o




Tst INTE
INFORMAT
OF RIO

RNATIONAL
CS CONGRESS

DE JANEIRO

PROCEEDINGS

BRAZIL, 22 TO 26, AUGUST 1988



FIRST INTERNATIONAL INFORMATICS CONGRESS

NEW TRENDS AND ISSUES IN COMPUTER SYSTEM TECHNOLOGIES
FOR USER’'S INTERFACE*

CARLOS J. P. LUCENA
DEPARTAMENTO DE INFORMATICA
PONTIFICIA UNIVERSIDADE CATOLICA
RIO DE JANEIRO

Doctor in Computer Science at the University of California, Los Angeles; Vice-Rector and
Professor of Computer Science at the Pontificia Universidade Catélica do Rio de Janeiro;
Guggenheim fellow in Computer Service; Chairman of the area of Theorical Foundations
of Information Systems, IFIP World Conference, Japan, 1980; author of 3 books and 50

technical papers.

*This work was partiatly supported by SID Informética as part
of the ESTRA project.

1. INTRODUCTION

The new user of an interactive system must learn
both the functionality of the system and the procedures
to invoke its functions. Often he can transfer his
knowledge of the functionality from one system to
another with more or less success; rarely can he do the
same for the form of the interaction process.

From the designer’s point of view, creating good
user interfaces is a difficult process that requires
iterations of design and evaluation. The work to provide
assistance to the interface designer falls broadly into
three areas. One area involves simulating systems before
they are built to improve the interface design through
observation and modification of a model of the system.
A second area describes formally the structure of
human-computer interaction. A third area develops
tools for producing user interfaces.

Developing a user interfaces takes a lot of time
beucause of the following features of modern input
techniques: (1) the interface needs to respond to many
modern input techniques which are menu-based,
form-based, mouse-driven and touch screen-driven;

(2) we would like the interface to adapt its behaviour to
the level of expertise of the user (e.g. experts and
novices) and (3) features such as aliasing, command
completion, command combination, history mechanism
and 1/0 redirection make the task more difficult.

Techniques from artificial intelligence such as plan
recognition, plan generation and user-modelling are of
great interest to the design of advice-given systems, in
particular when combined with natural language
processing techniques.

This paper stress the importance of designing
superior human-machine interfaces to the modern user
by studying up-to-date design strategies and techniques
that try to achieve that goal. Various techniques will be
exemplifiyed through research results produced in
various institutions worldwide. Our current research in
the area of engineering environments for users interface
design and implementation which takes place in the
context of the ESTRA project is highlighted at the end
of the paper.

2. USER'S INTERFACES AS THE
USER SEESIT

The general problem of making computers easier to
use is a major enterprise of obvious importance. A User’s
Interface (Ul) is any computer software that has as its
primary function the task of providing the user with
information that will assist him in the use of some other
software system. We here assume that the single most
important criterion by which a Ul system should be
judged is the degree to which it facilitates the
accomplishement of a particular task by a user who did
not previously know how to accomplish this task. What,
then, should a Ul actually ook like? Indeed, is it even
possible for a Ul to be of more assistance than a paper
manual, which certainly presents the simples mechanism
imaginable for most users? How should a Ul be designed
and engineered?

People have been building Ul’s almost as long as
they have been building software systems of any kind.
In general, the Ul’s have been an aftertought, quickly
constructed and only marginally integrated into the

97



SUCESU ~ RIO DE JANEIRO - 1988

larger system. However, with the increasing availability
of computer technology to the general public, there is a
growing awareness-of the importance of Ul’s. This has
led to an increased effort in the research and
development in Ul engineering. Sondeheimer (1) and
Borenstein (2} have proposed seven dimensions along
which a Ul as the user sees it may vary. The taxonomy
assumes in arbitrarily fast computer with otherwise ideal
hardware and sufficient memory to easily retain all
relevant contextual information. In other words the
interest is focused on design and not implementation
(both hardware and software}. The dimensions are: acess
issues (three aspects), presentation issues {three aspects)
and integration.

Borenstein claims that there are three major issues
in the user’s access to a help system: whose initiative
first formulates the Ul activity, how the user may
request further help and how complex the help request
language is.

In classifying Ul systems according to acess
initiative, such systems are placed on continuum
between systems in which human users have the sole
initiative and systems in which the computer more often
takes the initiative than the human, but systems
with somewhat mixed initiative are common.

The number of access mechanisms implemented or
even proposed is actually very small. The six most
popular mechanisms are: key word help, menu help,
contextually invoked help, graphically invoked help,
natural fanguage help requests and spoken help requests.

The third aspect of the access issue is access
complexity. Virtually all of the mechanims described
above may be implemented well or poorly from the
users perspective. The difference can be overwhelming
in terms of its effect on the system'’s effectiveness.
Syntax is important, as well as the branching factor in
menu systems (too many choices or too few choices).

In graphics-based systems issues of what icons should
look like and how selection with a mouse should be
achivied are still in general unresolved.

On-line help varies greatly not only in how it is
accessed but in how it is presented as well. We explore
now the three principal dimensions along which the
presentation of help information may vary: presentation
methods, presentation source and text quality.

