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RESUMO

Os supercomputadores tem sido usados para aplicagoes que
exigem uma alta capacidade de desempenho, tais come: previsao at
mosferica, 51mu1agao de novas aeronaves e automoveis, modelagem
de reservatorios de petroleo e outras, Dado o seu alto.custo, os
supercomputadores executam sistemas operacionals multiprograma-
dos (ex: CranyNICOS) que perm'ten que seus recursos sejam com~
partilhados por varios usuarios remotos e locais. Pertanto, & im
portante avaliar o desempenho de supercomputadores em ambientes
de multiprogramacao. A maioria dos estudos de desempenho existen
tes concentra atencao na avaliagao da velocidade de programas que
executam isoladamente em um supercomputador.

Modelos analiticos, baseados nas redes de filas e redes de
Petri, sao desenvolvidos neste trabalho com duas finalidades. A
primeira delas & avaliar o desempenno de supercomputadores em am
bientes de multlprsgramagao com varias classes de usuarios execu
tando simultaneamente. A outra finalidade consiste da avaliagao
de uma proposta aqui apresentada para uma modlflcagao da arqulte
tura dos supercomputadores vetoriais. Varios exemplos numéricos
sac apresentados para ilustrar os modelos apresentados.

ABSTRACT

Supercomputers are being widely used for applicatiohs that
require high speed computing, such as weather forecasting,
spaceship and aircraft design and simulation, and analysis of
geological and seismic data, to name a few. These machines run
multiprogrammed time-sharing operating systems, so that theilr
facilities can be shared by many local and remote users.Therefore,
it is important to be able to assess the performance of
supercomputers in multiprogrammed environments. Most studies of
supercomputers performance are concerned sith the evaluation of
the effective speed of a program running in isolation on a
particular supercomputer. Analytic models based on Queueing
Networks {(QNs) and Stochastic Petri Nets (SPNs) are used in this
paper with two purposes. The first is to evaluate the performance
of supercomputers in multiprogrammed environments, and the
second is to compare performance-wise conventional supercomputer
architectures with a novel architecture proposed here, It is
shown, with the aid of the analvtic models, that the pronosed
architecture 1s preferable performance-wise over the existing
conventional supercomputer architectures., A <three levclworkload
characterization model for supercomputers is presented.Input data
for the numerical examples discussed here are extracted from the
well known Leos Alamos Benchmark.
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1. INTRODUCTION

Vector computers are being widely
used for applications that require
high speed computing, such as weather
forecasting, spaceship and aircraft
design and simulation, and analysis of
geological and seismic data, to name
a few. These machines are also called
supercomputers because they are the
fastest machines of their times,

Supercomputers are very expensive
machines and they run multiprogrammed
time-sharing operating systems, $0
that their facilities can be shared by
many ilocal and remote users.Therefore,
it is important to be able to assess
the performance of supercomputers in
multiprogrammed environments. Most
studies of supercomputer performance
are concerned with the evaluation of
the effective speed of a program
running in isoclation on a particular

supercomputer. The effective speed of
the machine running a specific program
results from the cowmbination of

different speeds, such as, the
sequential speed, the vector orv
synchronous speed, and the parallel or
asynchronous speed. These three factors
may be combined by a relation which is
an extension of Amdahl's Law (Amdahl
67). The reader is referred to (Bucher
83), {(Bucher 85), (Lubeck 85),(Dongarra
87), for studies, based on actual
measurements of benchmarks, which
analyze the effective speed of vector
computers in uniprogramming
environments.

Analytic models based on Queueing
Networks (QNs) and Stochastic Petri
Nets (SPNs) are used in this vpaper
with two purposes. The first is to
evaluate the performance of supercomputers
in multiprogrammed enviromments, and
the second is to compare performance-
wise conventional supercomputer
architectures with a novel architecture
proposed here. It 1s shown here, with
the aid of the analytic models, that
the proposed architecture is preferable
performance-wise over the conventional
architectures.

Queueing network models having
product form solutions, which are
amenable to efficient and general
solution techniques, cannot represent
directly the performance of vector and
parallel computers {Almeida 86},
(Lazowska 84). The reason stems from
the concurrency that exists between
processors working on the same job., In
order to model this concurrency, a SPHN
model {(Mcllovy 81), (Marsan 843 of a
job executing in isclation is used at

Fhe lower level. An upper level model,
i.e., the QN model, is used to
represent the multiprogramming
environment. The combination of both
modelling techniques leads to a new
supercomputer performance model.

