represent a change on a single
item, one would normally add to the table a new time-stamped tuple,
redundantly repeating all unchanged items (or would use some more
compact, but also more complex, record structure). Besides, update-
oriented structures, by definition, cannot suffer from update anoma-
lies.

More important is to note that update-oriented structures are more
informative, in that they allow to ask how a fact became true. This
will be illustrated at the end of section 4, in a situation where there
is more than one operation able to add a certain fact, and it is possi-
ble to find out which operation was performed in each case. However,
more work is needed to compare them in detail with the various al-
ternative structures for temporal databases.

3. DECLARATIVE SPECIFICATION OF UPDATES

Adopting the abstract data type approvach, the specification of data-
base applications where static and transition integrity constraints are
preserved can be reduced to an adequate specification of a fixed set
of update operations.

The decision for the abstract data type approach still leaves ample
freedom to choose a notation. We would like to write the specifica-
tions in a declarative style. Also, it would be convenient if the
formalism used were a programming language, so that a running
prototype would readily result. Logic programming is therefore a na-
tural candidate.

An operation is specified in terms of its syntax and semantics. The
semantics of an update operation is expressed by the changes (adding
or deleting facts) that it effects on database states. To enforce integ-
rity constraints, the specification of an operation must include pre-
conditions to its execution. The pre-conditions should be such that, if
they hold at the current state, the execution of the operation cannot
violate any constraint. An alternative to imposing pre-conditions is
to permit that the operation be executed and then to trigger further
operations so that at the final state reached all constraints are pre-

TUCHERMAN AND FURTADO 189

served. Combinations of pre-conditions and triggers are also possible
in some cases.

The list below summarizes the items to be included in the specifica-
tion of an operation. The first is syntactical and the others are se-
mantic:

its signature, i.e. the types of its parameters;
what facts hold after its execution;

what facts cease to hold after its execution;
pre-conditions for its application;

further operations to be triggered.

The specification of an operation O can be expressed as a set of Pro-
log clauses of the form:

e oper(O(D1,D2, ... ,.Dn)) - the parameters of O are of types DI,
D2, ... ,Dn

e added(F,0) - fact F is added by O

e deleted(F,0) - fact F is deleted by O

e valid(O,T) <~ P - the execution of O is valid at time T if pre-
condition P holds at T

e trigger(O,T) <- TR - the execution of O at T causes the execution
of trigger TR

It is a non-trivial problem to “tune” pre-conditions, triggers and
combinations thereof so that constraints are effectively enforced.
We have discussed elsewhere formal methods to do so (see, in partic-
ular, [VF2]). In the next section we limit ourselves to an informal
justification of the interplay of pre-conditions and triggers for an ex-
ample application. We should also add that the analogy between
time-stamped update operation tables on the one hand and traces on
the other hand favors the use of the algebraic methods developed for
proving properties of abstract data types [Gu,BP,VF1]. '

The specifications of all update operations for the database applica-
tion on hand, expressed as Prolog clauses, capture the knowledge that
we have about the particular application. To apply these clauses,
however, we need a different kind of knowledge, which is often left
implicit as unformalized assumptions. Those that we shall adopt here

190 EXPERT DATABASE SYSTEMS

are: -

® An operation produces effects only if it is both -
« valid and
= productive ‘ '
in the sense indicated in the previous section. Attempts to exe-
cute operations that are not valid or productive are ignored.

e In a sequence of operations (chained by the trigger mechanism)
either all succeed or none has any effect. In other words, these
sequences are treated as transactions [AV]. '

e The effects of an operation are exactly those declared in the
clauses of the “added” and “deleted” predicates; in the new state
all other facts remain unaffected. This assumption refers to the
well-known frame problem [Ko].

e The facts that hold-at a given instant of time are those that cdn
be inferred from the operations-able to add or delete them and
which have been executed at the appropriate instants. This re-

~ flects the update-oriented strategy, whereby the execution of op-
erations is recorded and the facts are deduced as their
consequences.

