Information Systems Vol. 15, No. 2, pp. 187-195, 1990
Printed in Great Britain. All rights reserved

0306-4379/90 $3.00 + 0.00
Copyright © 1990 Pergamon Press. plc

THE CHRIS CONSULTANT—A TOOL FOR
DATABASE DESIGN AND RAPID PROTOTYPING

Luiz TUCHERMAN,' MARCO A. CasANOVA,' and ANTONIO L. FURTADO!?
Rio Scientific Center, IBM Brasil, P.O. Box 4624, 20.001, Rio de Janeiro, Brazil

Departamento de Informatica, Pontificia Universidade Catdlica do Rio de Janeiro,
Rua Marqués de S. Vicente 225, 22.453, Rio de Janeiro, Brazil

(Received 10 October 1988, in revised form 4 August 1989; received for publication 16 November 1989)

Abstract—CHRIS is an expert software tool to help in the design and rapid prototyping of information
systems containing a database component. CHRIS involves an extended entity-relationship information
model, the relational data. model and a database management system. A prototype version of the tool,
written in Prolog extended with a query-the-user facility, is fully operational. The prototype includes an
interface for experimental use which enforces the integrity constraints of the application.

1. INTRODUCTION

CHRIS is an expert software tool to help in the
design and rapid prototyping of information systems
containing a database component. As an acronym,
CHRIS stands for “Concepts and Hints for
Relational Interfaces Synthesis”. It incorporates
a design method that closely follows what Chris
Date describes as “the synthetic approach” [1].

The tool actually consists of two parts: a design
tool, which helps the designer specify a database
application, and a prototyping tool, which allows the
designer or prospective database users to experiment
with the design. Figure 1 shows the structure of the
tool.

The design tool follows a strategy consisting. of
three phases:

The conceptual design phase, where the designer
specifies the application in terms of an extended
entity-relationship model. The designer is also
prompted to provide additional information about
how to enforce the integrity constraints.

The logical design phase, where the ER schema is
automatically mapped into a normalized relational
schema [2]. The schema is complemented by restrict
and propagate rules aiming at the enforcement of the
integrity constraints defined in the first phase.

The interface generation phase, that synthesizes
DDL commands to create the database plus an
interface file to be used by the prototyping tool.
The interface includes an executable version of the
restrict and propagate rules determined at the second
phase.

The major contributions of this work are therefore
a design tool covering the complete design cycle and
a prototyping tool that transforms operations into
correct transactions. CHRIS therefore compensates
the lack in data models and, to an even worse degree,

187

in database management systems of a more compre-
hensive set of constructs or commands for integrity
preservation.

CHRIS is written in VM/Prolog [3], with the
addition of the ETC extension to VM/Prolog [4],
whose purpose is to help in the construction of expert
systems in general, and which has been largely influ-
enced by APES [5]. The major function provided by
ETC is dialogue-management. SQL/DS [6] is used as
the target DBMS through the interface between this
system and VM/Prolog.

The idea of transforming an extended entity-re-
lationship schema into a relational schema is not new
[7-10]. The difference between most of the proposals
lies in the way the structures of the ER model are
translated into structures of the relational model
based on the scope of the extensions adopted. Some
of the methods proposed are performance-driven
[11].

Most of the research on the ER model concen-
trated on the static view of entities and relationships.
However, Petri-net techniques have been used to take
into account the dynamic behavior of the entities and
relationships [12-15]. Our approach captures such
dynamic behavior in terms of restrict/propagate rules
[16, 17], which are then.used by an especially designed
interface to transform an update operation into a
correct transaction, following an idea proposed in
[18].

Research on expert tools for database design can
be found in [19-22].

The paper is divided as follows. Section 2 describes
the specific variation of the entity-relationship model
that the tool supports. Sections 3, 4 and 5 present
the conceptual design, the logical design and the
interface generation phases of the design tool. Section
6 introduces the prototyping tool. Finally Section 7
contains the conclusions and directions for future
research.

188.. EES Luiz TUCHERMAN et.al.

‘ d‘esigner‘sp,eclﬁes' ‘
~ ERschema and
. -additional.information

- ,‘ ,

DESIGN
. TOOL

Relational
- Schema™ [

" PROTO
TOOL

. DBMS

operations

Flg l.b Archltectuse of :th‘ef"tco]."

2 SUPPORT FOR THE ENTITY-
RELATIONSHIP MODEL

2.1 Prehmznary remarks O »
Thls sectlon descrlbes the speclﬁc vanatlon of the
ER model [23] that the, tool .supports..

Bneﬁy, an-ER schema con51sts of a set of entzty

vschemes and. a. setof reIatwnsth schemes.. Bach

scheme has a name and a list of attrzbutes Each ER
schema .also deﬁnes a set of integrity constramts and
indicates how to organize the entity schemes into
abstraction hierarchies [18,24,25]. The. next .sub-
sections will: discuss these points in detail as well as
several restrictions-we 1mpose on the. descnptlon of an
ER schema,

= The first restrlctlon we 1mpose is that

ERl no two entlty or relatlonshlp schemes can
have the same name:"
kFor s1mphclty, we w1ll frequently use entlty (or
“relationship™) to mean “entity scheme” (or “re-
-latlonshlp scheme”) in: what follows. . .