This paper is organized as follows.
Section two presents a brief discussion
on supercomputer architectures. Section
three introduces a workload
characterization model for supercomputers,
Analytic models to analyze and compare
supercomputer architectures are
presented in section four. Numerical
results are then presented and discussed
in section five. Finally, section six
presents some concluding remarks.

2. SUPERCOMPUTER ARCHITECTURES

Vector computer architectures
are characterized by CPUs composed of
three different types of processors:

a. Instruction Processor (IP): it
is the unit that fetches, decodes,
prepares, and executes some special
instructions.

b. Scalar Processor ( : it 1is
the unit that executes sc
instructions.

c. Vector Processor (VP}: it 1is
the unit that executes vector
instructions.

A vector computer may have several
scalar functional units and several
vector functional units capable of
independent parallel operation. The
CRAY X-MP computer is an example of
this type of architecture (Lubeck 855,
See Figure 1 for a schematic view of
the architecture of a conventional
supercomputer.

SCALAR
L ———
M PROCESSOR
E *
i
M
HWTRUCTION
PROCESSOR
0
i
H
R v
y VECTOR
PROCESSOR
Figure 1 - Organization of

2 Conventional Supercomputer
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The operation of this
architecture may be described
follows., The 1P fetches
an instruction. If it is
instruction and if there
scalar functional unitc, i
instruction 1is 1ssued tg
execution. If the SP is

bu
stays idle until the 8P bes

available. If the instruction of the
vector type and there is a2 Lor

functional unit available, r
instruction 1s issued fo the
execution. Otherwise, the IF
idle until the VP becomes ava

The execution time of
instruction 1s a function of the
number of elements of the arrav{vector
length) to be operated by the
instruction, and of the time required
to £i1i1l1 the pipe before starting the
pipelined execution of the vector
instruction.

There are basically two types
of architectures of vector
processing units: those which, like
the CDC Cyber-205, reference memory
directly in their vector instructions,
and those which, like the Crav-1,
require that the array be loaded
piece-wise into vector registers before
the execution of the operation can
start. The first type of architecture
will be referred hereafter as M-M-{for
Memory-to~Memory) computers and the
second type as R-R {for Register-to-
Register) computers. A more detalled
description of the operation of
supercomputers can be found in({Hwang
87), Ercegovac 86) and (Weiss 84)).

A vector operation on a vector
of length 1000 mavy take roughly 11 us
on a Cyber~205 and 30 s on a Crayv-1
computer (Bucher 83). Since these
times are orders of magnitude greater
than those for scalar instruction
execution, it may be advantageous o
modify the architecture described above
in the following manner:

i. if a vector instruction is
decoded, prepared and ready to be issued
to the vector processor and if there
is, at least, one functional unit
available in the VP, the inmstruction
is executed while the issuing task
continues its processing at the CPU;

ii. if a vector imstruction 1is
decoded, prepared and ready tc be
issued to thewvector processor, and 1f
there is no vector functional  unit
available on the VP, the following
must occur:

~ the vector instruction is placed on
an execution gqueue of wvector
instructions for the VP,

- the current task execution is
suspended and another task 1s
dispatched by the operating system;

iii. when the VP completes the
execution of a vector instruction which
had been started in an independent
i does not belong te the
‘ the VP generates
CPU so that the

place the task
struction has just
ready queue for the

way (i.e. which
task in execut
an interrupt

operating sys

CrPu.

The architecture described above
considers the VP verv much like a
peripheral unit of the C(CPU, The
motivation f t stems from the
potentcially rge exscution times for
vector instructions compared Lo those
of scalar instructiomns, and from the
fact that in a multiprogrammed
environment parallelism may be

1
o

achieved if VP is = wed to

execute vector instructions for a task
other than the cone that is in h £

the CPU. Figure Z depicts thepropose
architecture.
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Figure 2 - Froposed Architecture

for Supercomputers,
on we will refer to the
itecture and to the
~ture as C—Architecture
ture respectively.

3., WORKLOAD CHARACTERIZATION MODEL OF
SUPERCOMPUTERS

on workload
computers
al, { Martin
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a
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a set of scientific programs that run
at that Laboratory.

In this section we will take a
slightly different approach towards
workload characterization of
supercomputers, since we are inferested
in using measured data as input for
analytic models. CGur approach for
workload characterization considers
three levels of parameters: application,
operating system, and architecture
level as indicated be Figure 3. The
parameters at these three levels will
then be mapped into the analytic model
parameters as will be discussed in
section four.