These assumptions can be regarded as sentences about the clauses
that describe particular applications. To formalize them, we resort to
the meta-level programming features of Prolog [Ko]. Such techniques
were first proposed in the above reference to face the frame problem
in the context of plan-generation, but they are applicable in many
other contexts [WMSW,VF2]." Based on the assumptions, we must
express how to use the clauses specific to the application to:

e cxecute an operation; ‘
e infer the result of queries from the executed operations;
e answer queries about the executed operations themselves.

The items above correspond to the three main meta-predicates that
we need to run a database application: '

execute(O) - to execute a pre-defined operation O
holds(F,T) - to verify the occurrence of fact F-at instant T
done(O,T) - to verify the execution of operation O at instant T

/e & @

A short verbal description of how these meta-predicates work follows.
To execute an operation op(al,a2, ... ,an), one checks whether the
operation is valid and productive at the current state; if not, the op-
eration fails; otherwise, the clock is read for the timestamp ts and the
tuple <ts,al,a2, ... ,an > is added to table OP. Next, any associated

TUCHERMAN AND FURTADO 191

triggers are invoked and, if all triggered operations succeed (at all
levels of chaining), an overall “commit” is executed, whilst if any op-
eration fails the entire chain of operations suffers a “rollback”.
Chaining a sequence of updates through triggers and treating the se-
quence as a transaction, where either the entire sequence is applied
or no effect results, is achieved by Prolog’s recursion and backtrack-
ing machinery.

A fact f(bl,b2, ... ,bm) holds at an instant t, if the execution of an
operation able to add it has been recorded in the respective table with
a timestamp t’ at most equal to t, and there is no record of an oper-
ation able to remove it with a timestamp ranging from t’ to t. Since
this is the only case where a fact is declared to hold and in view of the
closed world assumption that underlies Prolog, the frame problem is
avoided. - :

Retrieving information about the execution of operations, which is
the task of the dome meta-predicate, is of course immediate with
update-oriented organizations.

Other meta-predicates are needed, for example, to express the mean-
ing of “productive”.

The set of these meta-predicates constitutes what we call the generic
part in the architecture of our running prototyping tool, since it is
intended for all (or at least for a broad class of) applications, and
hence is written once and for all. The generic part works essentially
as a meta-interpreter for the specific part, which consists of the
clauses describing the operations of the application in question.

But the prototyping tool does not consist of Prolog alone. Clearly the
strategy that we adopted will only have practical significance if it
combines logic programming with some database management sys-
tem. With logic programming only, we shall be limited to “simu-
lations” in main storage, which may be unsatisfactory even for
protdtyping. On the other hand, having only a database manage-
ment system, it would not be easy to include, in declarative format,
the rules corresponding to pre-conditions, triggers, etc.

The implementation we use is a combination of two systems
VM/PROLOG [VM] and SQL/DS [SQ]. VM/Prolog is close to the
Edinburgh Prolog de facto standard; the differences are described in
[WMSW, page 428]. The interface between VM/Prolog and SQL/DS
was introduced in [CW] and is fully documented in [VM].

192 EXPERT DATABASE SYSTEMS

4. AN EXAMPLE DATABASE APPLICATION

We shall consider an academic database where the facts are:

e courses are offered
e students take courses

The integrity constraints are:

- static constraint

¢ 1l - a student can only take courses that are being offered
- transition constraint

e 12 - a new course can only start until March 15th of the current
year;

¢ 13 - a student cannot reenter a course he has taken before;

e 14 - no course that stays without students after March 20th can
continue to be offered;

¢ 15 - the number of courses taken by a student cannot decrease.

Assume that only the operations below are considered necessary:

offer a course

enroll a student in a course

transfer a student from a course to another
cancel a course

Besides these operations, we shall have operations to initiate and ter-
minate a session, which resemble the familiar “open” and “close”
commands of database management systems. The Appendix contains
the specification of each operation in terms of the “oper”, “added”,
“deleted”, “valid” and “trigger” predicates. In this section we shall
limit the discussion to pre-conditions (handled by “valid”) and trig-
gers.

