SIAM J. NUMER. ANAL. . . © 1989 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1031-1059, Octo\\)er 1989 001

EXISTENCE AND.STABILITY OF ASYMMETRIC FINITE- ELEMENT
APPROXIMATIONS IN NONLINEAR INCOMPRESSIBLE ANALYSIS*

VITO RIANO RUAST

Abstract. This paper deals with the analysis of existence and numerlcal stability of a special kind of
simplicial finite-element approximation in nonlinear incompressible elasticity. We show that the asymmetric
structure of the elements with respect to the centroid of the simplex renders them partlcularly stable in large
strain states, and we prove that, under suitable condltlons ‘on the elements, there exists a solution to the
corrésponding ‘discrete problem. Numerical éxamples illustrate the efficiency. of the method:
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1. Introduction. In this work we discuss two mixed finite elements of asymmetric
type introduced, respectively, in[13]and [14], for solving finite incompressible elasticity

problems. :
Let us, first deﬁne our notatlon Let O be a bounded set of R". Then for every
open subset D of O, we shall denote bY || * lmrp and | - lmrp the usual norm and

seminorm, respectlvely, of the Sobolev space W™ "(D) (see, e.g., [1]), m,re R, m=0
and 1=r=00, with w (D)= L’(D) Similarly in the case where 7 =2 we denote by
(-, -)mD the usual inner product of W(')"Z(D) Hg(D) and by |- |,,.D—| ]mz,) the
corresponding norm, while we will represent the norm of W™ 2 =H"(Q)by | |mp
instead of || llma2,0- In all cases we shall drop the subscript D whenever D is  itself.

For every space of functions V defined on D, V will represent the space of vector
fields whose n components belong to V. In the case where V is. w™' (D) or Wg"'(D),
we define the norm, seminorm, and inner product (if r=2) for V, by .introducing
obvious modifications of the scalar case, and keeping the same notation.

We shall denote by x - y the Euclidian inner product of two vectors x and y of

R’ and by | - | the corresponding norm. ! will be either equal to » in the case of vectors

of R", or equal to n? in the case of tensors of R"™".

Finally, for every function or vector field y defined over a certam set D, we shall
‘denote by y/ S its restriction to a subset S, Sc D. ‘ :
' Now our problem can be described as follows. We aré given an elastlc body
represented by a bounded domam QcR", n=2,3, with a boundary T. Keeping fixed
a part I'y of " with:meas (T'g) # 0, we consmer a loading: of Q consisting of body forces
having a density. f per, unit, of measure of {1, and of surface forces acting on a set
I'*<T (such that meas (I‘O I‘*) 0 and T*UT,=T), having a density g per unit of
measure of I'*. Although it is physically p0531ble to have I'* =, we ‘will not conslder
this case in this paper.

The effect of f.and g is to deform ) into an equlhbrlum conﬁguratlon defined by
a displacement vector ‘field that we will denote by 1. In this way, the new pos1t10n of
every point x of € is given by x+u(x) The fact that every element of Q) is measure
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invariant in its deformed state can be expressed mathematlcally by
(1.1) ][x+u(x)] 1 for almost every er

where J[v(x)] denotes the Jacobian of a vector ﬁeld v at po1nt X.
Condition (1.1) is called the 1ncompress1b111ty condition in finite elasticity and we
shall often rewrite it as fol]ows

(1’2) det(|+Vu)-—1 .a.e. inQ)

where | is the nx n 1dent1ty tensor and V represents the gradlent operator
Remark: Condition (1.1} is obv1ously nonlinear but in the case of small strains,
that is to say when

max |Vu(x)| <1,
xeQ

we can neglect products of derivatives of u of order higher than 1. Condition (1.1)
becomes the well-known linear incompressibility ‘condition  arising in infinitesimal
elasticity or in fluid dynamics, namely

div u(x) =0 forae xe:

Although there is a rather large range of incompressible materials, in this’ work
we focus our study on the case of Mooney—Rrvhn materials, because they are par-
ticularly. representatrve of the class of materials for which (1. 1) holds We note by the
way that among Mooney-Rivlin. materlals rubber is a typrcal cage..

For a Mooney-Rlvhn material the elastlc energy for a certam admrssrble dlsplace-
ment vector ﬁeld v is given by [13]: ’

(1.3), W(_v) C;‘[ [||+Vv|2;2]dx—J f_-”v:d’:_k“—f_,g-‘ws‘ for.n’=2,'
. H I* .

W)= G J [|I+Vv|2—3] dx+g—J [ladJ(I+Vv)|—3] dx

(1.3); \ :
—J f'vdx—'J“ g--vds forn=3
a r

where adj A.denotes the transpose: of the matrix of cofactors of an nxn. matrix A,
and C, and C, are positive physical constants.

Taking into account (1.2) and the fact that. W must be ﬁmte 1t is natural to choose
the following set of admissible displacement vector fields:

X= {v/ve W" ’(Q) v/T5=0, det [1+Vv(x)]=1a.e inQ}
with r=2(n—1), ‘and we shall assume that fe L*(Q) and g e H'/Z(I“*)
The problem we want to solve can now be stated as follows: .

(P) Find ue X such that W(u) = W(v) for all ve X.

It is interesting to note that X is a nonconvex set and’ that 1t is a’'subset of the
vector space V defined by ’

= {V/VE wl’r(ﬂ)a V/FO = 0}7
which can be normed by the seminorm | - |, , ({2 being connected [11D.
Instead of the minimization problem (P) itself, hére we will work with the followmg

mixed formulation obtained by dualization of (1.2) with.the help. of a multiplier p,
and by differentiation of W(u) along v over V.
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(P Find (u, p) € V.X @ such that a(u v)+b (u, v, p)—L(v) forallve V- b(u, q) =0,
for a]l qe Q:

where Q L (©), with ¢ such that n/r+1/t=1, and
(1.4) a(u,v)=C1J Vu: Vvdx+ Czj adj(I+Vu)_"

[adJ(I+Vu+Vv) adJVv] with C,=0 ifn=2,

sy -+ o ‘ b"’:(u,‘v, q)= J q[adj I+vu)"- Vv] dx
16 - b(’v,‘q)=vJA aldet 1+ Vv)— 1] dx,
(1.7) L(v)=J‘ f-vdx-FJ" g-vds—C,j divv dx.

According to results of Le Tallec [10], under reasonable assumptions, there exists
a hydrostatlc pressure p, with pe'L’ (Q) associated w1th every solutlon u to problem
(P), and in this case (u,p)isa solution to' (P"). ' '

At this stdge we would like to point out that, in practice, it seems unwisé to use
formulation (P') for numerical computations with associated mixed finite elemernts.
Indeed, there are other mixed formulations of (P) much more suitable for such a
purpose and in this respect we refer to [6], for instance. However, for the sake of
clarity, we prefer to consider (P’) in this work, as it appears to be the most natural
formulation of all.

Bearing in mind that our. leCd finite-element methods apply to other mixed
formulations of (P) as well, from now on we shall consider approximating problem
(P!). For this purpose we will define two finite-dimensional spaces V, and Q, aimed
at approximating V and Q, associated with simplicial finite elements, which have an
asymmetric  structure with respect to the centroid .of the simplex. In the three-
dimensional case the element can be viewed as a certain. generalization of the two-
dimensional one first introduced in [14], whereas both have been discussed .in [16]
for linear problems arising in mechanics of incompressible media.

The structure of this paper is as follows. In.§ 2 in a general way we define a
discrete analogue (P}) of (P'), based on finite-element approximations. In:§ 3 we briefly
recall the asymmetric elements and we describe the corresponding problem (Py), in
connection with two kinds of partitions of Q. In § 4 we study some basic properties
of both elements that justify a priori their adequacy for the numerical solution of
problem (P). In §§ 5 and 6 we consider in detail the well-posedness of (Py) in the case
of one of the types of partition considered in § 3, for the affine and isoparametric
cases, respectively. Finally, in § 7 we conclude with some short remarks concerning
the other type of partition; the main assumptions made throughout the paper; and a
numerical example. '

2. The finite-element approximate problem. Henceforth, except where othe[‘rwise
specified, we consider {) to be a domain of R", n =2, 3, having a polyhedral boundary
T. For the case n=3 we also'assume that P* T is a set of spatial polygonal lines.