APPLICATION GPERATING ARCHITECTURE
LEVEL SYSTEM  LEVEL LEVEL
PARAMETERS PARAMETERS PARARETERS

ANALYTIC
MODEL
BARAMETERS

1

PERFORMANCE
HMEASURES

Figure 3 - Workload Characterization
Approach

3.1. Application Level Parameters
Consider the following parameters

at this level:

pg @ percentage of scalar code, 1.e.
fraction of the total executed
instructions which are executed

at the SP.
p : percentage of vector code, il.e.
v fraction of the total executed
ingstructions which are executed
at the VP .
Pyt percentage of code which 1is

executed exclusively by the IP
(e.g. jumps, address computations,
register transfers).

An obvious relationship between the
above parameters is
- + - 1 (1)
?S ?y p
The remaining parameters at this level
are:

(1) A vector imstruction is counted here as
one instruction, independently of the number
of operations performed by it. In order to
obtain the number of elements that have been
operated in vector mode, one should multiply
the vector instruction count by the average
vector length.

11.8.2.4

v : average vector length

ic : inmnstruction count, 1.e.number of
executed instructions.

A question that arises is whether these
data may be easily obtained in
practice. The answer is affirmative as
can be deduced from (Martin 83),(Bucher
85) which show tables containing the
above parameters directly or other data
from which the necessary parameters may
be easily derived. For instance, the
average vector length, v, for each code
in the Los Alamos Benchmark is given im
(Martin 83), (Bucher 83) and (Lubeck
85). Also, Table III of {(Martin 83)
containsg the instruction count, 1c, for
each benchmark code of the same benchmark,
Besides the total instruction count, the
same table displays the instruction
count per instruction class. These
figures allow us to easily derive the
percentage of scalar and vector code,
P and py vrespectively. Finally,
may be derived from equation (1l)ab

s

T et

o

e.
3.2. Operating System Parameters

The relevant parameters at this
level are:

R : number of different types of
classes of workloads.
Different workload classes may
differ in the type of demand they
place on the several rescurces of
the computer system.

N _: maximum multiprogramming level for
class r (1 <e <R},

sw : time necessary to switch the
context between two tasks.

This parameter is a functiocn of the
number of load and store instructions
necessary to save the context of the
suspended task and to install the
context of a new task. Some computers
are capable of switching the context
with a single instruction, making this
process much faster.

3.3. Architecture Level Parameters

Consider the following parameters:

Cip ° Instruction Processor cycle time
{considered the same for the
Scalar Processor).

nCS : average number of cycles per

P scalar instruction.

nC;p: average number of cycles per
instruction executed at the IP.

ncpip:average number of cycles to
prepare an instruction.

nf g : average number of scalar

functional units in use.



where

startup time for the
vector operation

: time per result element

Dr-r{vi=Tptart %vw{Ta¥ariazr1§f‘?QV* elem) (3

m P
where Tstart and Telem are as defined
above and

Vmax: number of elements of the
vector register

For instance, {Bucher 83) shows that
for the Cyber-205 supercon px ter{which
is of the M-M typel, the following
relationship hoilds

I~
S

Beybher-205(v) = 1000+10%y

where the constants in the the abov
equation are given in nancseconds{n 55

4. ABALYTIC HMODEL OF SUPERCOMPUTERS

In order to evaluateand compare
the C-Architecture and the P~ &fﬁhgfﬁcm
ture we are going to use a two—lev
modelling approach {(Menasce 1981}
indicated by Figure 4.

{ QPERATING
AFFLICATION ABRCHITECTURE [ TiRG
$ LEVEL i BYsTER
LEVEL 3 LEVEL
FARAMETERE PARAMETERS ! PARAMETERS
5P
\%, MODEL
>,

©
Ed
#
o
5
Tl
=
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(QN) model is

ired performance

s, mnamely average response fime
i

roughput in a multiprogrammed
onpment. QN models require as
parameters the set of average
rice demands for each server and
class {(Lazowska 84). Sc¢, let
D, : average service demand of class
1o ¥ r tasks at server 1.
In other words, Dj , is the average
tofal time spent by a class r task at
device 1 while being served at the
device.

Notice that the queueing time is
not considered in Dj , but is computed
when the QN model is solved, using
the standard Mean Value Analysis
Technique {see Appendix A).