Since we chose not to provide the usual operation “drop”, to undo the
enrollment of a student in a course, constraint r5 is trivially enforced,
so that we are not required to impose pre-conditions or associate
triggers with the operations for its sake.

However the other constraints do require such measures. Operation
“offer” can only be executed until the deadline, and “enroll” only if
the course involved is offered and the student has not taken it before,
analogous pre-conditions being required for “transfer”.

TUCHERMAN AND FURTADO 193

The “transfer” operation must have an associated trigger; if after
March 20th a student A is transferred from a course C to some other
one, A being the only student taking C, then course C should be au-
tomatically cancelled and the user simply warned that this was done.

This provision is not enough however to enforce r4, since the mere
occurrence of the deadline might make it necessary to cancel courses
that until then stayed (validly) without students. To cover this case,
we must associate a trigger with “initiate”, which suffices if we admit
that each database session spans no more than a single day.

The “cancel” operation might have either a pre-condition:

- that no student is taking the course

or a trigger (the solution we chose here):

- that all students that are taking it be transferred to other courses.

Naturally this trigger must not be fully automatic, allowing instead
that the user be asked to indicate to which course each student should
be transferred.

The example can be much expanded. Of special interest are transition
constraints based on elapsed time. For instance, we might rule that
a student cannot be transferred to a new course before he has stayed
in the course he is about to leave for at least one month, except na-
turally if the latter is being cancelled. To have this kind of constraint
we must be able to perform arithmetic on dates, a feature that can
be easily added by adapting an algorithm like the one in [Ro].

We now show how the example runs on the prototyping tool. As
VM/Prolog goals are invoked, the appropriate SQL commands are
synthesized and passed to SQL/DS for execution via the interface.
Assume that at the beginning of a session on April 15th the following
facts hold:

course cl is offered
course c2 is offered
course c3 is offered
student John takes course cl
student Mary takes course cl
student Paul takes course c2

The execution of the goal statement:

<~ initiate.

194 EXPERT DATABASE SYSTEMS

will cause course ¢3 to be cancelled, since it stayed without students
after the March 20th deadline. Next, suppose we enter:

<~ execute(cancel(’cl’)).

The trigger associated with this operation prompts us to indicate new
courses for John and Mary; in this case, c2 is the only possible choice.
With this, both students are transferred and the course is cancelled.
To find which facts now hold, we enter:

<= now(T) & which(X,holds(X,T)).

being informed that course c2 (only) is offered and that Paul, John
and Mary take this course.

And yet all previous states remain accessible. We can, say, retrieve
the series of courses in which John has ever participated by:

<= which(C,holds(takes("John’,C),T)).

Moreover, we can ask about the execution of operations. Besides
learning that Paul, John and Mary now take c2, we can find that
John and Mary were transferred to this course, instead of being ori-
ginally enrolled. The answer to the query below consists of (two)
pairs giving both the names of the students and the time (the same,
in this case) of execution of each transfer operation.

<- now(T) & which((X,V], holds(takes(X,’c2"),T) &
done(transfer(X,Y,’c2"),V)).

The database tables at the end of the session will contain:

OFFER
ts course

87/02/20 14:30:51 cl
87/02/21 14:30:47 c2
87/02/27 16:25:03 c3

TUCHERMAN AND FURTADO 195

ENROLL
ts student course
87/03/03 15:20:23 John cl
87/03/03 15:30:04 Mary cl
87/03/03 15:35:32 Paul c2
TRANSFER
ts v student coursel course2
87/04/15 11:27:55 John cl c2
87/04/15 11:27:55 Mary cl c2
CANCEL
s course
87/04/15 11:26:30 c3
87/04/15 11:27:55 cl

To end the session, we type:

<- terminate.

