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S.um‘mary

Supercomputers. run multiprogrammed time-sharing
operating systems, so their facilities can be shared by
many local and remote Users, Therefore, it is important
to be able to assess the performance of supercomputers
in multiprogrammed. environments. Analytic models
based on Queueing Networks.(QNs) and Stochastic Petri
Nets (SPNs) are used in this paper with two purposes
to evaluate the performance of supercomputers in mufti-
programmed environments, and :to compare; perfor-
mance-wise, conventional supercomputer architectures
with a novel architecture proposed here. It is shown,
with the aid of the analytic models, that the proposed
architecture is preferable performance-wise over the
existing conventional supercomputer architectures,- A

three-level workload characterization model for-super- . . -

computers is presented. Input data for the numerical ex-
amples discussed here are extracted from the well-
known Los Alamos benchmark, and the results are vali-
datgd ,by simulaiion.
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Introduction

Vector computers are being widely used for applications
that require high-speed computing, such as weather
forecasting, spaceship ‘and aircraft design and simula-
tion, and analysis of geological and seismic data. These
machines are also called supercomputers: because. they
are the fastest machines of their times. .

Supercomputers are very expensive machlnes, and
they run multlprogrammed time-sharing operating
systems (e.g., UNICOS) (Cray, 1988) so that their facili- -
ties can be shared by many local and remote users.
Therefore, it is important to be able to assess the perfor-
mance of supercomputers in multiprogrammed envi-
ronments. Most studies of supercomputer performance
are concerned with the evaluation of the effective speed
of a program running in isolation on a particular super-
computer. The effective speed of the machine running
a specific program results from the combination of dif-
ferent speeds, such as the sequential speed, the vector or
synchronous speed, and the parallel or asynchronous
speed. These three factors may be combined by a rela-
tion which is an extension of Amdahl's law (Amdahl,
1967). Several studies based on actual measurements of
benchmarks have analyzed the effective speed of vector
computers in uniprogramming environments (Bucher,
1983; Bucher and Simmons, 1985; Lubeck, Moore, and
Mendez, 1985; Dongarra, Martin, and Worlton, 1987).

Analytic models based on Queueing Networks
(QNs) and Stochastic Petri Nets (SPNs) are used in this
paper with two purposes. The first is to evaluate the
performance of SUpercomputers in multiprogrammed
environments, and the second is. to compare, perfor-
mance-wise, conventional supercomputer archltectures,
with a novel architecture proposed here. It is shown
here, with the aid of the analytic models, that the pro-
posed ‘architecture is preferable performance-wise over
the conventional architectures.

Queueing network models having product form so-
lutions, which are amenable to efficient and general so-
lution techniques, cannot represent directly the perfor-
mance of vector and parallel computers (Almeida and
Dowdy, 1986; Lazowska et al., 1984). The réason stems
from the concurrency that exists between. processors
working on the same job. In order to model this con-
currehcy, an SPN model (Molloy, 1981; Marsan, Balbo,
and Conte, 1986) of a job executing in isolation is used
at the lower level. An upper level model, that is, the QN



“Analytic models based on Queueing
Netivorks and Stochastic Petri Nets
are used in this paper to evaluate the
performance of supercomputers in
multipragrammed environments and-to
compare conventional supercomputer
archnectures to a novel architecture

‘proposed here.”
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model, is used to represent the multiprogramming envi-
ronment. The combination of both modeling techniques
leads to a new supercomputer performance model.

This paper is organized as follows. Section 1
presents a brief discussion on supercomputer architec-
tures. Section 2 introduces a workload characterization
model for supercomputers., AnalyUC models to analyze
and compare supercomputer architectures are’ pre-
sented in section 3. Numerical results are then presented _
and discussed in section 4. Finally, section 5 presents
some concluding remarks.

1. SUPERCOMPUTER ARCHITECT URES

Vector computer architecturés are . characterlzed by
CPUs composed of three different types of processors:
(1) the instruction processor (IP) i is the unit that fetches,

decodes, prepares, and executes some special ‘instruc-
tions; (2) the scalar processor (SP) is the; unit that exe-.
cutes scalar instructions; and (3) the vector processor
(VP) is the unit that executes vector instructions.

A vector computer may have several scalar finc-
tional units and several vector functional units capable of
independent parallel operation. The CRAY X-MP com-
puter is an example of this type of architecture (Cray,
1982). See Figure 1 for a schematic view of the architec-
ture of a conventional supercompuiter.