We are given a family -(;), of partitions of Q into n-simplices, satisfying the
classical assembling rules for the finite-element method. Some additional compatibility
conditions for (7,), related to our asymmetric elements will be specified in § 3. We
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also assume that I'* and 'y can be viewed as the union of faces of elements of 7, and .-
that (7,), is regular in the following sense. Denoting by hyx the diamieter of the
circumscribed sphere and by px the diameter of the inscribed sphere of element K,
K € 7, and setting ' ' '
h=max hy and p=min pg;,
Kery, Kem,

there exists a strictly positive constant ¢ such that ph™' >, for all h.

With each partition 7, we associate the finite- dimensional spaces Q, and V,,
approximations of Q and V, respectively. We assume that Q,1 Q; however, in general .
a similar inclusion will not hold for V. Let | - | be the norm of Q, induced by L*(Q),

and let || - ||2,0.» (respectively, | |2, 0.») be obtained by summation over the elements
K e 7, of the squares of the || - ||, x-norms (respectively, | |, x-seminorm). In par--
ticular, we will use the Hj-discrete norm for V, defined by

2.1) ‘llvh|l§=

E Th

Now in the discrete analogue of (P"), we weaken the requirement that the approxi-
mation u, € V,, of the solution u to problem (P) sat1sfy exactly (1.1), in the following
way. The incompressibility condition is to be satisfied only at those pomts of O to
which we attach the degrees of freedom of Q,. This is equivalent to requmng that u,,
belong to an approx1mat1on X, of X defined by

=1{v;/vi € Vi, bi(vii, g1) =0 th € Qh}

where by is a sultablc approx1mat10n of b glven by (1 6)..
A natural way of defining b, is to set
(2~2) T bh("h, Qh)— z bK(Vhs qn)
- Kery, .
where by correspondsto an approx1mat1on of the mtegral of (1.6), restricted to element
K, whose quadrature points are: those associated with-the degrees of freedom of .Qj.
We consider two possibilities of performing: this numerical quadrature, :according to
the way we define: the elements-of 7.
" To be more specific, if the domain Q'is a polygon or a-polyhedron, we define by
as follows
Case i. Every K €, is the reciprocal image of the usual reference -simpléx K
(see Fig. 2:1) by an affine transformation Ag: K->K:
" In this case we define the approximation of -

'L guldet (1+Vy,) —1] dx
to be |
(23) B (Vi @) =,§, wyan () det (14 Vv,) ~ 11/xK meas (K)
where {xJ }L, is the set of points used to define q,,/ K, and the w;’s are the weights
of the numerical quadrature formula. .. - - ; -

On the other hand, if Q has a curved boundary, 1t may be mterestmg to partmon .
Q into curved elements defined in the classical way, namely Case i i.!

" U'Now both Ty and:T* are approximated by thesunior of curved faces or edges of elements-of 7.
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§,(1/2,1/2)

X

f =

A4

Y

5,00.0) 5,010

- F1G. 2.1. The reference element ) for n=2,

Case ii. Every K' e is the reciprocal image of R by a bljectlve isoparameteric
transformatlon Ay K - K. This means that A (X) = [ak(®), - - K(x)], where
afe P 1=isn, P being a space of shape functions defined ovér K, such that
O = vpyx © Hk eP for all v,e V, and forall Ke7,."

In this case the approximation of f« an[det(1+Vv,) —1] dx is given by

'(2,4) b,((v,,,q,,)— Y w,.q,,(ﬁ,.)[dete(vh+&¢;‘)—detv&4;¢‘]/ﬁ: meas (K)
=
where {&;}/~, is the set of points of R whose reciprocal 1mages through Ay are the
points of K to which we attach the degrees of freedom of Q,, and V denotes the
gradient operator for variable X = &k (X). »
Now, taking into consideration (2. 2) we can verlfy that in both Case i and Case
ii we have

(2?5) o VYo, € X, det(I+Vvh)/xj —1 V] I1=j=m and VKea-h

» Indeed in. Case i this is. trivial prov1ded meas (K ) is nonzero for.all K €1, On
the other hand, from the well-known formula of calculus [3] we have

(2:6) - T =J@)HA) wherey‘(—A(x) and ¥ A(X)=v(x). -

Thus we see that (2.5) also holds for Case ii by settmg v(x) —v,,(x)+x and A= .ssz,
and-taking into account the identity J "(A) J (A‘l)

Remark. If the X;’s are the points of a quadrature formula that 1ntegrates exactly
functions of form ](vh) over K forallv, € P then as in[15], we can draw the following
conclusion. .

If (2.5) ho]ds and. Z 1a) =1, we ‘have meas (K) meas (K), for all K er,, K
being the deformed state of K induced by v,,.

Furthermore we now set

ab,
(2'7) bh(uh, Vi, qh) = 87— VV/,,
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and
ap(up, vi)= % aw (Wy, V), Ly(vp)= ¥ Lk(vp),

Kemy, Kery

ag and L being defined in the same way as a and L in (1.4) and (1.7), respectively,
by replacing Q with K, and I'* with I'*N K.
We also introduce a “‘discrete energy” W, in an analogous way, namely

Wi(vi)= ¥ [QJ |I+Vvh|2dx+%JK Iadj(l+Vvh)|2dx}
PRa ,

Kemy

‘ C,+
—I f-vhdx,—I g vds— !
Q r*
with C,=0if n=2. '

We now define the discrete mixed formulatlon of problem (P) to be the following:

(P}) .Find (uy, py)e Vi X Qy such that ah(u,,,v,,)+b,,(u,,,v,,, qn) = Ly(v;), for all
vy € Vi, (uy, g,) =0, for all gy, € Q. :

G n meas ()

According to [9], the existence of a solution to problem (Py) is directly dependent on
the validity of a nonlinear discrete inf-sup type compatibility condition between the
spaces V,, and Q,. However, this condition must now be expressed in terms of the
vector field u, itself. Since u, is supposed to minimize the energy W, in some sense,
the following result [10, Thm. 4. 1] is of crucial 1mportance

" The followmg problem has a solut1on '

(Py) Find u, € X, to minimize W, (u,) over X,

Now, let u, be a local minimum of Wj,. Also let ||+'[|; be the norm of Vi-and ||
be the norm of Q, induced respectively by V and LA Q). The nonhnear compat1b111ty
condition can be stated as follows.

~ There exists 8, >0 such that

blh(uh'a Vi, qh)

wevi vy

(2.8) ZBulgn| Yan€ Q.
Accordmg to Theorem 4.3 of [10],' if condition (2. 8) is fﬁlﬁlled, there exists a unique
pressure p;, € Q, such that (u,., pn) is a solution to (Ph)

3. The asymmetric finite elements ‘We first define Q,, to be the space of functions
" g, that are constant over each element of 7,, and we clearly have Qy<:Q. For
convenience we consider the degrees of freedom’of Q, to be function values at the
centroid G of the elements. V,, in turn consists of functions whose restriction to each
simplex K € 7, belongs to a space P, defined as follows

Let S, denote the vertices of a simplex K € 7, i = =1,2, -+, n+1. We first a551gn
to K a privileged face, say the face opposite to vertex’ S,,+1, that will be called the
base B¥ of K, and let FK be the face opposite to vertex S, i=1,2, -, n. The FX’s
will be called the lateral faces of K. Let A; denoté the barycentrlc coordmate of K
associated with vertex S;, i=1,2,---,n+1 and S, ., denote the centroid of BX.-

Now we define P, to be the (n +2) d1mens1onal space spanned by the funct1ons

=1,2,:+:,n+1and ¢, where

(3.1) 6= % A
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We. can easily verify that the set of degrees of freedom {a; }722, where a; is the
value of the function at point S;, is P,-unisolvent and that the associated basis functions

are given by

e ) e
Pi=Ai”";_;¢, ) : i=1529”.9na

n—1
(3-2) ‘ 'Pn+1 :)‘r,:;i-la
2n
pn+2 - n _ 1 ¢

In Fig. 3.1 we illustrate these asymmetric finite €lements where O represents
degrees of freedom for V, and x represents those for Q.