5. INTERVAL-ORIENTED OPERATORS

In contrast to our approach to temporal databases, where we con-
sider time instants, some authors prefer to deal with time intervals
[ALKS,Snl]. It is possible to adopt one of the approaches and then
to define, on its “primitive” operators, the operators pertaining to the
other approach.

As an illustration, we defined the “precedes” and “overlaps” operators
(see Appendix), based on [Snl]. With “overlaps” we can, for example,
characterize the set Y of colleagues of a student X, as being those
students C who have taken a course Z during a time interval over-
lapping the time interval during which X took the same course Z.

196 EXPERT DATABASE SYSTEMS

The “overlaps” operator is denoted by “><” and used in infix format.

colleagues(X,Y) <-
isall(Y, C, takes(C,Z) >< takes(X,Z) & —(C = X)).

In our sample session, if we enter:
<- colleagues('John’,S).

the result will be the set {Mary,Paul}, since originally John and
Mary were together in cl and later in c2, the latter course still being
taken by Paul.

6. CONCLUSION

Combining logic programming with large database applications [Sm]
involves efficiency problems that must be solved before its use can
become widespread. There is still, among others, the problem of de-_
signing user interfaces that be easy to use and hide the complexity of
such systems.

Until now most proposals to use logic programming to handle data-
bases claim that the main advantage to be gained is additional power
to formulate queries, particularly by introducing recursion and infer-
ence. Our line of research takes the position that logic programming
has an even broader scope, being also relevant to update activities
and to express the rules governing database behaviour.

The declarative specification of updates together with update-
oriented structures lead to the derivation of running prototypes.
Further research is needed to assess the possible advantages of such
structures in operational environments.

ACKNOWLEDGEMENT

We are grateful to our colleague Marco A. Casanova for carefully
reading the paper and for several useful suggestions.

REFERENCES

[A]] J. F. Allen - Towards a general theory of action and time -
Artificial Intelligence 23 (1984) 123-154.

TUCHERMAN AND FURTADO 197

[AV] S. Abiteboul and V. Vianu - Transactions in relational da-
tabases (preliminary report) - Proc. of the 10th Interna-
tional Conference on Very Large Data Bases (1984) 46-56.

[BADW] A. Bolour, T. L. Anderson, L. J. Dekeyser and H. K. T.
Wong - The role of time in information processing: a survey
- ACM SIGMOD Record 12, 3 (1982) 28-48.

[BP] W. Bartussek and D. Parnas - Using traces to write abstract
specifications for software modules - T.R. 77-012, Univer-
sity of North Carolina (1977).

[Bu] J. A. Bubenko Jr. - The temporal dimension in information
modelling - in Architectures and Models in Data Base
Management Systems - G. M. Nijssen (ed.) - North-
Holland (1977) 93-118.

[CW] C. L. Chang and A. Walker - PROSQL: a Prolog pro-
gramming interface with SQL/DS - in Expert database
systems - L. Kerschberg (ed.) - The Benjamin/Cummings
Publishing Company (1986) 233-246.

[Es] K. P. Eswaran - Specification, implementation and inter-
action of a trigger subsystem in an integrated database sys-
tem - IBM Research Report RJ1820 (1976).

[FN] A. L. Furtado and E. J. Neuhold - Formal Techniques for
Data Base Design - Springer-Verlag (1986).

[Gu] J. V. Guttag - Abstract data types and the development of
data structures - SIGPLAN Notices 8, 2 (1976).

[Ko] _R. Kowalski - Logic for problem solving - North-Holland
(1979). '

[KS] R. Kowalski and M. Sergot - A logic-based calculus of
events - technical report - Department of Computing, Im-
perial College (1985).

[Ro] J.D. Robertson - R398 Tableless date conversion - Com-
munications of the ACM, vol. 15, n. 10, (1972) p. 918.

[Sm] J. M. Smith - Logic programming and databases - in Expert
Database Systems - L. Kerschberg (ed.) - The
Benjamin/Cummings Publishing Company (1986) 3-15.