A continuous~time Stochastic Petri
Net (8SPN) model is used to derive th
service demand at the CPU. An SPN model
ig necessary here in erder to reflect
the parallelism betw T
processcors (IP, SP a
sing sections

4.1. Apalytic Medel for the C-
rchitecture

Consider the SPN shown in Figure
5 which represents the CPU composed of
the IP, SP and VP,
i E
z ap P ¥e
5/”‘\ avaiLABLE , pﬁg;;mae 77N AvanABLE
{ =,
\"’\\ ™.
\E é a ‘: ] r §
T 4 Tz R iE
\)
58 4 y 5y » s/ we
EXECUTING ] 1 EXEGUTING i\‘ ; EXECUTING
Te Ta . SN P
Neoreresmerreemeen s i |

Figure 5 - 8PN for the C-Architecture
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The firing time of transitions Ty sp
Ty and Ty represent the time need to
fetch, decode and prepare an instruction
regardless of its type. The expected
firing time of Ty , T, and T, is equal
to

VP

F. = C (5)

P ip RCPip
The firing time of transitioms T,

Ts and T4 represent the execution

time of a scalar instruction, of an

IP instruction and of a vector

“instruction, respectively. Their

expected firing times are given by,

Fry ©ip * nCSP/ nfg (6)
Frs iy ® ey, (73
Frg = 9(v) / nf (8)

The sclution of an SPN is the set

of steady state probabilities of all
possible markings of its reachability
set (Peterson 1981). These probabilities
may be obtained by solving the Markov
Chain equivalent to the SPN.Appendix
B presents the Markov Chain for the
SPN of Figure 5. The solution to it
for each set of parameters may be
obtained numerically using the Gauss
elimination method.

Given the solution of the SPN,one
is able to compute. the service demand
of a task at the CPU. This procedure
will now be explained with the aid of
Figure 6 which illustrates three time
axis, one for each of the three
processors (IP, 8P and VP). Consider
the following seguence of instructions

S1, S2, Vi, Vg, S35 T, Vg §,,1,5, I,
where 51, denotes the i-th scalar

instruction of a task, Vy the i-th

vector instruction of a task, and I,
the i-th IP instruction. As it can be

seen, the IP time axis shows sequences
of intervals of the following types:

i. preparation of scalar instructions
ii. preparation of vector instructions
iii. preparation of IP instructions

%v. eg§cution gf ip igsttuctians

V. 1dle periocds of type A

vi. idle periods of type B.

An IP idle period of type A occurs
when a scalar instruction is ready

to be issued but the SP is busy.
Similarly, a type B idle period occurs
when a vector instruction is ready to
be issued but the VP is busy.

&
B, V3 Sg i

P
S o

B A

S Sz Sy

¥, Vs Vy

L

Figure 6 - Execution Sequence at th
IP, SP and VP

Therefore, the service demand at
the CPU, Dppy is given by the sum of
the lengths of the following intervals:
total time to prepare all scalar
instructions, total time to prepare all
vector instructions, total time to
prepare and execute all IP imstructions,
total duration of all type A 1 tervals,
and total duration of all type B
intervals.

Depy =
ic * (Cip** NCPip + pt * Cip * ncig +
Pg * Pa * Fpgq + py * P * Fyg)
{9)
where p, is the probability that a
type A idle period occurs when a
scalar instruction is to be issued.
This is simply the sum of the
probabilities (Pr) of two markings {(see
Appendix A) in the SPN as indicated
below
pa=Pr(1,0,1,1,0,0) +
Pr( 1, 0, 0, 1, 0, 1) (10)
Similarly, pp 1is the probability that
a type B idle period occurs when a
vector instruction is to be ussued.
Thus,
pp=Pr( 1, 1,0,0,0, 1)+
Pr( 1,0, 0,1, 0, 1) (11)
The queueing network that represents

C-Architecture is shown in Figure
the CPU whose

the
7. Server 1 represents
service demand for class 1 Dipy isg
obtained from expression {(9). The set
of Application Level parameters may be
different for each workload class 1,
while the Avrchitecture Level parameters
are the same for all classes.
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Table I below indicates the
values considered for the architecture
level parameters in the case of R-R-
type architectures.