' Note that the following inclusions hold:.P, < P < P;, where P, denotes the space
of polynomials of degree less than or equal to k defined over K.

;As has been remarked in [14] and [15], the elements associated with P, must be
used in connection with partitions of () into n-simplices constructed in a special way,
called compatible partitions. Let us briefly recall two kinds of such partions given in
[16] for -both elements

Paitition 7. In the two- dlmensmnal case we first construct a partltlon of Q into
arbitrary convex quadrilaterals:(as in'the case of the bilinear Q; element). Next, every
quadrilateral is subdivided into two triangles by an arbitrarily chosen diagonal. Those
diagonals will be the only bases of the elements of the resulting triangulation.

In the three dimensional case we first construct a partition of () into arbitrary
convex hexahedrons having quadrilateral faces. Now we refer to Fig. 3. 2(b), where
we show a classical-subdivision of @ hexahedron into.five.tetrahedrons.-We next take
an arbitrary point in the interior of each central tetrahedron ABCD, say point E, and

: BD

B
FiG. 3.2(a)
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© Bases : Faces of
" ABCD

F1G. 3.3. An illustration of compatible partition 7,

we join it to A, B, C, and D, so that each hexahedron becomes thc union of eight
tetrahedrons. These form partition 7}, if its bases are precisely the faces of tetrahedrons
ABCD. B ‘ P

Partition 75, We first construct an arbitrary partition 7o of Q into n:simplices K.
Then we subdivide each K € 7, into n+1 simplices having a common vertex situated
in K. ' Lo :

This subpartition of 7, becomes the compatible partition 72 if we choose its bases
to be the faces of 7. Note that the interior point of the simplex K € 7, can be arbitrary,
although in this work we will choose it to be the centroid G (see Fig. 3.3). -

With the above considerations, we define the degrees of freedom of V), to be the
function values at the vertices and the centroid of the bases of a compatible partition
m, of Q, except the values at those nodes lying on Ty, where every function of V;,
vanishes necessarily.

With the above definition of V,, we can.say that V,< C%Q) if n=2, butif n=3
this inclusion does not hold and therefore we have a nonconforming element. Neverthe-
less, for n =3, a function of V,, is necessarily continuous alongthe bases of the partition.

Let us now examine the particular case of problem (P}) for the spaces V, and
Q, defined above. .o : '

We have m=1, w,=1, and the quzidEaturé point x{ being the centroid of K in
Case i, and the image of the centroid of K through transformation &% in Case ii.

It is then possible to verify, using arguments to be developed in § 4, that in both
cases i and ii the corresponding numerical quadrature formula calculates exactly the
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integral of det (1+ Vu;) over K that is to.say
“bic(up, gn) = J ~gu[det(l +Vu,)~1]dx
e ;

and‘"

b o »
bk (uy, gn) | Vo, =YJ'.,qh[adj (1+Vu,)]" - Vo, dx.
GVuh K ) )

Remark. In the conforming case (n=2), at least. when Q =0, = Ukenr, K, we
have b, =b and b,=b’, for V, and Q, defined in this section..However, if the union
of thé elements. K over 7, is different from €, we should redefine problem (P1) by
replacing a, and. L; by approximate functionals af and-Lj that take into account
integration over Q, rather than over Q. - L : ,

_ 4. Stability ‘properties of the asymmetric elements. In this section we intend to
justify our proposal of the elements of asymmetric type for the numerical solution of
problem (P’) from the point of view of the simulation of .,

First, let us briefly recall some a priori argumients already considered in [14]
and [15]. A

If a vector field of an approximation space V, of V is such that each component
restricted to an element K of 7, is a polynominal in’ P,, its Jacobian is a polynomial
in P,(-,) over K. This implies that we must satisfy constraint (1.1) at a large number
of points of K to satisfy the incompressibility condition everywhere, which is the only
way of avoiding with absolute certainty that elements “turn inside out” in the deformed
state. Note that this question becomes particularly -critical in the three-dimensional
case, where numerical instabilities are frequently observed whenever the number of
these point constraints per element is small, specially under compression loads. Indeed
this is precisely the situation where the elements have a tendency to turn inside out.

However, the total number of constraints to be satisfied in the discrete problem
associated with (P'), i.e., dim Qy, must not exceed the total number of displacement
degrees of freedom, i.e., dim V; otherwise condition. (2.8) fails to hold (see, e.g., [9]).
This fact is usually expressed numerically by requiring that the following asymptotic
ratio: '

| O dimv,

be strictly less than one (actually in practice 6 should not be too close to 1).

.~ Just to illustrate some restrictions this fact may impose in practice, we consider
an-example of V, constructed from standard Langrangian elements of degree k.in an
n-simplex. . . . ooy S I R

. If we want to satisfy the incompressibility condition pointwise, the following table
indicates the values.of 6 for different values.of k (see [14] for funher details).

kK |1 2 34 :

n=2 11 |32 | 53| /4

n=3:21] 5 | 569|558

Remark. Precisely due to the necessity of satisfying the incompressibility condition
as exactly as possible for the problem under study, it is not appropriate to choose a
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space Q, satisfying continuity requirements at points situated. on the interface of the
elements. This fact prevents us from reducing the dimension of Q, significantly as in
the case of linear problems solved with the so-called Taylor-Hood elements [7].
Let us also add that V,, should preferably be conforming. Indeed, even if condition
(1.1) is properly satisfied elementwise, the nonconformity may lead to a meaningless
representation of the incompressibility phenomenon at the global level, unless we can
prove that the resulting :interpenetrations. of* nelghbormg elements in the deformed
state cancel each other, or are negligible.
Summing up, we can say that, except in:a very few. cases, we cannot g¢xpect to
: approximate problem’ (P’) by using standard spaces V, and Qj, suchias those:that
work well for viscous flow problems or for linear incompressible elasticity. Therefore,
a ‘solution that seems reasonable is to construct V,:by means ‘of spaces of special. .
" polynomials of degree k, for which the Jacobian is of maximal degree sxgmﬁcantly :
less than n(k—1).

Indeed, in so domg, we, can expect to come as close as p0551ble to the 1dea1
situation where the incompressibility condition is satisfied pomtw1sc whlle still maklng ‘
it possible to satisfy (2.8). As we show hereafter this is precisely the case of P,.

THEOREM 4.1. If v=(vy, " -, v,) defined over K is such that v; € P, for all i then
J[x+v(x)] is a polynomial in P,.

_ Proof. According to (3.2), each component v; can be written as

h+1

Za)\+ﬂ¢

where the al’s and the B”s are scalars and ¢ is the quadratlc funct1on glven in (3. 1)
We have ; , .

06, 100 8¢ |
cntp =" et Bt eyt
11 B %, 12 _.B 5%, 1 ,3 ox, |
entB*— ¢ 2+ Tt 2 9%,
(4.1) - J[x+vx)]=| A ox e oxy oM B.ax,,
n 90 9o n 09
C, + - cn + —_— ..cnn+ —_
nl ﬁ axl 2 - B X, ,3 ax,,

where the constant c; is the x;-derivative of the linear part of x; + v;(x).

Now we expand the above determinant into a sum of 2" determinants whose jth
column is either (c,;, ¢y, * *, )" OF 8p/8%; (B, B% -+ -, B")". As we can easily see,
the only determinants of thlS expansion that do not vanish identically are those having
at most one column with linear entries (9¢/ ax])B and the result follows. g :

“An immediate consequence of Theorein 4.1 is the fact that; to satisfy (1.1) at the
centroid G of ‘K; it suffices to have incompressible elements inthe following weak
sense. The measure of K in the deformed state induced by ueP, is invariant.

Indeed, if we denote by A the deformed state induced by u of any subset A of
K, K € 7, according to a well-known numerical quadrature formula, we have

meas (IZ);I J[x+u(x)] dx=J[G+n(G)]@eas (K)=meas (K).
K . :

. This shows that the space Q, defined in § 3 is a proper choice for these asymmetric
elements.
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Remarks. (i) The relatlon above also holds: 1n the isoparametric case if G is
replaced by the image of G under . :

(ii) Using the same arguments as in [15], we can conclude that for both n=
and n=3, we have § =3, when partltlon of type 77, is used. In the case of 7}, the same
value of @ applies for n =2, while 6 = 3 for n=3.