Video screen technology has allowed more modern
help systems to use multiple windows. In such a system
the user can preserve his context at the bottom of the
screen, for example, while scrolling through help texts
on the top of his screen. The penalty here, of course,
is that the avaiable screen size for each of these
activities is only half of the screen size to which the user
is otherwise accustomed. The future holds the promise
of new technologies that might be useful for the
presentation of help information. Synthesized speech
might provide help without sacrificing any of the
screen territory.

Besides the question of how the help information is
to be presented, there is the question of where it is to
come from. The fundamental issue here is that the text

can either be retrieved verbatim from some data
structure that contains it, or it may be generated
on-the-fly by some natural language composition
mechanisms acting on an underlying knowledge
representation. It may be useful to use language
generation facilities to dinamically generate examples or
to customize explanations to a specific context in which
the user is having difficulties.

The final dimension along which help presentation
varies is that of text quality. The literature on tex
readability is enourmous and nearly-all of it applies to
help texts. What this suggests primarily is that such texts
should be designed by a specialist in the field of
linguistic and cognitive aspects of tex comprehension.
Improvements in this area will undoubtedly be closely
linked to developments in the field of user-modelling.

Finally, perhaps the most important aspect of a Ul
system as a whole is its level of integration.

Many computer systems provide several on-line help
mechanisms, each with its own database, operating
completely independently. The virtues of integration are
obvious: by providing uniform access to help you
eliminate confusion for the user and make it easier for
him to stay in context. By making various mechanisms
access a single help database you make it easier for the
user to try all of the mechanisms you provide in his
attempt to learn what he needs to know.

The following systems are representative of the
diversity of advanced help systems that have been
previously implemented: Emac (3), Wizard (4), Star (5),
Berkeley Unix Help System (8), Unix Consultant (15),
Browse {7) and Interlisp Dwin (8).

3. DESIGN PRINCIPLES AND TOOLS FOR
THE CONSTRUCTION OF UI'S

Man machine communication is implemented
through a variety of physical devices whose
characteristis are extremely diverse. A Ul
implementation would be an extremely difficult task if
the developer needed to know the control details of all
devices. To overcome this problem a number of graphic
primitives have been proposed to provide an abstract
view of these devices by hiding their internal details.
There exists today a number of graphical packages that
isolate the application package from the software
needed to control the physical devices.

Within the GKS standard, for instance, high level
notions such as workstation, logical inputs, logical
outputs can be expressed. The logical inputs try to
capture the typical tasks that take place during
man-machine interaction. They are: identify a position,
identify a sequence of positions, quantify a value,
choose a value from within a set, point to an object
and produce a chain of characters. It is obvious that
between this level of abstraction and the level perceived

by the user (as in the previous section) there exists a

gap. The classical software engineering procedure
consists of developing a set of tools on top of the

98



FIRST INTERNATIONAL INFORMATICS CONGRESS

primitives to allow the design and implementation at a
level of abstraction closer to the notions perceived by
the final user. These tools support abstractions such as:
menus, commands, input forms, objects with a defined
graphical representation, numerical values etc. The tools
constitute a software engineering environment that
allows the interface designer to create and edit the
external representation of the objects the user will see
during interaction. The environment deals not only with
with the static aspects since they also need to support
the dynamic aspects of the interaction, such as the echo
and the feedback associated with a user’s action.

Since there are many possible ways of expressing
the dynamic aspects that arrive during an arbitrary
interaction with a Ul it is convenient to define classes of
interaction styles. When tools are available to support
the use of a style definition, the tools that support the
implementation of complex interactive tasks can be
instanciated with default values defined by the style.
Styles are defined by U! designers based on previous
work on user modelling.

There are essentially three types of engineering
environments for Ul design and implementation. The
first possibility is the development of new programming
languages suited to interface design. IFS (9) is an
example of this type of work. This approach has serious
limitations because the language commands that embed
the graphic primitives lack the necessary high level of
abstraction refered to at the begining of the section. A
second approach in the attention of abstraction libraries
that can be accessed from a program in the special
purpose language. The third and already established
approach is the use of an engineering environment
dedicatet to interface design and implementation.

Many on going research and development projects
have demonstrated the viability of generating a Ul from
a specification of the user-computer dialogue. The
dialogue can be formalized through the use of Petri Nets,
augmented transition networks and formal grammars
(among other techniques). When deduction is required
a knowledge base is incorporated into the system to
store knowledge about the user, the application and the
use of the various features of the Ul.

The development process of an interface when this
type of environment, is available starts from a dialogue
specification, which is transformed to produce an
interface prototype. The prototype is then handled
interactively by the designer who tunes it into a suitable
interface software. Note that this procedure implies that
the application software is developed in paralel in a
way that guarantees its future integration to the
interface.

Much like software engineering environments in
general, today's environments for interface construction
fall into two broad categories. In the first case the tools
available are based on well-defined algorithms and the
center of the system is a DBMS (e.g. The Aide System
(10) In the second case the system is capable of making
deductions, tries to model the user’s cognitive behaviour

and has a knowledge based system (at least one) as its
central feature (e.g. Planex (11).