The operation of this type of architecture may be
described as follows. The IP fetches and- decodes an in-
struction. If it is a- scalar 1nstruct10n and if there is a free
scalar functional unit, the scalar mstrucuon is issued to -
the SP for execution. If the SP is busy, the TP stays idle
until the SP becomes available. If the instruction is of the
vector type. and there is.a vector functlonal unit avaJl-
able, the instruction is issued to the VP for execution.
Otherwise, the IP- stays 1d1e unt11 the VP becomes’
available. . ‘

There are bas1cally two types of archltectures of
vector processing units: those ‘which, like the ETA-10
(ETA, 1986), reference memory dlrectly in their vector
instructions, and those ‘which, like the CRAY. X-MP

*(Cray, 1982), require that the array be loaded piece-wise

into vector registers before the execution of the opera-
tion can start. The first type of architecture will be re-
ferred to hereafter as M- M (for memory-to-memory)



computers and the second type as R-R (for register-to-
register) computers. A more detailed: description of the
operation of supercomputers-can be found elsewhere
(Hwang and Briggs, 1987; Ercegovac and Lang, 1986;
Weiss and Smith, 1984). '

In a vector architecture, a vector instriction can ini-
tiate"a very long vector operation. In the case of R-R

architectures, when the vector length exceeds the

number of elements that -can be stored in a vector reg-
ister, the vector operation may have to be broken up
into’ a sequence of vector instructions. The execution
time of a vector instruction is a function of the number
of elements of the array (vector length) to be operated
by the instruction, and of the time: requlred to fill the
pipe before starting the pipelined execution of the
vector instruction.

A vector operatlon on a vector of length 1, OOO may
take roughly 12 microseconds on a CRAY -X-MP com-
puter (Bucher. and' Simmons, 1985). Since these times
are ‘orders of magnitude’ greater’ than those for scalar
instruction execution, it may be advanitageous to modify
the architecture described above ‘in"the' following
manner:

1 If a vector instruction. is decoded, prepared, and
ready to be issued to the vector processor, and if
there is. at least one functional unit available i in, the

VP, the instruction is executed while the i issuing task

contlnues its processing at the CPU.

2. If a vector instruction is decoded, prepared, and
ready to be issued to the vector. processor, and if
there is no vector functional unit available on the-
VP, the followmg must occur: the vector instruction
is placed on an execution queue of vector

- instructions for the VP; the current task execution is
" suspended and another task is' dlspatched by the
operating system.

3. When the VP completes the execution of a vector |
instruction which had been started in an
independent way (i.e., which does not belong to the
task in execution), the VP generates an interrupt to
the CPU so‘that the operating system may place the
task whose vector instruction has just completed in
the réady queue for the CPU. |

PERFORMANCE OF SUPERCOMPUTERS
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The architecture described: above considers the VP
very much like a peripheral unit of the CPU. The. moti-
vation for it stems from the potentlally large execution
times for vector instructions compared to those of scalar
instructions, and from the fact that in a multipro-
grammed -environment more parallelism may be’
achieved if  the VP is allowed to execute vector irrstruc-
tions for a task; other than. the one. that is in hold.of the
CPU. Figure 2 depicts the proposed architecture.

From this point.on we will refer to the conventional
architecture as C-architecture and to the proposed ar-
chitecture as P-archltecture

‘2. WORKLOAD CHARACT ERIZATION MODEL
-OF SUPERCOMPUTERS :

An interesting report on workload characterlzatlon for

vector:.computers -was carried out by. Martin, Bucher,
and Warnock (1983) at the Los Alamos. National Labo-
ratory. This study jused a benchmark for supercom-
puters, known-as the Los Alamos benchmark, which is a
set of scientific programs that run at that laboratory
(Griffin and Simmons, 1983).

~ In this section we will take a slightly different ap-
proach toward ‘workload characterization of supercom-
puters, since we are interested in using measured data as
input for analytic models. Our approach for workload
characterization considers three levels of parameters:
application, operating system, and architecture level, as
indicated by Figure 3. The parameters at these three
levels will then be mapped into the analytrc model pa-
rameters as dlscussed in sectlon 3.

2.1 APPLICATION LEVEL PARAMETERS

Con51der the followmg parameters at thls level

bs: percentage of scalar code, ie.; fracuon of t.he total
executed instructions which are executed at the SP.

pv: percentage of vector code, ie., fraction of the total
executed instructions which are executed at the VP.
(A vector-instruction is counted here as one.,
instruction, 1ndependently of the number of

- operations performed by it. In order to obtain the
number of elements that have been operated in.
vector mode, one should multiply the vector -
instruction count by the average vector length.)



pr: percentage of codeswhich is.executed -.eXdusi\}ely' by
the:IP (e.g., jumps;:address computations, register
transfers). .

An obv10us relationship- between the above param-
eters is

B . \
Cpstpytpr=1 )

The rema'inirig wpa.ram'eter‘s at this level are

v:-average vector length
ic: mstructlon count, 1e number of executed
mstructlons

It should be noted that parameters such as ps and
Py are not’ excluswely appllcatlon dependent:” For in-
stance, dlfferent compllers may generate different levels
of vectorization for a given apphcatlon (Tang and Da-
v1dson 1988) ‘A quesnon that arises is whether these
data may be easily obtalned in practice. The answer is
affirmative as can be deduced from the studies of
Martm Bucher, and Warnock (1983) and Bucher and
.Slmmons (1985) Wthh show tables contammg the above
parameters dlrectly or other data from which the neces-
sary parameters may be easﬂy derived. For instance, the
average vector length v, for each. code in the Los
Alamos benchmark is' given by Martm, Bucher, and
Warnock (1983), Bucher (1983), and Lubeck Moore,
and Mendez (1985). Also, Table III of Martin, Bucher,
and Warnock (1983). contains ‘the 1nstructlon count, ic,
for each benchmark code of the same benchma"k, Be-
sides the total 1nstruct10n count, the same table dlsplays
the instruction count per instruction class. These figures
allow us to easily derive the percentage of scalar and
vector code, ps and pv Flnally, pr may be denved from
Eq (1 )above