(iii) In the two-dimensional case, the standard Q;X P, element has'the same
properties as the quasilinear asymmetric element, as far as the degree of the Jacobian
and 6§ are concerned.” It can actually give satisfactory numerical results as shown by
many examples in [10]. Howeéver, in the three-dimensional case, the property of
Theorem 4.1 does not hold for the Q; element. ‘

Once having proved that incompressibility can be properly treated for each
element, we would like to assert that the same is true for (.

More precisely, letting A denote any subset of (2, settmg Ax=ANK, Ker, and
defining v

A= AK with Ax =u(Ax)

Ken,
where u/ K €P,, we would like to verify that
meas (K) =meas (K) VK € n,=>meas Q)= méas Q),
or that .
meas ()= ¥ meas (K).

Ker,

In fact, denotmg by Q the deformed state of Q induced by u'to be defined below,
we will prove that
(4.2) meas (Q)—- Z meas (K)  with meas (K)=meas (K) VKenm,

Ker,

In the two-dimensional case we will simply set Q=0 if J[x+u(x)]1=0, for all
x € 0. Indeed in this case (4.2) is trivially satisfied since V), is conforming, and therefore
the elements in the deformed state do not interpenetrate each other. However, even
under the above assumption, this is not necessarlly true in the case of a nonconforming
V.. That is why for n=3 we will set O=U Ker, K where K denotes the deformed
state of K induced by the vector field 7u that interpolates u at the vertices of the
elements of 7,. In this way Q can be viewed as a certain interpolation of Q) at the
points S, S being a vertex of an element of 7,. In so doing we can prove that (4.2) is
exactly satisfied for some kind of partitions, whereas in the general case it is satisfied
up to an O(h?) term.

Again the proofs will be given under the assumption that ue 'V, satisfies

(4.3) ‘ J[x+u(x)]=0 a.e. for xe O
and, of course, - B
(4.4) J[Gk +u(G,<)]='1 VK e,

where Gy is the centroid of K. ,

We first note that (x+ 7ru)/ K is nothing other than the linear part of (x+u)/K.
Therefore, since ¢/dx; vanishes at the vertex S,.1,j=1,2, - -, n, and, recalling (3.1),
we have

(4.5) J[S,,+,+u(S,,+,)]=J[»x+ mu(x)] Vxek.
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Since meas (K)= Jx JIx+ ﬂu(x)] dx, assumption (4.3) implies that meas (K)=0,
which in this case means that the K’s are or1ented in the same way as the K’ s, or that
the K’s do not interpenetrate.

We concentrate on the particular case n —3 and we: further deﬁne A to be the
deformed state induced by mu of every subset A of Q. Note that we are actually
defining O =Q.

We first need the following lemma, wh1ch has been proved in [16] : .

LeEMMA 4.1. Let K be a tetrahedron and let ny denote. the outer unit normal vector
with respect to 9K, the boundary of K. Let s be a vector field deﬁned over K such that
U =B, with BeR’ and ¢ be given by (3.1). We then have

J divnbdXQg‘[. 1b,~-ans.~.
K _.‘3 BX.

Now we note that, since 7u is conforming, we clearly have
vol (@)=Y vol (K). -~

. Ker,

In fact, we can prove that, under a reasonable assumption, the above equality
also holds if the K’s are replaced by K’s.

THEOREM 4.2. If 7, is a compatible partition of Q thdt has no base on T'* we have

vol ()= ¥ vol (K).
Kery,

Remark. Partition 7 satisfies the assumptions of this theorem.

Proof. A partition satisfying the assumptions of the theorem can be viewed as a
subpartition of a first partition x, of Q, ‘consisting of hexahedrons having triangular
faces. Each hexahedron H of y, generates two tetrahedrons of 7,, say K, and K,,
having a common base lying in the interior of :H, and lateral faces coinciding with the
faces of the hexahedron (see Fig. 4.1).

Since u is continuous over B, the common basis of K; and K,, we have

vol (H) =vol () +vol (Ky).
We now want to prove that in fact we have ,
‘vol (H)=vol (H) VHexy,

FiG. 4.1. A hexahedron: of partition x;,.
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which will yield the result we are looking for; since
vol (@)= Y. vol (H).

. Hex) ‘
For this purpose we introduce a new variable X with the help of the following
affine transformation over each K:
x> X =x+ 7u(x).
In this way K can be regarded as the deformed state of K obtained by the
application of the displacement vector field s defined by .
R =d(x),

wherenb B, with p = (u)5 [Z.=1(“) /3, (u); beingthe value ofuat S;, i = , 5.
If we denote by e i(x) the barycentmc coordinates of K we have necessarlly
X;(%) = A;(x), which means that §s = B¢, where

= Z /\jAk'
Jik=1
j<k:

Now we have ,
vol(K)=I J[x+d(%)] dx

where J represents the Jacobian with respect to the new variable X.
-Expanding the integrand above, we obtain

vol.'(IZ)'ﬁxtol(K)+‘]. d1v¢dx+f [z [J(\];,)+J(lb)]]

where t|1, is the vector field obtained by. replacmg the lth component of ¢ by X and
div represents the divergence operator. assocnated with X.

Since each Jacobian of the second mtegrand above has at least two columns of
form B, they vanish identically.

-On the other hand, according to Lemma 4.1 we have

J dlvqj()' ;J g ne ds

However, since 7ru is conformmg, B comc1des for both K, and Kz together w1th d// B
whereas n/K,/B=-n/K,/B
Therefore we conclude that

vol (H) =vol (K,)+vol (K,)=vol (K;)+vol (K,) =vol (H). O
Now for the general case the following result applies.
THEOREM 4.3. For any compatible family (7,), of partitions of Q, we have

= Ch21u|2 0

vol (Q) - Y vol (K)

K €Ty

where C is a constant mdependent of h.
Proof. According to Theorem 4.2, all we ‘have to do is to prove that

Y [vol (K) vol (K)]

Ke'r,,

where 75 ={K/K € 7,, meas (BX NT*) =0}

= Cholu)e0




1044 VITORIANO RUAS

By a direct computation of the increments -of volume of K over its faces, due to
the quadratic component B¢ of u, we obtain

vol (K) —vol (1{)=J’ W(%) - ng d%.
oK
According to Lemma 4.1 we get '
vol (K) - vol(K)~——2 Z J (%) - ng dx.
A
Now, F being a lateral face of element K, we define the set Ap as follows.
Let E be the edge of F belonging to the base of tetrahedron K and let L be the
plane surface delimited by E and E. Ar is defined to be the solid delimited by E F

and Lg, as illustrated in Fig. 4.2 below.
- Using classxcal arguments if (1) i is regular then we can estimate

vol (Ap)= Ch4|u[2,co VF
Noting that

Ivol (Ap)| = Uﬁﬁ?(ﬁ) “ng d¥|,

we now have .
vol (K) —vol (K)=6Ch*u|, .

Since card 7¥= Ch~? the result follows. . O .

5. Existence results for partition 7. Case i. Let us now prove that under sultable
assumptions on u,, the compatibility condition (2.8) is satisfied for any pamtlon 7-,.
We treat Case i in this section, and in the next section we shall consider Case ii for
the two-dimensional asymmetric element only.

For the-sake of simplicity we will work with the linear mamfold V *of Vy, deﬁned
to be x+V,. We also define the followmg subset of V" ‘

Xh—{Vh/Vh Xe Xh}

In both Cases i and ii we shall prove the validity of (2.8) under the followmg
basic assumption on the solution u,, of the minimization problem (Py).