Parameter Parameter Value
c. 9.5 ns
ip
n g

sp
ncpip 1
ne . 1

ip
Totart 798 ns
Tstartstrip 358 ns

g =

Telem 9.5 ns
Vimax 64

Table I - Architecture Level Parameters(R~R)

The Application Level Parameters
are indicated in Table II below. The
identification of the workloads is the
one used in the Los Alamos Benchmark.
The meaning of the rightmost column
will be discussed shortly.

wor~ ic

kload Py Fs (in millions) Ry
BMK1 0.013 0.177 1235.39 61 .81
BMK4A 0.1905 0.189 143.89 7 .88
BMK1l1A 0.011 0.702 292.28 64 .50
BMKI1B 0.021 0.774 199.12 64 .63
BMK11C 0.108 0.343 100.42 64 .95
BMK14 0.052 0.291 52.46 49 .90
BMKZ21A 0.0092 0.576 136.04 35 .36
BMK244 0.0459 0.349 66.53 31 .75
BMK24B 0.033 0.362 246,24 63 .84
BMK24C 0.039 0,357 555,84 47 .84

Table II - Application Level Parameters

The different codes of the Los
Alamos Benchmark can be clagsified
according to the ratio, RV , of
arithmetic operations executed 1in
vector mode to the total number of
arithmetic operations executed by the
program. An estimate for this ratio is
given by the expression below:

Rg * {p V* V) / {ps + P\; * V} {}.5)

Codes for which this ratio is
close to one are called vector bound
applications; those for which this
ratio is close to zero are called
scalar bound applications, and those
for which this ratio is close to 0.5
are called balanced applications. From

Table II one can see that codes
BMK11C, BMK14, BMK4A, BMK24B, BMK25C,
BMK1, and BMK24A are vector bound
applications,codes BMK11lA and BMKI1IBRB
are balanced and code BMK21A 1is
scalar bound. The switch time, sw,
used in all examples is 50 ns.

From the input parameters given
in tables I and II above one may
solve the SPN and calculate the
service demands Dy and D, for the
p—~Architecture according to expressions
{12y, (13) and (14). Recall that
the service demand for the C-
Architecture is the D1 plus Dy as
indicated in expression (9). Table III
shows the values of Dy and Dy , in
seconds, obtained by solvimg the SPN.
These values are compatible with those
obtained in the Los Alamos Benchmark
(Los Alamos 83), which validates our
model in a uniprogramming environment.

Work- D, cs Dy P.A.R.T.I.
load (sec) (sec) (sec) (7
BMK1 24,1 0.40 4,472 18.5
BMK4A 2.633 0.784 5.465 48.0
BMK11A 8.61 0.122 1.368 15.8
BMK11R 6.372 0.17 1.9 29.8
BMK11C 1.477 0.336 3.797 39.0
BMK14 1.078 0.078 0.789 73.0
BMK21A 3.538 0.0425 0.384 10.8
BMK 244 1.42 0.09 0,788 55.4
BMK24B 5.34 0.24 2.7 50.5
BMK 24C 12.0 0.647 6.41 53.4

Table III - Resource Demands and P.A.R.T.I.
for the Los Alamos Benchmark

Experimentation with an event-
driven simulation program has provided
validation of our analytic models in
multiprogramming environments. In the
Table below we present a small sample
of the results of our simulaticns and
the corresponding results obtained
with the analytic models. Several
independent runs of the simulater
were made to produce 937 confidence
intervals. The close correspondence
between the two throughputs validates
our results.

Ana~ Simu—

N lytic lation .1 Error
4 6.35 6.74 6.36:7.11 5.7
5 7.69 8.34 7.69:8.95 7.4
10 15.31 16.10 16.0:16.3 4.9

Table IV: Throughput of the p-Architecture
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The values of the Percentage We show now, in Figure 11 a situation

Asymptotic Response Time Improvement in which two classes of workloads are

for some codes of the Los Alamos considered simultaneously. Class 1 is

Benchmark are given in Table ITIT. As composed of jobs of workload type

it can be observed, in some cases BMK4A and class 2 is composed of jobs

the improvement is quite remarkable, of class BMK11B. The multiprogramming

as is the case with code BMK14. The level of class 1 is considered fixzed

smallest observed improvement was and equal to 15 jobs while the

10.8 7 while the largest one was 737. multiprogramming level of class 2 is

The response time improvement as a varied. The throughput for both
ultiprogramming level architectures and for each class is

functien of the m
is d : ¢

BMK14, BMK4ag and BMKlIlc i1

shown in the figure. As expected, the
throughput of class 1 decreases as

the throughput of class 2 increases

(%! of improwmer: over the conv. &rch with the increase in the multiprogramming
80 level of class 2. The total throughput