2.2 OPERATING SYSTEM PARAMETERS

The relevant parameters at thts level are

R: number of different types or classes of workloads.
Different workload classes.may: differ in.the type of
demand they: place on the several resources of the
computer system:

~ N,: maximum multiprogramming: level for class 7

(1=r<R)

~ PERFORMANCE OF SUPERCOMPUTERS



sw: time' necessary to switch the. context between two
tasks. This parameter is a function of the number of
load and store instructions necessary to save the -
context of the suspended task and to install the
context of a new task. Some" computers, such as the
ETA-10 Model G (ETA, 1987), are capable of saving

- -the whole register file with a single instruction, the
SWAP instruction, which takes 32 cycles (7
nanoseconds each) to execute. By making
appropriate hardware modifications, the number of'
cycles could be significantly reduced, making this
process even faster (Arvind and Iannucci, 1987) '

2.3 ARCHITECTURE LEVEL PARAMETERS
Consider the followmg parameters:

C' 1nstructlon processor cycle tlme (cons1dered the
same for the scalar processor) ‘

Moyt average number of cycles per scalar instruction. In
a plpelmed scalar processor this value should ref lect
the average | ‘number of cycles requlred to produce a

" scalar result, Knowledge of the instruction repertorre
and traces of the workload execution may be used to
obtam this value.

Ny average fumber of cycles per instruction executed
at the TP.” B

mp,p average number of cycles to prepare an
instruction.

nf: average nuiiber of scalar functional units in use.
Thls number should reflect the average scalar
parallehsm that can be exp101ted by a g1ven workload
on a spec1ﬁc hardware '

nf,: average. number of Vector functlonal units in use.
This number should reflect the average vector
parallelism that can be exploited by a given workload
on a specific architecture. Some characteristics of the
architecture, such as chaining, may influénce the
value of this parameter. For instance, the CRAY X-
MP series (Cray, 1982) introduces flexible chammg of
vector‘instriictions. According to Tang and Davidson
'(1988), this feature increases the level of functional
unit concurrency, which may be directly represented
by an appropriate setting of the valué of nf;;

¢7{v): function that-determines the average execution

SUPERCOMPUTER APPLICATIONS



length v for archltectures of type T (T = M- M or :. -

R-R).
APPLICATION |- ’ ARCHITECTURE OPERATING
So, ‘according to Bucher (1983), e N CeveL - . - sroten
¢M—M('U) T + 0. T s ) PARAMETERS B PARAMETERS PARANETERS
where \ / :

Tyun = start-up time for the vector operation, and son
. Tym = time per result element in'a pipelined. MODEL
execution mode. -

and

Or=() = Lo + 0* Tt Vinax + Ty @)
where T, and T, are as defined above and V.
number of elements of the vector register, Tmmm,, _ |
time to initiate a new suboperatlon, which is smaller than PERFORMANCE
T,y because part of it can be overlapped wn'h the pre- HERSURES
vious suboperatlon

QN MODEL

Fig. 4 Two-level

.. For instance, Bucher (1983) shows that for the modeling approach
Cyber 205 supercomputer (which is of the M-M type)

the following relationship-holds

beyper20s (v) = 1,000+ 10 %3, N

where the:constants inthe above: equation are given in
" nanoseconds.

3. ANALYTIC MODEL OF SUPERCOMPUTERS:

In order to evaluate and"compare the C-architecture
and the P-architecture we are going to use a two-level
modehng approach (Menascé and Nakamshl 1981) in-
dlcated by Flgure 4.

A Queuemg Network (QN) model is used to obtaln'
the desired performance measures-—-—namely, average
response time and throughput in-a multiprogrammed
environment. QN models require as input parameters
the set of average service demands for each server and
each class (see Appendlx A). So, let

‘ D,,, = average service demand of class r tasks at server i.
In other words, D,, is the average total time spent by a
class 7 task at device ¢ while being served at the device.

. Notice that the queueing time is not considered in
D;; but.is computed when the QN model is solved, using

PERFORMANCE OF SUPERCOMPUTERS
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the standard mean. value' analysis. technique. (see Ap-
pendix- A). -
A continuous-time Stochastic: Petri Net (SPN) model

vls used . to-derive ‘the service demand at_ the, CPU. An

SPN'model is necessary here in order to reflect the- par-
allelism between the-various processors (IP, SP, and VP) -
at the ‘CPU. The following sections discuss the analytic
model used to evaluate both architectures.