Assumption A. Let su}-denote the piecewise linear interpolate of uj defined in
§ 3 The trlangulatlon 72 of O, =Iui(Q,) defined to be

7 —{K/K TIui(K), K € 72}
is such that there exists a constant @ >0 for which we have

1 ; .
—area (K)=zarea (K)= a area (K) VK e,

1/4@ LE

F1G. 4.2. A perturbation of F due to the quadratic components of u.’
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- Note that ‘Assumption A is equrvalent to assuming that "J(IIn}) >0 almost
everywhere in Q. It also implies that 7 belongs to a regular family of partitions {#4,
‘whenever u,, belongs to a bounded subset of Wh*(Q,), for all h.

Indeed, in this case if we set -

h= max {hy = diameter of K}
Ke-r,,
and
‘ p= mm {px = dlameter of the inscribed circle in K }
Ke-r,, .

we obtarn ph 'z ¢ for all max,,, where ¢ is given by (2a/3)(c2/U) with U=
max, |y, «, ¢ being the constant such that ph 'z ¢>0, for all 72€{r3},, as we can
easily verify.

In Case i both Q= Qh and 0=, are polygons or polyhedrons Thus, since [Tuj
defines an affine transformatlon over each triangle K onto K, we can deﬁne a space
Vv, over Q,, associated with 7} in the same way as V, is associated with 75, and V,,
- will have the same structure as V.

~ We also deﬁne Q. to be the space of pressures analogous to Qp for the
trrangulatlon 7.

We shall need the following, notation in connectron with partltron . For every

, functlon é of L¥({), whose restriction to every Ker} belongs to H' (K ) we write

(divy, §og.n= X , J' Ggdividx Vde LZ(Q),
K

Kety

: 1/2
|6|l,ﬂ;h=|: Z |15%1<] .
Kes),

22

and we define

Let us first consider the subspace Qh of those pressures that are constant over K,
K being a srmplex of rh According to Lemma C2of [4]if V= {v/veH (), ¥=0 on
Iy=T,}, for all §e o8 there exists vV such that

(5.1) (@divY, @os = Boldil5a
and ‘ L
(5 2) |5|1 :‘1<\ CO‘é?rIO,ﬂ

where f,>0 and C, are independent of q>.
LeMmMma 5.1. There exist constants /30> 0 and CO, such that with every q °c Q) we
can associate a W, €v, that satisfies the following conditions:
(5.3) - Wn(S) =0 for all vertices S of a macrosimplex U [} K,, where the K;’s are the
szmplzces of a macrosimplex K < 7, and T, is the first partttlon of Q on which
72 is constructed;

(5.4) (div Wh,ég)onhiﬁolé?llﬁa;
(5.5) |Wh|1(1h Co|‘]h|on

Proof. Letve V. satisfy (5.1) and (5.2). We associate with ¥ a vector field w;, eV,
such that Wy, i satisfies for all K € 7, the following:

W, (§)=0 if S is a vertex of K, i=1, 2 -i.—l,
3 IB Vds.
M —_—
W (M) = 2 meas (B)

where B, is the base of K; and M, is its centroid, thus satisfying (5.3).
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Using Lemma 4.1, and letting 7, be the partition of Q into macro-simplices K,
K €. 1,; we obtain
J div w, dx=J dividx VKefd,.
I3 Jk
This yields
(div W, dR)oan = (diVT, §ogs

which in turn gives (5.4), after applying (5.1). To prove (5.5) we first use the Trace
Theorem, which gives us C '

Vol g, = W (M) C(K) = C' (KD 9], %,

whlch accordmg to’ Assumptlon A, ylelds

Thus, using (5.2), we get 5. 5) with CO— C,C. ]
Now let s; =meas (K;), 1=i=n+1. Without loss of generahty we can assume

that slzsz—;, *= Spt1-
Let 0. be the subspace of O, generated by the set of orthogonal functions
{1,2:' ' 'a”nﬁ-l}l(e-r, SUCh that supp (7]! )CK i=2 n+1 and ' ‘
n=2 ‘ n=3
ny =-1 ifxe K, (nK=1 ifkeK,
s re BB ' =81 ...
n¥=—1— ifxeKUKs; {9k=-" iftek,,
SZ+S3 s>
T o Anf=0  ifke KUK,
(n¥=0 iftek, (k=0 ifkeKUK,,
i =—1 ifﬁeKz, 4,,7;([__..*_‘5‘3 if)’(elf3,
K_52 . 5 ‘ ‘ $4
my =y ifXe ks o nf=1 ifkeKy
ns=1 ifte KUK,

K. ~8178
= ifte KUK
‘ n4_.s3+s4 ifxe K3U K,.
- As we-can eas11y verify, we have 7; K. g, forall g5 e 0%, i=2, and 0, = Q;.@ Q..
Now lét g}, be any function of Ql. We can write

(5.6) =T T an
Ker, i=2
where the gX’s are given scalars. ‘
" LEMMA 5.2. If Assumption A holds, then for every q;,e O, there exists a v,, EV,1
satisfying (5.3) together with

(div v, dndosn_ £ | -
__m___gﬂh d

(5.7)

for some B, >0 independent of gy.
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Proof. Let g, = q}+qh, where gf € Q and gj € Q}.
We first construct a vector fieldz, e V,1 satlsfymg (5.3) in the following way. , =0
at every vertex, or centroid of the bases of K Ke 7. If, G- is the common vertex of

K, i=1,2,++,n+1, we define %,(G) to be of the form
n+1 -
Zh(G)_ Z ’}’: m;

i=2

where the m;’s are the oriented edges (’}5‘,- of the K;’s, as indicated in Fig. 5.1 below,
and the y’s are given scalars depending on the ¢<’s only (see (5.6)).
First, for n =2 we set

yE=ogf and y¥=gf,
and using Assumption A we can.easily estimate the following:

(5.8) . |ih|1,d§ C_(“h)|q}1|0,ﬂ-

Now, dropping the-superscript K, after simple. calculations. we get:
EEN
|9l6.¢ = g2l malo.x + g3lmsf6.x =25 (g3+ 43)-
53 .
Since Assumption A implies that s;= a’s;, we have
. 2s N
EHER éa—; (43+43)-

Now we prove that
(5.9) (leZh,Qh)onzc|‘Ih|oa, >0,

A stralghtforward calculation gives

2

s+ s1s3) )

divz,q) d>’<=(s + 55+
Jk hn 11783 5ot 55

{7 55yt 82
+(‘s,+L.2)q
$3

F1G. 5.1. Macroelements of partitions ;. and =, for n=2.
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Thus we have

»j div z,q), d%= (25, +55) @3+ (25, + 5,) g3 + <252-— si+ s:z )qz-qj :
K $2

Now, as we can easily check, for any a >0 we have
L
<4517+ 55)(81+ 53),

—12 495, —5
52+3 2 1,

which yields
J diviqh dxz s.(g3+ g3).
K :

This in turn implies (5.9) with ¢'=a%/2: Iri the casé n=3 we sef
Y =45, V5 =qitqs, vi=4i-q5.

. As in the case n =2 it is straightforward to derive the estimate'(5.8), and dropping
again the superscripts K, we have

4 . L 'S2 ;
lahléx= X ailmlix =2—(g5+45+243).
i= 4

1

Since Assumption A implies that s,= a2s1, we have

2meas (K)

(5.10) lghlok = (g5+45+24%).

On the other hand, simple calcula'tion’s‘ yield

. s s s, 2(‘s +5,) .
(dlvzh,qi)o,;e=s—‘q%—qzq4+(1+s—“>q§+(s—“~1)q3q4+——v‘ 2 g2,
2 3 3 B

1
meas (K) S3+ 84

Thus we have

A 1 1 3S4) <2S1+252 1 S4) 2
z|=2—2)gi+ =+ ) g+ | ———=2 1+
(le Zns Qh)o R= (Sz 2) qz (2 25, q:3 Sstss 2 25, qa,

which reduces to

meas (K)

meas (K)

(leZh» %)ox-(%""h"‘zq ) 5

Using (5.10), we thus obtain (5.9) with ¢’ =(a/2)*

Finally, we proceed as in Theorem 4.2 of [16], setting ¥, = 6w, +1,, where W), is
defined in Lemma 5.1 and 6> 0. From (5.4), (5.5), (5.8), and (5.9) it is clear that for
0 sufficiently small there exists [5‘,, >0 such that (5. 7) holds together Wlth (5.3). 0

Now we further prove Lemma 5.3. :

LEmMMA 5.3. With every qn € Q, we can associate a v; € V, that satzsﬁes

(5.11) vi(S)=0 for every vertex S of a macro-simplex K, Kery,

gi(nuh,vh, qn)
“Vh”h

where B, is a strictly positive parameter. independent.of g;,.