[Snl] R. Snodgrass - The temporal query language TQuel -
Transactions on Database Systems, vol. 12, n. 2 (1987).

[Sn2] R. Snodgrass - Research concerning time in databases:
project summaries - ACM SIGMOD Record, vol. 15, n. 4
(1986) 19-39.

[SQ] SQL/Data System Application programming - doc. IBM
SH24-5018-2 (1983).

[VCF] P. A.S. Veloso, J. M. V. de Castilho and A. L. Furtado -
Systematic derivation of complementary specifications -

198 EXPERT DATABASE SYSTEMS

[VF1]

[VF2]

[VM]

Proc. of the 7th International Conference on Very Large
Data Bases (1981) 409-421. R
P. A. S. Veloso and A. L. Furtado - Stepwise construction
of algebraic specifications - in Advances in Data Base The-
ory, vol. 2 - H. Gallaire, J. Minker and J. M. Nicolas (eds.)
- Plenum (1984) 321-352. '

P. A. S. Veloso and A. L. Furtado - Towards simpler and
yet complete formal specifications - in Information Systems
Theoretical and Formal Aspects - A. Sernadas, J. Bubenko
and A. Olive (eds.) - North-Holland (1985) 175-189.
VM/Programming in Logic - Program Description and Op-
erations Manual - doc. IBM SB11-6374-0 (1985).

[WMSW] A. Walker, M. McCord, J. F. Sowa and W. G. Wilson -

Knowledge systems and Prolog - Addison-Wesley (1987).

APPENDIX

/* UTILITIES */

which(X,Y) <- call(Y) & nl & prst('==>")
& writes(X) & fail().
which(X,Y) <- nl &
prst(’No (more) answers’) & nl & nl & /0.

list(X) <- axn(X,*,Y) & nl & writes(Y) & fail().
list(*) <= nl & nl.

isall(X,Y,Z) <- »
(compute(set,Y,Z[1,X) & /() | X = [D.

forall(X,Y) <= — (call(X) & — call(Y)).

append([],X.,X).
append([X!Y],Z,[X!W]) <- append(Y,Z,W).

on(X,[X!Y].
on(X,[Y!Z)]) <- on(X,Z).

cat(X,Y) <- catl(X,Z) & st_to_li(Y,Z).

TUCHERMAN AND FURTADO

199

catl((X!Y],Z) <-
(stringp(X) & W = X & / |
st_to_at(W,X)) &
st_to_li(W,L) &
catl(Y,U) &
append(L,U,Z).

catl([L[D-

/* GENERIC PART */
/* predicates directly accessible */

initiate() <-
now(T) & /* in assembly-language */
trigger(initiate(), T).

terminate() <-
fin().

execute(X) <-
now(T) &
(exec(X,T) & sql(’commit work’,*) & /() |
sql(‘rollback work’,*) & fail()).

holds(X,T) <-
added(X,Y) &
inc_time(Y,V,0) &
quest(0) &
at_most(V,T) &
— (deleted(X,Z2) &

. inc_time(Z,W,P) &
quest(P) &
before(V,W) &
at_most(W,T)).

done(O,T) <-
inc_time(O,T,P) &
quest(P).

before(X,Y) <~

(var(X) | var(Y)) & /() & fail().
before(X,Y) <-

T(XY).

200 EXPERT DATABASE SYSTEMS

at_most(X,Y) <-
X =Y & /)| W(X,Y).

display() <-
now(T) &
which(X,holds(X,T)).