3.1 ANALYTIC MODEL FOR

THE C-ARCHITECTURE

Consider the SPN shown in Flgure 5, which represents
the CPU composed of the IP, SP, and VP. The fol-
lowing: meamngs are assoc1ated with the various places
of the above SPN ‘when there is a token in'the place:

Place 1: IP is preparing an instruction.

Place.2: SP is available.,

Place 3: VP is avallable

Place 4: SP is busy executing instructions_in all its
funcnonal units. .

Place 5 IP is’ executlng an mstructlon

Place 6: VP is busy executing instructions in all its
functional units. -: ‘

~The firing time of transitions T';: Ty;-and T3 repre-
sent the time needed to fetch, decode, and prepare an
instruction, regardless of its type. The expected ﬁnng
time: of Ty, Ty, and T is equal to

Fﬁ = c,,, * mj),}b (5)

The ﬁnng t1me of transmons T4, T5, and T6 repre-
sent the ‘execufion timeé of a scalar mstructlon of an'IP
instruction: and. of a vector 1nstruct10n, respectlvely
Their expected ﬁnng times are’ glven by

F, i4 =il *nc,,,/ "f s ’ (6)
Fus rc,, g @ g 9

The factors nf; and nf,, Wthh appear in Eqs (6) and
(8) account for the speedup that can be obtained ‘due to
the existence of multiple funetional umts ‘within' the
scalar and vector processor, respectively.

The solution of an SPN is the set of steady state
probabilities of all possible markings of its reachability



set (Peterson;-1981). These probabilities may be obtained
by solving the Markov:chain equivalent to the SPN. Ap-
pendix B presents the Markov chain for the SPN of
Flgure 5. The solution to it for each set.of parameters
may be ‘obtained numencally usmg the Gauss elimina-
tion method."

Given the solution of the SPN, one:is able to com-
pute the service demand of a task at the CPU. This pro-
_ cedure will now be explalned w1th the aid of Flgure 6,

whlch illustrates three time axes, one for each of the‘

" three processors (P, SP, and VP). Consider the fol-
lowmg sequence of 1nstructlons

Sl, SZ, Vl; V2’ SS’ Il’ V?v S4’ 12: 13’

where S; denotes the ith" scalar-instruction of a task, V;
the ith vector instruction of a task, and 7;-its*ith IP in-
struction, ‘As it can be seen, the IP ume axis shows se-
quences of intervals of the followmg types

i. preparation of scalar instructions
ii. preparation of vector instructions.
iii. preparation of IP instructions
iv. execution of IP instructions

v. idle periods of type A .

vi. idle periods of type. B

An IP idle period of type A occurs when 'a scalar in-
struction is ready to be issued but the SP is busy. Simi-
larly, a type B idle period occurs when a vector instruc-
tion is ready to be issued but the VP is busy.
Therefore, the service demand at the CPU, D¢pyj, is
given by the sum of the lengths of the following in-
tervals: total time to prepare all scalar instructions, total
time to prepare all vector instructions, total time to pre-
pare and- éxeciite all IP instructions, total duration of all
type A intervals, and total duration of all type B
intervals. -
Thus,

DCPU=i€*Ps*C;p*mP;p + icy*[?'v*ﬂip*‘mﬁq, + ,‘c*h*%
*nchy + 10 * pr ¥ Gy Fncy, + 6 * ps* py * Frg + ic
*pv*pp* Frg

=ic* (o * nepy + pr ¥ g * nc,,, +?S*PA*FT4
+ pv* pp * Fry), . )]
_where P, is the probabllity that a type A idle period
occurs when a scalar instruction is to be issued. This is

SP

v

VP

v

Fig. 6 Execution
sequence at the IP SP,
+ and VP
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simply the sum of the probabilities (Pr) of two markmgs
(see Appendlx B)in the SPN: as indicated below -

Pr([l 0, 1 1,0, 0]) +Pr([1 0 0,1, 0 1. (10)

Slrmlarly, pp is the probablhty that a. type B 1d1e penod
occurs when a vector instruction is to be issued.. Thus, -~

pB=Pr([1 1,0,0,0, l])+Pr([l 0,0, 1 0,1).  (11)

The queuelng network that represents the C-architec-

ture is shown in Flgure 7. Server 1 represents the CPU

*whose serv1ce demand for class 7, DCPU,, is obtalned

from expression (9). The set of application-level param
eters may be different for each workload class 7, while
the architecture-level parameters. are the same for all
classes. Numerical results. obtained. with this :model. are
given in section:4.

3.2 ANALYTIC MODEL FOR

THE P-ARCHITECTURE

The SPN model for this architecture is identical to that
of Figure 5. The equivalence of the SPN model for both
architectures stems from the fact that the C-architecture
and the P-architecture have the same behavior when the
multiprogramming level is equal to one. The difference
between the architectures is represented by the
queueing network. model, which-models the multi-
programming effects. -

Before we indicate how to obtain the service de-
mand at the CPU it is important. to explam how the
CPU is going to be modeled in this type of architecture.
The QN model for. the P-architecture;is shown in Figure
8. Server 1 accounts for the time spent by a task-at the

CPU while using the IP or SP; or using the VP in an

overlapped fashion with the.other. two processors. Also,
the service demand of ;server, 1 includes. the-additional
time (CS) spent by a task in context switching due to VP
unavailability. The service demand of server 1 is given

by the expression (12) below.