(5.12) = Bullgnllo
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Proof. Using an identity from [9, p. 108] we obtain
(5.13) gh(nuh;vh,45)=j éh‘di’v""h ax

where ¥,(X) = v, (X).
On the other hand, from Assumptlon A it is stralghtforward to establish the

existence of a constant C(Q, u,) such that
valln = C(Q,up)[¥al16h
Moreover, we have
lgnllo=a™"*dulog-

Finally, if ¥, is the field defined in Lemma 5.2, we obtain (5.11) and (5.12) with
Bn=a?C'B,>0. O

As a final preparatory result we have Lemma 5.4.

LEMMA 5.4. Under Assumptzon A, for any v, eV,, satisfying (5.11) we have

h(“h,vh, qn) = h(Huha Vi, 6Ih), Y € Q.

Proof. Taking into account the definitions of b}, and- Q,, if we can show that
L adj"Vuj - Vv, dx= L adj" VITu} - Vv, dx VK e,
we shall prove the lemma. io d‘e‘_rho_nw_stijat_je“thve aB()\}a aquality we rewrite as follows:
J‘K‘adjT Vi Vv, dx.

=lim-—J [J(x+Hu,,+B¢+0v;,)—‘J(x+Hu,, +8d)] dx
T -0 ‘ R . .
where ¢ is glven by (3. 1) and B is a linear combmatlon of u,i=1,2,- ' ,’ﬂ and U4,

where u;, is the value of u,. at node S; of K € 75 (see Fig. 3.1).
Passing to element, K, ,using the aﬂine transformatlon and notat1on already encoun-

tered in § 4, we get

J adJTVuh Vv,, dx=lim ; j ‘[f(»fméer‘ ovh>~f(:z'+fs‘<£‘>1 ds.

9—»0

Expandmg the rlght hand 31de above and takmg the hmlt we ‘get

.(5.14);J’ adj Vu,1 Vvhdx—J d1vv,,dx-+— yoo(= 1)‘” J d,J(B ¢,vh) dx

CAZi<j=En .
where
o | |8 |
TR
du(B’ ¢avh)—_/' - +_r— - 3 vh_(vla :vn)
x an ij 60_,-

B == - a,‘zﬂj

axj' X;
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Now, according to (5.11) we can write ¥, as the sum of two components, namely

—a/\,,+,+b¢ Then if we expand the above determinants into sums of two deter-

minants corresponding to these components of v, the one associated with B¢ is readily
seen to vanish identically. Thus we have

oA i) BA d i a
dij—( n+l_¢_ n‘+1 _¢>Cij where ¢, = ﬂl i
8% 9% 9% 9% . B a
Now we note that
pir [ 0 - 8hsr [ 96
(5.15) J d,.,.=(a#f‘j —?——“J —¢> ¢y
K X JroxX; 9% Jg X ‘
Since
W_ g ok
Xy =i 0%
i)
we obtain 4

a<‘£ n-— 1 |
2 1= K
J‘K axk n+1 meas ( ),1;1 axk

Using the elementary identity. ZL,_/\J-.E.;I —)t,,+1 , we finally get

8(5 n— 1 /n+1

—= ———meas (K .
Jlg'&)fk +1m S( ) 8k

When we use the above relation in (5. 15) 1% d;dx is readlly seen to vanish.

The result then follows ‘taking into account (5.13) and (5.14). O ‘

To conclude, as a consequence of Lemmas 5.2-5.4 we have Theorem 5.1.

THEOREM 5.1. If u, satisfies Assumption A for some o >0, (2.8) holds in Case i.

6. Existence results for partition 7%; Case ii. Let us now turn to Case ii, which
we shall examine for n=2 only.. . :

In this case Q, will be the union of trlangles w1th one parabollc edge, such that
its boundary I', coincides with I at least at the nodes of those triangles that have a
parabolic edge (base) on T',. Let T o be the portion of r, con31stmg of such parabohc
edges that have their three nodes on Fo .

Now instead of Assumptlon A we make a stronger one namely Assumptlon B

Assumption B. J(u})> 0 almost everywhere in Q.

Taking 1nto account (4 5), the above assumption implies Assumption A: .Moreover,
it allows us to 'say that u} is a buectlon between (), and Q,, =uj;(Q,). In this case Q,
is a domain that has the same structure as Q,, in the sense that it can also be viewed
as the union of 1soparametrlc elements'K, where K=u WK), Ke T2

Then let 7 be the triangulation of Q,, consisting of the K’s. Similarly, let 7-,, be
the set of curved macroelements K = Ui, K on whxch 72 is constructed, and let 7,
be the partmon of {),, into curved macroelements K where K —uh(K) Ker, (see
Fig. 6.1).

For simplicity we consider the case where for all K € 7, area (K,) =area (K;)'=
area (Ks), although the more general case can be treated without major difficulties.

Now if K IMuj;(K;), Assumption B, and hence A, lmphes

1 : : ‘
—area(Ki)§3area(Ki')véa arear(K,.)’, 1= is3,
@ g :
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K og T
area (K.) = area (X.) , i=1,,3

FIG. 6.1. Macioelements of partitions i, and #,.

since
area (K)) =area (K)) =3area (K) VKer,
-Let us'now define the followmg spaces of functlons ‘defined over Q,,-:

Qh {Qh/Qh ° “h = qn, ‘Ih € Qh}
'{Ih ={Vu/Vuouy=v,, V€ Vi1

We equip. V, and @, with the norms | - || and || given, respectively, by [[4] = [Vu}1., ,
Vo eV, and ]q,,l = "Ihlon,, dne Q,, (Since ¥, =0 on [y, fFO, , |- I is actually a norm.)

Let us also denote by % the new variable il,, (x). :

More generally, for every function f defined over Q, we denote by f the function
defined over £, such that flui(x)]=£(x), for all xeQ,.

To prove that (2.8) holds, we use the following theorem given by Le Tallec.

THEOREM 6.1 [10, Thm. 4.5]. Under Assumption B, (2.8) is equivalent to the
Sollowing:

There exists B, >0 such that

div¥, dx ~.7:~ . =
(6.1) . S“P IQ L ¥ ” . >Bh|th VQhEQh

1 wevy H h

where div represents the dwergence operator wzth respect to the % variable.

The above result states that it sufﬁces to prove the linear discrete compatibility
condition between spaces V, and Q,, to have ex1stence of a solutlon to (Py) in the
isoparametric case.

Now, to prove 6.1 for the asymmetrlc trlangle, we give the following lemmas.

LEMMA 6.1. Let Q,, be the subspace of Q,, of those functions that are constant over
K for all K € 7,. Then for every g, € Q,, there exists a vector field wh € Vh such that

(6.2) J G divWw, dXz Bolgul,
Qp :
(6.3) ¥4l = Cildil

where ﬁo and C, are strictly positive constants independent of .
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Proof. According to Lemma C2 of [4] for a given gy € @9, there exists ave H'(O,)
with v=0 on Iy, such that

(6.4) j Gy divvdiz g,

vﬂh e
(6.5) V., = Clgl-

Now we construct a vector field W, ef/,, associated with v in the following way.
For each triangle K € 72, we define two perpendicular axes %X and % oriented in
such a way that they correspond to rotations of the reference Cartesian ‘axés %; and
X, of an angle ¢.

Dropping the superscript K for simplicity, we determine ¢ in such a way that
the straight line passing through nodes 52 and 53 of K forms an angle of I1/4 with
both X; and X,. '

Let x; be the variable with respect to the axes X;, 1=j=4. Clearly X; and X, will
coincide for any pair of elements of 72 that have a base B as a common edge. Let the
local numbering of the vertices of each element respect the usual permutation conven-
tion (in this way, S, and S, interchange within each element of such a pair, as shown
in Fig. 6.2). Now for each K € 7}, let s be the curved abscissa along B with origin at
S,, and n(s) denote the outer unit normal vector along B with respect to K. We also
denote by n;(s) the component of n with respect to %. Let w=(w;, w,), w=w,, ¢ and
w; and w, be given by ' R

W3 =W, COs @ + w, sin ¢, Wy =—w, sin @ + w, cos ¢.