~Archit

Zgrap

GT WOTrH

3 1 s ture

(S tne

- throughput {0bs/second!
|
i

} Class 1 MPL = 15
el T o

= Wki Bmki4 —+  Wki. Bmk4e —— Cigss | P.A -~ Clgss 2 P.A

—¥~ Wki Bmklic

o k.
9 1C 20 3C Ve e
MU Lprogramming Leve’ //:/2/9/2’/& ¥~ Cigas 1 CA —% (ass 2 CA
Figure 9 - Response Time Impro- ¢ £ 10 &
vement for Workloads BMKla«,
BMK4a, and BMKllc. Figure 11 - Throughput of a two-
class model.
Figure 10 shows the throughput
as a function of the multiprogramming Several other performance studies
level for the same workleoad. Notice could be easily carried out with the
that in this case, the proposed help of the workload characterization
architecture exhibits an asymptotic methodology and performance evaluation
throughput 487 hig ‘ the models presented here., The curves
conventional arct displayed above are to be considered
Throughput (Jobs / Second) just an example of the sort of results
0.2C one can obtain from the model.
st-w/fffffk_ I o , 3. CONCLUDING REMARKS
/":; ; ot ; bt
' The work reported in this paper
[0 160 ol ‘ e B o is, to the authors knowledge, the
first attempt to develop a predictive
— New ACh —— Conventiona ACh model of performance of supercomputers
005 - in a more general environment, where
e several programs are simultaneously in
; execution, i.e., in multiprogramming
! environments. So far, prediction of
QQQ§ : - supercomputer performance has been
s 10 2C a3c basically limited to the calculation
Muitiprogramming Leve of the rate of execution in floating

point operations (MFLOPS) or to the
estimation, through Amdahl's LAw or

Figure 10 - Throughput
BMK4a.
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extensions to it, of the potential
vector speedup of isolated programs
running in a certain machine. Neither
approach considers the concurrency
among several Jjobs at the various
devices of a supercomputer nor the
internal concurrency of operations
within the CPU.

The model developed here defines
a minimum set of parameters at the
application, architecture, and
operating system levels, that is
necessary to capture the essence of
the behavior of a set of applications
running simultaneously on a given
supercomputer architecture. Those
parameters may be easily obtained in
practice, as demonstrated by the fact
that our numerical results were based
on measurements taken during the
execution of the Los Alamos benchmark.

As stated by Martin and Muller-
Wichards (Martin 87), in order to
advance the science of supercomputer
performance evaluation, measurements
must be made in the context of defined

models of architecture and applications.

Thus, the analytic model presented
here 1s an appropriate framework for
measurements and workload characteri-
zation, besides being an important
tool for performance prediction and
capacity planning of supercomputers.
The concurrency of coperations inside
the CPU was modeled by a Stochastic
Petri Net. The results obtained at
this level were then used to derive
the needed service demand at the CPU,
for a higher level Queueing Network
Model, which was used to represent the
concurrency of jobs at the various
devices in a multiprogramming
environment. Although not considered
in this paper, it is a trivial matter
to take into account at the QNM level
other aspects, such as modeling of
memory contention and modeling of
complex I/0 architectures, using well
known techniques (Jacobson 82, Almeida
87, Buzen 87).

Last, but not least, this paper
proposes a novel architecture of
supercomputers, which was shown,
through our analytic model, to be
always superior performance-wise to
conventional supercomputer architectu-
res. For the Los Alamos benchmark, the
range of improvement goes from 10,87
to 737.
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APPENDIZ A:

call ri Net
a2 g model
(P} tions (
noi arking
te 1ts o o prope
nami ties th
m its ition., T
Net ntrolled
and cemeﬁts of t

w0

Net., A 3
transitions. A traﬁsztlaﬁ is enabled
to fire when all of its input places
contain a token. A continuous

stochastic Petri Net SPHN (P, T, A
M, L) is formed by assoclating a
firing ratel with each transiti

o
transition 11 is enabled, 1ts mean
firing time duration is F. = 1 / L,,
exponentially di trzbute . It 1s
known (Molloy 81) at any finite pla-
ce, finite Zrafoxxksd, rked
stochastic PN is isomorphic 1o
Markov process. In a SPN, with a
given initial marking M, , the
feabaabliitr gset is defined as th

t can be reached
‘ a sequence of
franszczoﬁ firing. For our specific
SPN {(figure 5}, the raacﬁgbzfzzv
and the corresponding Markov ct
shown belox.

Petri Net Reachability Set
Marking Pl P2 B3 P4 P5 Pé
M1 1 1 H 0 b 0
M2 1 0 1 1 0 0
M3 G 0 i 1 1 0
M4 G 1 1 0 i 0
M5 1 1 0 0 o i
M6 0 1 0 0 1 1
M7 i G J 1 O i
M8 O O 0 1 1 1