D = D; +CS, (12)

where D, and CS are given by express1ons (13) and (14),
respectlvely

Dy = w* (C.p*mihp T e *Mp +Ps *IJA *Fpy), (13) .
where i is defined in (10).



CS = ic* py * pg * sw. (14)

‘"Expression (13) is derived :using' an argumén‘t’s'im-
ilar to the one used for the previous case, taklng into
account the fact that in’ this case the IP never becomes
idle due to the unavailability of the VP, since task execu-
tion is interrupted in that event. Recall that if the VP is
available when a vector instruction has to be issued, the
task in execution is riot mterrupted Noticé that in this
case, type B mtervals will not occur; therefore expres-
sion’ (13) correctly represents the time spent at the CPU,
since ‘this expression is a partlcular case of expressmn (9)
with pB set to zero.

Flnally, the total time spent by a task executlng'

vector instructions in a nonoverlapped manner with the
execution of other (scalar or IPy instructions of the same
task is represented by server 2. The service demand D,
at this server is :

~D2‘=ic*pv*px*Fn‘ s - (15)

Notice that the serviceﬁdemand: at the CPU for the
C-architecture given by express1on (9) is the sum of D,
and Dy, g'rven by expressions (13) and (15). '

4. NUMERICAL RESULTS

The input/output portion: of the computer system was
disregarded in-the nummerical studies conducted for this
paper, since the architectures differ only in their CPU
organization. However, the inclusion of VO devices, if
desired, may be easily considered in the manner usually
done in QN- models of conventlonal computer
architectures. : IR

In order to'render our conclusmns more realistic we
used; at the application level; parameters derived from
published measurements of well-known ‘benchmarks,
such as the Los Alamos'benchmark, Livermore loops,
and Linpack benchmark’(Martiri, Bucher, and Warnock,
1983; Bucher, ' 1983; Lubeck, Moore, and Mendez,
1985). Without loss of ‘generality, we'chose ‘the Los
Alamos benchmark data in order to obtain numerical
results' shown in this section.’ For our numerical ex-
ample, we use parameters chosen from a “generic”
vector supercomputer, roughly a comp051te of a number
of current supercomputers.

 PERFORMANCE OF SUPERCOMPUTERS




"i'able 1

Architecture-Level
Parameters (R-R)

) Parameter

Parameter Value
Cp © 9.5 nsec
neg, 9
nep, 1
ney, 1

start 798 nsec
T starestrio 358 nsec
Totem 9.5 nsec
Vinax 64
Table 2
Application-Level Parameters
Workload Py Py ic (%109 V. R,
BMK1 0.013 0.177 1235.39 61 81
BMK4A 0.1905 0.189 143.89 7 .88
BMK11A 0.011 0.702 292,28 64 .50
BMK11B 0.021 0.774 -199.12 64 .63
BMK11C 0.108 0.343 100.42 64 95
BMK14 0.052 0.291 52.46 49 .90
BMK21A 0.0092 0.576 136.04 35 .36
BMK24A 00459 . 0.349 66.53 31 .75
:‘BMK24B 0.033 0.362 246.24 63 84
BMK24C 0.039 0.357 555.84 47 84

SUPERCOMPUTER APPLICATIONS

Table 1 indicates the values considered for the
architecture-level parameters in the case of R-R-type
archltectures : : ,

The apphcatlon-level parameters are indicated in
Table 2 The identification of the workloads is the one
used .in the Los Alamos benchmark. The meaning of
the rlghtmost column will be d1scussed shortly. .

~_Note that the average vector length is ‘equal to or
Jess than Vi, (V = 64). So. for those spec1ﬁc work-
loads a vector operation c01nc1des with a vector. instruc-

tion. The different codes of the Los Alamos benchmark
can be dlassified accordlng to the ratio, RV, of anthmenc
operations executed in vector mode to the total number
of anthmetlc operattons executed by the program An
estimate for thls ratio is. glven by the expression below ,

R"_(p"*v)/(f’s"'l’v*v) (16)

.:Codes for whlch this ratlo is close to one are called
vector-bound applications, those for ‘which this ratio is
close to zero are called scalar-bound applications, and
those for Wthh this ratio is dose to 0.5 are called bal-
anced apphcatlons From Table 2 one can see that codes
BMK11C, BMK14, BMK4A, BMK24B, BMK24C,
BMKI, and BMK24A are vector-bound applications;
codes BMK11A and BMK11B are balanced; and code
BMK21A is scalar-bound. ‘The context switching time,
sw, used in all examples is equal to-50 nsec, except for
Figure .10, where the influence of. sw is studied. It
should be noted that this value (50 nsec) is cons1derably
lower . than ‘those of commercially available current su-
percomputers (ETA, 1987; Cray, 1982) Forthcoming
architectures may be expected to exhibit reduced con-
text switching times (Arvind.and Iannucci, 1987).