/* auxiliary predicates */

“exec(X,T) <=
valid(X,T) &
productive(X,T) &
inc_time(X,T,0) &
ins(O) &
trigger(X,T).

productive(X,T) <-
forall(added(Z,X), — holds(Z,T)) &
forall(deleted(W,X),holds(W,T)).

inc_time(X,T,0) <-
X =.[F!A] &
O = [F,T!A]

ins(X) <~
mk_ins(X,Y) &
sql(Y,*).

mk_ins((F!ALY) <=
inc_sep(A,Z) &
cat(Z,W) &
Y := ‘insert into * || F ||
“values(" || W ||).

inc_sep([X],[X]) <- numb(X) & /().

inc_sep([X],[""",X,"”"]).

inc_sep((X!'Y][X, ' Z]) <-
numb(X) & /() & inc_sep(Y,Z).

inc_sep((X!'Y]["", X, 1 Z]) <~
inc_sep(Y,Z).

quest(X) <-
mk_cons(X,Y,Z) &
sql(Y,Z,*).

TUCHERMAN AND FURTADO 201

mk_cons([F!A],Y,A) <-
oper(Z) &
Z =..[F!B]&
comb(B,A,S) &
Y := ’select * from ’ || F || S.

comb(nil,nil,”).
comb((X!Y],[Z!W],S) <~
- var(Z) &
comb(Y,W,T) &
(mumb(Z) & Q ="& /) | Q =" &
(T=="& A :="where’ & /() |
A:="and ") &
S:=THAX][]"="]]
QllZ]]Q.
comb((X!Y][Z!W],S) <~
var(Z) & comb(Y,W,S).

/* SPECIFIC PART - */
/* academic database example */

oper(offer(ts,course)).
oper(enroll(ts,student,course)).
oper(transfer(ts,student,coursel,course2)).
oper(cancel(ts,course)).

added(offered(X),offer(X)).
added(takes(X,Y),enroll(X,Y)).
added(takes(X,Z),transfer(X,Y,Z2)).

deleted(offered(X),cancel(X)).
deleted(takes(X,Y),transfer(X,Y,Z)).

valid(offer(X),T) <-
substring(T,V,3,5) &
before(V,’03/15%).
valid(enroll(X,Y),T) <-
holds(offered(Y),T) &
— holds(takes(X,Y),V).
valid(transfer(X,Y,Z),T) <-
holds(offered(Z),T) &
— holds(takes(X,Z),V).
valid(cancel(X),T).

202 EXPERT DATABASE SYSTEMS

trigger(initiate(),T) <-
substring(T,V,3,5) &
before(V,"03/20") & /() |
forall(holds(offered(Z),T) &
— holds(takes(W,Z),T),
exec(cancel(Z2),T) &
M := ‘course’ || Z ||
’ cancelled” &
nl & prst(M) & nl).
trigger(offer(X), T).
trigger(enroll(X,Y),T).
trigger(transfer(X,Y,Z),T) <-
= holds(offered(Y),T) & /() |
substring(T,V,3,5) &
before(V,03/207) & /() |
holds(takes(S,Y),T) & — (S = X) & /() |
M := ‘course " || Y ||
" cancelled’” & nl & prst(M) & nl &
exec(cancel(Y),T).
trigger(cancel(X),T) <- nl &
forall(holds(takes(Y,X),T),
W := "indicate another course for ' || Y &
prst(W) & nl &
read(Z) &
exec(transfer(Y,X,Z),T)).

/¥ INTERVAL-ORIENTED */
/* TEMPORAL OPERATORS */

started(X,T) <-
added(X,0) &
inc_time(O,T,F) &
quest(F).

ended(X,T) <-
deleted(X,0) &
inc_time(O,T,F) &
quest(F).

interval(X,S,E) <-
started(X,S) &
(ended(X,E) |
now(E)) &

TUCHERMAN AND FURTADO 203

before(S,E) &

— (ended(X,F) &
before(S,F) &
before(F,E)).

precedes(X,Y) <-
interval(X,SX,EX) &
interval(Y,SY,EY) &
before(EX,SY).

overlaps(X,Y) <-
interval(X,SX,EX) &
interval(Y,SY,EY) &
before(SX,EY) &
before(SY,EX).

op("><”,r1,60).
op(”<<”,r1,60).

<<(X,Y) <- precedes(X,Y).
><(X,Y) <~ overlaps(X,Y).