Now we verify that we can uniquely define w; and w, (and c,ohséquently w) in
the following way. The values of w; and w, at the vertices of K are given by

W3V(§i)’= W4(§i) =0, i=1,2,3;

8¥

/4

FIG. 6.2. Element K and associated axes %3 and'%,:-
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the value of w; and w, at node 5'4 are such that
J~ wjnj(s)‘. 'ds=J>‘~ oni(s)ds, j=3,4
B B . :

where v,> is the cornponent of v with respect to %, 7 =3, 4.
Since u, €'V, we can compute the coordmates X3 and X4 m terms of the reference
coordinates X, and %, (see Fig. 2.1) used for defining P over K in the following way:

[4§1—2(§1+§1)]f1£2+§1x1 §1x2+x3,
x4-—[4§2 2(§2+§2)]3€,£2'+§2x1+§2x2+x4,
where £ =x}—x; and gz x4 x),i=2,3, 4 and
x3—x, cos ¢+x2 sm 4:,
x4——x1sm<p+xzcos<p, i=1,2,3,4.

Usmg the above relations,  we- make ‘a change of variables in the integral
_[B win; (s)ds, j=3,4, hamely from s to §, where § is the absc1ssa along the. edge B
of K with origin in Sz (see Fig. 2.1)." :

Since we have ns(s) = dx,/ds and n,(s) = —dx,/ ds, for a vector ﬁeld f deﬁned over
B, whose components with respect to %; are f;, j =3, 4, we have for the x;-component

Jﬁn3(s ds—-J jg(s)-—ds_f ,g(s)[‘”““"bc1 ‘““d’?]/flﬂeflﬁ

0%, d§ 6%, d§

where f,(3) = f(s). Since d%,/d§ =(~1)'(v2/2) we have (
R :
J_fsns(s) ds = J‘ %fs(f){(fg— §§)+[4f§f2(§§+§%)](1 -3§V2)} ds,

- whereas an entirely analogous relation holds for the x,-component.
Now since w/3—2w (8)3(V2-$), we have

2 ~
(6.6) J; wsny(s) ds =:,; (&—E)ws(Sa),
and analogonsly .
2, .
- (6.7) «L wany(s) ds =§ (f%“f%)w4(s4)

Since by construction |£] — £2] =|§3—§§] =+2/21ength (B)#0, w can be defined
uniquely.

Furthermore, proceeding in the'same way for every element, we can define a
vector field W, € V,, such that

J~ Wy, n(s) ds = I v-n(s) ds for every base B of Re 7.
B B ’
This yields
J Gy div i, dk= J G, dividik Vg, < 0Y,
. BRAL] : Qp o
and consequently (6.2) holds, taking into account (6.4). On the other hand, we have

k= 3 j (VW) di= 3 j (9wl V) d

er,, ETh
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But
J IVWJIZ dx W (S4) J._ |Vﬁ4|2 di’ j=3a 4
(VPR =

where pi(X) =p4(X), pa(X) = 4x,x2,x=.u’,§,,<[fsz_¢}‘(ﬁ)]. Now, according to Assumption
B and standard estxmates we. have o '

' n?
u :
J' V5, |2 dx< C_l._"l_ .
) PK
where x denotes the diameter of the inscribed clrcle in, K

Now if area (K) =z area (K) we clearly have .
2 area (K) 20: area (K)

3h1< : 3hl“h|1 ©
If area (K) =area (K), we use Assumption B together with the geometrical arguments
sketched in F1g 6.3 (we omit the details for the sake of conciseness). It is-then possible
to prove that gk is greater than the diameter of the inscribed 01rc1e in a triangle K
which is defined to be the homothetical reduction of K with ratio 2.

.Hence we have in this case i -

. 4 area (K) 1 area'(K)
. pK= 3hK 3 hl“h'loo

TEITE

This gives
c 4|“h|1<x: _C
Vi, > dk= =
| J Vo = in (o, DP farea (KT~ &
where ¢ is the constant of regularlty of {73}, (see §2)

On the other hand, using (6.6), ( 7), and the Trace Theorem, we have by
construction ‘ :

il o

Jsly | ds =C ]l 1.2 @1 0
2/3p Ch
Therefore from the Poincaré mequahty we obtain
ol = Ch~ a3 oVl 0= C (€2 Q) h ™ | ol¥l1,,5

which from (6.5) proves (6. 3) with G, = C(§,) Cluy)3 o/ 1. ]

!Wj('§4)lE

K
/ ————— e e
Tangent to B at S, and S
|B|sin & >‘/§ Tangency points ~

2|B|sin-@
‘ ‘ F1G.*6.3. Triangles R and K when area(K)=<area (K).
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. Let us now._construct a vector field z, th assocnated with the; subspace Q,1 of
Q;., such :that Q;,—— Q;,(-BQ;, As is space Qh of .Case i, Q,1 is spanhed by a set. of
orthogonal basis functions {y5,: s }KE,, defined in an entirely analogous way (for

=§,=.75;). Now we prove Lemma 6.2.

LEmMA 6.2. Let q » bea functwn of Q,, whose components wzth respect to yz and

v are, respectively, EX and £¥, K e 7. Under Assumptton B, the vector field % Z eV,,,

which vamshes at all the vertices of 7 and whose value at the common vertex G of K,
i=1,2,3, K, K is given by (refer to Fig. 6.4)

‘ Zh(G)= -& mz‘*‘f;(ms,

satisfies ,

(68) O Jalscadldl,  Cm)<w,
and ’

69) . j Gl divi, dxz B|gL>  with §,>0.

Proof. Formula (6.8) is a trivial consequence of the >deﬁnition‘ of Z,.
On th_e'other hand, a ‘straight_"forward: computation gives :

2
J Qh le Z,dx= (S3+51) ‘§_+(251+ S2)§3+(3s2+53_51)§2§3

where s; =area (K;), i=1,2,3.
Assuming again that the local numbermg of the nodes of K is such thats; Z s, = 53,
we have

1@ st 53+ 5:)7 =3 (5, +383) (5, + 5,) <0,

assuming that s, = o area (K)/3>0.
Thus we can write

J qn divz, dx>—(§2+§ )area (K)

which yields (6.9) with f,=2a/9. O

FIG. 6.4. Superelement R
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Now, defining ¥, = 0 W, +Z,, from (6.2), (6.3), (6.8), and (6.9), we obtain (6.1) as
in Lemma 5.2, for a sufﬁc1ently small 6. Hence, as an immediate consequence of
Theorem 6.1 and ‘of Lemmas 6.1 and 6.2, we have Theorem 6.2

THEOREM 6.2. Under Assumptlon B the compalzbtlzty condmon (2.8). holds for
Case ii. :

" 7. Final remarks and computer tests. Fmally, let us cons1der some relevant aspects
related to the problem studied in this paper from both theoretlcal and computatlonal'
points of view.

First, Assumption B (hence A), which was crucial to the analysis carried out in
§§ 4-6, is far from restrictive in most cases, and fairly reasonable as we can check
using different arguments. For example, we will now verify this assumption ina-
particularly simple case where the loads f and g are “‘sufficiently small.”

Noting that 0€ X, we let n=2 and u;, be a local solution to the minimization
problem (P;,) that satisfies

W () S Wi (0) = 0.