From the input parameters given in Tables 1 and 2
one may solve the SPN-and calculate the service de-
mands D; and D, for the P-architecture according to ex-
pressions (12). through (15). Recall that. the service de-
mand for the C-architecture: is equal to D, plus Dy as
indicated .in expression (9). Table 3 shows the values of

D,, Dy, and.CS in seconds, obtained by solving the SPN.

Experimentation with an event-driven, simulation
program has provided validation of our analytic models
in multiprogramming environments. Table 4 presents.a
small sample of the results of our simulations and the
corresponding results obtained with the analytic models.



Several independent runs of the simulator were made to
produce 93% confidence intervals. The close correspon-

~dence between - the analytic and simulation results vah-
dates our model.

Let us first consider the case of a smgle class model
and carry out an asymptotic analys1s of the’ response
time. From the mean value analysis formulae (see Ap-
pendix A) it is a trivial matter to verify that for a single
class single server QN, the average response time R(N) is
simply N*D where N is the multiprogramming level and
D the average service demand of the single server. Thus,
since the C-architecture is modeled at the QN level as a
single server (f we disregard the VO subsystem), the
average response time for thls archltecture R(N), is
given by the followmg express10n

RN) =N*@;+D). 7y

From Lazowska et al. (1984), we know that the
average response time R(N) of a ‘closed queueing net-
work with multlprogrammmg level equal to N has
upper and lower bounds glven by I 3

max(ED N*D.) <R(N) <N*D (18)

where ZD 1is the sum:6f the sér'v1ce demands of all

servers and D,,,, is the largest service demand aﬁ any-
single’ server.’ So, for sufficiently large values of N,

N#*D_ . >3D, Hence, for the P-architecture we have
the followmg bounds for the average response time

Rp(N)

N*Dy R,,(N)<N*(D1 +D2+CS) (19)

If the term CS(the context. sw1tch1ng service de-

mand) is small when ‘compared with (Dl + Dy), it can be

seen from expressmns 17y and" (19) that the response
time for the C-architécture is approx1mate1y equal to the
upper bound on’'the average response’ time for the
P-architecture; Iri other words, the proposed architec-
ture is'always preferable, as far as response time is con-
cerned, over the conventional architecture, provided
that appropriate care is taken to minimize the impact of

context switching. Let us now try to assess, with the help

of the' bounds defined above, the actual improvement of
the P-architecture over ‘the C-architecture. Consider
then, the following definition for the percentage of
asymptotic response time improvement (PARTI): -~

Table 3

Resource Demands for the Los
Alamos Benchmark

o . €S B,
Workload *{sec) - (sec) (sec)
BMK1 241 040 4472
BMK4A 2633 0.784 5.465
BMK11A 861 0.122 1.368
BMK11B 6.372 0.17 - 1.9
BMK11C 1477 0.336 3.797
BMK14 1.078 0.078 . 0789
BMK21A 3538 0.0425 0384 .
BMK24A 142 0.09 " 0.788
BMK24B 5.34 0.24 27
BMK24C 12.0 0.647 6.41
Table 4 - .

Response Time of the P-Architecture
: : Confidence
N Analytic Simulation Interval Evror (%)
4 635 6.74 6.36:7.11 57
5 7.69 832 7.69:895 74
10 1531 . 16.10 16.0.: 163 49
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Table 5

PARTI for the Los:
Alamos Benchmark

Workload " PARTI (%)
BMK1 185
BMK4A - 480
BMK11A 15.8
BMK11B 298
BMK11C 39.0
BMK14 -73.0
BMK21A 108
BMK24A ' 55.4
BMK24B 505

BMK24C 53.4

. (%) of improvement over the conv. arch.

AT FFHHRHHFHRHA KRR

20 : : : :
0 / 1 1 L - ,
0 10 .20 80 20

"~ Multiprogramming Level -
—— Wil.Bmk14' _—— Wkl Bmk4a —¥— Wkl Bmkilc

Fig. 9 . Response time
improvement for.
workloads BMK14,
BMK14A, and BMK11C
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R{N) .~ Rp(N)

- RyN).

It tiirns out that the lower bbuhd on resporise time
for closed QNs is the asymptotic value for the response
time (Lazowska et al., 1984). Thus, from (17), (19), and -
(20) we have

PARTI = th% «100. 7 @0

G NE (D,+D2) N#Dpa ;:
PARTI—h . 21
_'(Di + D) = Dax.
" Dpm

The values of PARTI for all codes of the Los
Alamos benchmark are glven in Table 5. As can ‘be ob-
served, in some cases the i improvement is remarkable, as

. is the case with code BMK14.. The smallest observed im-

provement was 10.8%, and the largest was: 73%. The
improvement, in, response time as a function .of the
multlprogrammmg level is deplcted graphlcally for
workloads BMK 14, BMK4a, and BMKIIc¢ in Figure 9,
for a context switching time equal to 50 nsec. ,

" For the sake of completeness, the percentage
asymptotic response. time improvement (PARTI) is now.
calculated for a “generic” M-M machine. The values
considered for the architectural-level parameters
(Bucher, 1983) .in. this case are ¢, = 20 nsec, ncy, = 9,
mp =1, mey =1, Tm,, 1020 nsec, and. T, = 10
nsec. The apphcatlon -level parameters, except. the
average vector length, are those defined by workload
BMKI11B in Tablé 2. In order to take advantage of the
characteristics of an M-M, .type architecture, we. consider
that application BMKllB processes. long: vectors:, For
v = 512, the PARTI equals 62.8% (Dy.5.13.41 and

Dy = 8.42), and for v.= 1,024 th ercentage of im-
provement reaches 86 3% (Dl = 13.41.and Dy = 15.53).