Towards an Ideal Engineering Environment
for Ul's Development

Many research groups in many countries are deeply
involved in research leading to an “ideal” environment
for Ul's development. In Brazil, one major project in this
area is the ESTRA project. ESTRA is a cooperative
project led by the research division of SID Informatica
in cooperation with ten universities in the country
including my own. | was responsible for the original
statement of goals of the project and for the formulation
of the strategy for managing it as a cooperative
enterprise (12). ESTRA (stands for Estagdo de Trabalho,
which means advanced workstation in portuguese) is
meant to be a dedicated workstation (both hardware and
software) specialized in the design and implementation
of integrated Ul’s for a given set of applications. The
workstation is to be used either in a stand alone mode
or as part of a network set up for cooperative design
and development.

Since its first definition in late 1985, ESTRA is
meant to encompass both the characteristics of a data
base centered environment and the features of an
environment that supports deductive mechanisms such
as planning and explanation. ESTRA is a five year
project and so far a number of interesting intermediate
results have been published and demonstrated. Our
research group at PUC/RJ, in particular, has been
interested in the development of the tutors for a variety
of applications, has generated plan based interfaces for
particular applications and is in the process of
generalizing this experiment to produce an appropriate
environment to assist in the creation of plan-based
interfaces. Work with object-based implementations has
been providing good insights on how to organize the
software base for the applications we want to see
integrated and on how to deal with cooperative
development of an interface in an object-based
environment. Besides integrating these results with those
of the other groups within the project, such as natural
language processing, image processing and formal
software specification, among others, we have been
aiming at some new goals within our module of the
ESTRA project. In particular we want to explore the
potentiality of the plan generation approach in the

" presence of the issue of concurrency in users interfaces.

There are three basic types of concurrency at the user
interface (13) that presents problems to the plan
generation/recognition approach:

1. Concurrent output {exemplifyed by the
simultaneous updating of several windows on a
single display)

2. Concurrent input {(exemplifyed by the situation
in which a workstation that has both a mouse
and a keyboard also has an operating system that
is able to accept input from both simultaneously)

99



SUCESU - RIO DE JANEIRO - 1988

3. Concurrent dialogues which are a form of
concurrency whereby the user may supply input
to several (possibly related) user interfaces
simultaneously.

The issues affect not only the complexity of the
plan generation strategies but also induces new problems
in the area of designing an appropriate operating
system for ESTRA (14).

Along the year of 88 results from various
participants of ESTRA project will be consolidated in a
prototype ESTRA workstation that will extensively
evaluated by the participant institutions.

REFERENCES

(1) Sondeheimer, N. and Relles, N.; ““Human Factors for
User Assistance in Interactive Computing
Systems: An Introduction”, |EEE Transactions
on Systems, Man and Cybernetics, 12 (2),
March-April 1982.

(2) Borenstein, N.S.; “The Design and Evaluation of
On-line Help Systems’’, Ph.D. Thesis, Dept. of
Computer Science, Carnegie-Mellon
University, 1985.

(3) Gosling, J.; “UNIX Emacs Manual”, 1983.

(4) Finin, T.W.; “Providing Help and Advice in Task-
Oriented Systems’’, in IUCAI 83 Proceedings,
1983.

(5) Smith, D.C. et alii; ““The Star User Interface: An
Overview", in National Computer Conference
Proceedings, AFIPS, 1982,

(6) Kunze, J.; “The Berkeley UNIX Help Systems”,
1984.

(7) Bramwell, B.; “Browse: An On-line Manual and
System Without an Acronym”’, SIGDOC
Newsletter, 1984.

(8) Teitelman, W.; “Interlisp Reference Manual”,
Xerox Palo Alto Research Center.

(9) Vo, K.P.; “IFS — A Tool to Build Integrated,
Interactive Application Software”, AT & T
Technical Journal, Vol. 64, n® 9, 1985.

(10) Gordon, R.F.; “Application Interface Development
‘Environment”’, Research Report, IBM
Research Division, 1985.

(11) Michard, A.; ‘*Reconnaissaissance et Generation de
Plans d’action: Application a la Realization de
Systemes Auto Explicatifs”, in Proceedings
Cognitiva 85, Paris, 1985.

(12) Lucena, C.J.; “Um Foco para o Esforco de Pesquisa
da SID: Uma Estacdo de Desenvolvimento para
a Sintese de AplicagGes Integradas”,
Memorando de Pesquisa 86/001, SID
Informdtica, 1986.

(13) Hill, R.D.; “Supporting Concurrency,
Communication and Synchronization, in
Human-Computer Interaction — The Sassafras
UIMS”, ACM Transaction Graphics, Vol. 5, nO
3, 1986.

(14) Balzer, R.M.; “Living in the Next Generation
Operating System”’, in Information Processing
86, H.J. Kungler (ed.) Elsevier Science
Publishers (North Holland), 1986.

(15) Wilensky, R. et al.; ““UC: A Progress Report”,
Technical Rep. UCB/CSD 87/303, Computer
Science Division, University of California at
Berkeley, 1986.

100