Denoting by I'y, and T'} the portlons of the boundary of Q, approximating [y
and I'*, respectively, we have

Wh(uh)=C1[I |I+Vuh]2dx—'j f~‘uhdx—-|' gh'-uhds~2-meas(9vhv):|
h Qy ¥

Q, ‘ _
=C1j (=2 div u, +|Vu,|?) dx—J' fu, dx—J. g, u,ds
Qh Qh 7{

where g, denotes the usual approximation of g over T'f. Since IQ divu, dx=
jQ, ‘det Vu,, dx because u, € Xy, after straightforward calculations we obtaln

(7.1) C, J (|div a, >+ |curl u,|*) dxéj f- uh+J’ g uyds.
Q. Q h
Since divv=curlv=0inQ, andv=0on T, implies v=0 almost everywhere in {);,
1/2
(7.2) vl = I:J‘ (|div v*+]curl v]*) dx]
: Q, .

is a norm over V'={v/ve [H'(9),]%, v=0 over T, }. Thus, taking into account that
V, < V'is a finite-dimensional space, there exists a constant C} such that
(73) |Vvh”0°oghé C*'llvh”| Vvh EV;,.

On the other hand, using the Poincaré 1nequa11ty, the Trace Theorem, and the
obvious bound :

[Va, Ho,z,n,, = “V“h ||0,°o,9h[meas (Qy )]1/23

we conclude that there exists another constant C7* such that

(7.4) J f-u, dX+J gn ' Uy ds = C**(|]f[|0 20,1 ”gh”02 rT)“VUhHOooQ,,
Q

r
Using (7.2)-(7.4) in (7.1), we get }
(7.5) [Vuglloen, = Ch(||f||o,z,n,, +llgnllozrs)

where C, = C¥*C¥/C,. Lo
From (7.5) we readily see that if f and g are sufﬁmently small the relation
det (I+Vu,)>0 for all xe(}, applies.
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For the case n=3a similararg‘ument-leads to the same conclusion, but we omit
it here for the sake of conciseness..

Second, the analyses given in th1s paper have been supported by several numerical
experiments in both two and three drmensrons using -asymmetric eleménts. Even in
tests where strong-compression was apphed they showed a stable and realistic behavior,
whereas standard elements that are expected to satisfy the compatrblllty condition
(2.8), such as the isoparametric bilinear or trilinear-rectangular element for displace-
ments with a piecewise constant pressure [10], did not. Therefore, it seems that one
of the key factors in the success of these elements for the problem under study is the
argument developed in § 4. Indeed, it ensures the “‘minimum rlgldrty to avoid elements
turning inside out or hourglassing effects.

We give below an illustration of computer results obtained with our element, using
the partition 75 for a two-dimensional problem The test consists of applying to the
upper base of a cylmdrrcal body, whose lower base is kept fixed, a displacement in
the direction of its axis, in such a way that the two bases remain para]lel to each other
in the deformed state. In Fig. 7.1 we give an illustration of the meridian section of the
body in its initial configuration, together with the mesh used in connection with partition
7, generated with the MODULEF code, ~ * - .

v V V
es, .m‘ew:

»4»*;19'
1 X
1“ V4 K v O e'«

FiG. 7.1. Merzdzan section of the cylindrical body.

Due to symmetry we considered only one quarter of the meridian section in the
computations, which were performed for a displacement correspondmg to a compress-
ion of 25 percent of the body height.

. An illustration of this meridian section with the trrangles of 73 in deformed state
is given in Fig. 7.2. These computer results obtained with the MODULEF code are in
quite good agreement with experrmental solutlons obtained for similar problems to
be found in the technical literature. : = -

_Third, .in "most of the numerical experrments that we have carried out so far,
partrtrons of type 7, have ‘been used, because. they are less time- consummg These
appeared to be comparable to partitions of type 75 as far as reliability and accuracy
are concerned. Particularly srgmﬁcant examples of large strain simulation for rubber
cubes using a partition of type frh can be found in [13] and- [18] (compression of up
to 40 percent).

Fourth in [13] we give an analysis of existence of solutions applying to partitions
of type 7} in two dimensions, for a particular case. A more detailed analysis for this
kind of partition in both two- and three- drmensronal cases will be the ob_]ect of a
forthcoming paper.

- Acknowledgments. The numerical results given'in,§ 7 were obtained by combining
the author’s finite-element method with an algorithm of augmented Lagrangian type
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FIG. 7.2.. Quarter meridian section of the body squécted to a compression of 25 percent.

I

due to Glowinski and Le Tallec (see, e.g.; [6]); implemented in.the MODULEF code,
for solving nonlinear problem (P). The author thanks Professor R. Glowinski and
Dr. P. Le Tallec for having so kindly allowed him the use of the code for running this
test, at both INRIA and Laboratoire (‘Cei\itral des Ponts et Chaussées in Paris.

REFERENCES

[1] R. A.-ADAMS, Sobolev Spaces, Academic Press, New York, 1975.

[2] F.BREZzZz1; On the existence, uniqueness and approximation of saddle point problems arising from Lagrange
multipliers, RAIRO Anal. Numér. 8-R2 (1974), pp. 129-151. i R ‘

[3] H. CARTAN, Calcul différentiel, Herrmann-Collection Méthodes, Paris, 1971.

[4] J. F. DE;,BON'G_NIE,‘ Sur la formulation de Herrmann pour I'étude’de solides incompressibles, J. de Méc.,
17°(1978), pp. 531-557. CIRRNEEE e : - B

[5] V. GIRAULT AND- P." A, RAVIART, Finite Element Approximation of the Navier-Stokes. Equations,:
Lecture Notes in Mathematics, Springer-Verlag, Berlin, New York, 1979. et

[6] R.GLOWINSKI, P. LE TALLEC, AND V. RUAS, Approximate solution of nonlinear problems in incbmpress—
ible finite elasticity, in Nonlinear Finite Element Analysis in Structural Mechanics, W. Wunderlich,

) E. Stein, and K-J. Barthe, eds., Spririger-Verlag, Berlin, 1981. ‘ : :
[7]" R. GLOWINSKI'AND O. PIRONNEAU, On-a mixed finite element approximation of the Stokes problem
(D), Numer. Math., 33 (1979), pp. 397-424. o R ‘ .
{8] C. JOHNSON AND J. PITKARANTA, Analysis of some mixed finite element methods related to reduced
integration, Research Report 80.02 R, Department of Computer Sciences, Chalmers University of
Technology and the University of Goteborg, Sweden, 1980. - L
[9] P. LE TALLEC, Numerical analysis of equilibrium problems in incompressible non
_ TICOM, University of Texas, Austin, TX, 1980. =~ "~ A ‘L
[10] , Les problémes ‘d’equilibre d’un corps hyperélastique incompressible en:grandes déformations,
Thése de Doctorat d’Etat des Sciences, Université Pierre et Marie Curie, Paris, 1981. -
[11] J. L. LioNs AND E. MAGENES, Problémes aux limites non homogénes et applications, Dunod, Paris, 1968.

[12] R. S. RIVLIN, Large elastic'deformations: of isotropic material, Philos. Trans..Res.-Soc. A, 241:(1948),
p. 379.. :

linear elasticity, thesis,




“APPROXIMATIONS IN NONLINEAR INCOMPRESSIBLE ANALYSIS 1059

[13] V. RuaAs, Méthodes d’éléments finis en élasticité incompressible non linéaire et diverses contributions a
I approximation des problémes aux Izmztes ‘These de. Doctorat d Etat des Scxences Université Pierre

‘et'Marie Curie, Paris, January 1982,

[14] , Sur I'application de quelques méthodes d’élements finis d la résolution d’un probléme d’ élasticité
mcompressxble non linéaire, INRIA, Rapport de Recherche 24, Rocquencourt, France, 1980.

[15] , A class of asymmetric finite element methods for solving finite incompressible elasticity problems,
Comput. Methods Appl. Mech. Engrg.,27 (1981), pp. 319-343.

[16] , Méthodes d’éléments finis quasilinéaires en deplacement pour I’etude de milieux mcompressxbles
RAIRO Anal. Numér:; 17 (1983), pp. 57-90.

[17] , Quasisolenoidal velocity pressure finite element methods for the three-dlmenstonal Stokes problem,

o Numer. Math., 46 (1985), pp. 237-253. :
[18] ,"On the. solvability of asymmetric. quasilinear finite -element approximate problems in nonlinear

incompressible elasticity, Monografias em Ciéncia da Computagdo da PUC/RJ, Rio de Janeiro,
Gavea, 8, 1982.