- Figure 10 dlsplays the dlfferent values for the per-
centage asymptotic response time improvement obtained.
for workload BMK4A, for different. values of the. con-
text switching. time. As expected -when. the, context
switching time (sw) increases, the improvement obtained
with the P-architecture decreases. For very small values
of multiprogramming . level (of the order of 2).the im-
provement may be even negative for higher: values
of sw.




" Figure 11 shows.the varjation of the average re-
sponse time for the vector-bound workload BMK4A,
while Figure 12 shows the throughput as a function of
the multiprogramming I level for the same workload. No-
tice that in this case, the proposed architecture exhlblts

an asymptotic throughput 48% hlgher than the conven-.

t10na1 archmecture

', We show, in Flgure 13 a 51tuat10n in Wthh two»

classes of workloads are considered sunultaneously Class
L.is composed of Jobs ‘of workload type BMK4A and
class 2 is composed of jobs of class BMK11B. The multi-
programmmg level of class 1 is cons1dered fixed and
equal to 15 jobs while the multlprogrammmg level of
class 2 is varied. The throughput for both architectures
and for each class is shown in Flgure 13. As expected,
the throughput of class 1 decreases as the throughput
of class 2 increases with the i increase in the multipro-
grammlng level of class 2. The total throughput of the
P-architecture is consnderab]y larger than that of the
C-archltecture o

Of course, one could think about a Vanatlon of the
proposed architecture such that the running process will
only lose control of the CPU if the vector instruction
requested will take relatively long time—that is, will
operate on a long vector. In order to evaluate this alter-
native let us define the threshold vector length TVL(v) as
a simple linear function of the average vector length,
TVL(®) = aw.

Therefore, a job interruption will only occur if there
is no functional unit available and the vector size is
greater than or equal to TVL(v) This kind of control
could be nnplemented by appropnate code generated

by the compller to this effect Notice that the P-archltec-'

ture as prev10usly descrlbed isa spec1al case of the pro-
posed vanauon (a = O)

1In this" case, the express1ons for D Ir D2, and CS have
to be modified as follows:

New Dy = old D, + ic*p,* ps * Frs * G, 22)

where
’ G = P < TVL(v)] @)
and & is-the random variable that 1nd1cates the length of
the vector operated by a vector instruction. )
‘New:CS = ic* p, * pg* sw*(1 = G) 24)

60 (%) of improvement over the C arch.
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Fig. 10 Response time
improvement for various
values of Sw
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Fig. 11 Response time
for workload BMK4A
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Fig. 12 Throughput for
workload BMK4A
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Fig. 13 Throughput of a
. two-class model
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New Dy = ic* p, * pg * Fps * (1 — G) - (25)

Figure 14 shows the performance of the variation of
the proposed architecture for several values of G and
for sw equal to 250 nsec. For G = 0, we obtain the same
behavior of the original P-architectuire. However, it can
be noted that for G >0 the performance metrics ob-
tained for the variation of the proposed architecture are
worse than those calculated for the P-archltecture T

‘Several other performance ‘studies could be easily
carried out with the help of the workload characteriza-
tion methodology and performance evaluation models
presented here. The curves displayed above are to be
considered examples of the sort of results one can ob-
tain from the model.

5. CONCLUDING REMARKS

A lot of activity has taken place over the past few years
concerning performance measurements of supercom-
puters using mainly the benchmarklng technique
(Martin, Bucher, and Warnock, 1983; Lubeck, Moore,
and Mendez, 1985; Tang and Dav1dsor1 1988). On the
other hand, very litde has been done on performance
prediction of these machines. The work reported in this
paper is, to the authors knowledge, the first attempt to
develop a predlctlve model of performance of super-
computers in a more general environment, where sev-
eral programs are 51mu1taneously in execution, that is, in
multiprogramming environments. So far, predlcuon of
supercomputer performance has been basmally limited
to the calculations of the rate of execution in floating
point operatlons (MFLOPS) or- to the estimation,
through Amdahl’s law or extensions to it, of the poten-
tial vector speedup of isolated - programs running in a
certain machine. Neither approach cons1ders the con-
currency among several jobs at the various devices of a
supercomputer or the internal concurrency of opera-
tions within the CPU.

The model developed here defines a minimum set
of parameters at the application, architecture, and oper-
ating system levels, that is necessary to capture the es-
sence of the behavior of a set of applications running
simultaneously on a given supercomputer architecture.
Those parameters may be easily obtained in practice, as
demonstrated by the fact that our numerical results



were based on measurements taken during the execu-
tion of the Los'Alamos benchmark.

As stated by Martin and Mueller-Wichards (1987)
in order to'advance the science of supercomputer per-
formance evaluation, measurements ‘must be ‘made in
the context of defined models of architecture and appli
cations. Thus, the analytic model presented here is an
appropriate framework for measurements and work-
load characterization, besides being an irﬁportan_t tool
for performance prediction and capacity planning of su-
percomputers. The concurrency of operations inside the
CPU was modeled by a Stochastic Petri Net. The results
obtained at this level were then used to derive the
needed service demand at the CPU, for a higher level
queueing network model, which was used to represent
the concurrency of jobs at the various devices in a multi-
programming environment. Although not considered in
this paper, one could easily take into account in our

model: the impact on - performance caused by interfer--

ence at memory banks. This is particularly important in
pipelined architectures (Bayley, 1987). The effect of
memory bank contention delays the CPU operation. In
order to include this effect in our model, one could in-
flate the service demands at the vector processor by a
factor which should be calculated. using results from
memory contention models already proposed in the lit-
erature (such as Bayley, 1987). Other issues, such as
modeling of memory contention and modeling of com-
plex I/O architectures, can be handled at the queueing
network model level using well-known techniques
(Buzen and Shum, 1987, Lazowska et al., 1984).

Last, but not least, this paper proposes a novel ar-

chitecture of supercomputers, which was shown,
through our analyUC model, to be always superior per-

formance—wme t0 conventlonal supercomputer architec-
tures for moderate to high ‘multiprogramming levels.
For the Los Alamos benchmark, the improvement
reaches 73% for an R-R-type architecture and 86% for
an M-M-type afchitecture; ' ' ‘ '

) Appendlx A: Queuemg
Network Models

Queueing Network models are convenient abstractlons
for studying the performance of computer systems.

“The analytic model presented is an
appropriate framework for measure-
ments and workload characterization
as well as an important tool for per-
formance prediction and capacity
planning for supercomputers. Ik de-
fines a minimum set of parameters at
the application, architecture, and
operating system levels to capture the
essence of the behavior of a set of
applications running simultaneously
on a given supercomputer '
architecture.”

80(%) improvement over the C arch.
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Queueing networks consist of (1) a collection. of service
centers wh1ch represent servers and queues, and (2) cus-
tomers, which represent the consumers . of service. (i.e.,
Jobs, tasks, processes). When the network solution can be
expressed as a product of terms, where each term rep-
resents ‘the state of an individual queue of the network,
then the solution is called a-product form solution. One
of the major algorithms (Lazowska et al.,. 1984) for eval-
uating. product form networks is the MVA (mean value-
analysis) algorithm, which, for one class of customers, is'

described by the following three iterative equations:

m(0) :=0 o fork=1,2;...,K

forn=1,2,...,N.do as follows .

1) Rm) =Dl +mn=1) . k=12,...,K

. 2)  X(n) :=n/ZRyn) o .

3) mn): =RmXm) . k=12...K

In this algorithm, N represents the number of cus-
tomers, K represents. the number of servers, R(n) repre-
sents the residence time at the service center% when the
system has n customers, X(n) represents the system
throughput when the system has n customers, n;(n) rep-
resents the average queue length at device £ when the
system: has n customers. D, represents the service ‘de-
mand of a typical customer at service center k. This is
the total amount of time the customer requlres in service
at that center.

Appendix B: Markov Chain
Equivalent to the SPN for

the C-Architecture B

Basically, a Petri net PN = (P, T, A, M) is a graphical
model composed of places (P), transitions (T), arcs (4),
and an initial marking (M,). In addition to its_static
properties, a PN has dynamic propertles that Tesult
from its execution. The execution of a Petri’ net is con-
trolled by the posMon and movements of tokens () in
the Petri net. A PN executes by ﬁrmg transitions. A
transition is enabled to fire when all of its input places
contain a token. A continuous stochastic Petri net
SPN = (P, T; A, My, L) is formed by assoc1atlng a firing
rate L with each transition. Once tran51t10n T; is enabled,
its mean firing time duration is F; = 1/L;, exponentially
distributed. It is known (Molloy, 1981) that any finite



place, finite transition, marked stochastic PN is isom'dr—
phic to a Markov process. In an SPN, with a given initial
markitig M, the reachability set is déﬁned\as the set Qf
all markings that can be reached from M, by means.of a
sequence of transition firing. For our specific SPN. (Fig.
~ 5), the reachability set and the corresponding Markov
chain are shown in Figure 15. T

Petri Net Reachability Set

Marking P P2 P3 P4 P5 P6
M1 1. 1 0 0 0
M2 0 1 1 0 0
M3 0 0 1 1 1 0
ME 0 1 1 0 10
M5’ L1 1. 0 0 0 1
M6" 0 1 0 0 1 1
M7 ‘1 0 0 1 0 1
Ms 00 0 1 1 1
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