2.2. Declaration of attrtbutes

Although the declaratlon of attrlbutes is part of the
declaratlon .of entity or relatlonshlp schemes, there
are certain common points that, we factor out m this
sectlon :

- Bach: attrlbute always has a type, whxch can be
viewed:.as a convention for the representatlon on a
machine or other medium of the attribute value set.

‘For each z—l
lof F, are mherlted by E that 1s automatlcally

For convenience, we restrlct ourselves to three of the
“physical” types-supported by the underlylng DBMS,
which are INTEGER, FLOAT and CHAR.

“The type of an attrlbute may be’ quallﬁed in two

" ‘ways: ‘it may be declared -as single- or multi-valued,
" and’ as“admitting or;-not undefined ‘values. If an

attribute is multi-valued, we assume that it. can have

. zero or more values. We cons1der Zero values asa case'
. of undeﬁned value.

For the entlty scheme PERSON for. - example,

lfattnbute NAME is ‘normally- déclared” to be smgle-
valued (a person has only one name) and not

admitting undefined .values, whereas TELEPHONE-
NUMBER may well be declared to be multi-valued
and DRIVER'S- LICENCE as’ admlttmg undeﬁned

. values..

user submlts .
- update)

Fmally, we requlre that

+ Al no two- attrlbutes of an entlty or relatlonsh1p
scheme may have the same name;

A2. if the same attribute is associated with two or
more schemes, it must have the same type in
both uses. - *

Thus, by (A2), the -basic. type -of - an. attribute‘is
a global property. However, .the properties of being
or: not -multi-valued -and. of -admitting or. not an
undefined: value may " differ in each use of the
attribute. For example, ADDRESS may be single-

valued -and .always - defined ‘for- EMPLOYEE,. but

multt-valued for ENTERPRISE

'23 DecIaratzon of entity schemes o

The declaratlon of an entlty scheme must spec1fy
thie-name of the,scheme and the list of attributes of
the scheme, together w1th their types, as explained in
Section 2.2.

In.addition, the .declaration of an entlty scheme .
E must specify a key or identifier for E; that is,-a
sequence K of attributes of E possxbly w1th just one
element such that: ' :

Kl each attrlbute in K is smgle-valued ‘
.K2. each attrlbute in K ‘does not admit undefined
values,

The’ tool admlts only one key per entlty

2 4. Declaratton of the is-a relatzonsth

“The’ tool” supports a vanatlon of the is-a‘relation-
ship that is not necessarily 2 hierarchy.,

More precisely, the definition of an ER schema
may indicate that an’entity scheme E is-a a list of
entlty schemes F1 Ly Ry, prov1ded that

ISAl E must be declared ‘after. F,, i - ,y
ISA2. the identifiers of E, F,,.. F must be the

safrie;
~ISA3. the non-ldentlfymg : attrlbutes of E,
: Fi o F must all have dlfferent nares.

n, all. non-1dent1fymg attnbutes

The CHRIS consultant

become -attributes of E with -the same -type, . the

same -single/multiple -value property and:the same
defined/undefined property as in F;. Moreover, in
any consistent: state- of the ER schema, the set of
entities: associated - with- E. will always be.a subset
of -the set of entities associated with F;.
“-Requirement’ (ISA1) guarantees that, the is-a re-
lationship is a partial order. (but not necessarily a
hi'ei'archy) The other two requirements avoid ambi-
gu1t1es in the inheritance of identifiers and.attributes
in-general-and obviate the need.to check that the
value of an attribute is consistently the same for an
entity instance ‘¢ that simultaneously belongs to the
s'ets associated with F; and F;..

2 5 Declaration of relatzonshtp schemes

The declaration of a relatronshrp scheme must
specify a unique name R for the ‘scheme, the
list E,...,E, (with n>2) of participating entity
schemes,. poss1bly with distinct roles, and the list of
attributes, together with their types,. as explained
in Section 2.2. In any consistent state of the ER
schema, the set of relationships associated with R
will then be a subset. of the Cartesian product. of the
set of entltres ‘associated with E,, ..., E,.

' We require that all participating entity schemes
vmust have been deﬁned before the relatlonshrp
scheme. .

~We let the same entlty scheme part1c1pate more
than once in a relatronshlp scheme, provrded that the
partrctpatrons be dlstmgulshed by _different roles.
‘We consider that a relationship, scheme R 1nher1ts
each attribute A i in‘the identifier of each participating
entity. scheme E. If E has role P, A is renamed to
P_Ai 1n R, otherwrse it is inherited wrthout renammg
The tool rejects the situation ‘where two, or more
participants have identifiers with ‘attribuites in com-
mon;- this happens, for instance, when such, partici-
pants are ‘associated by is-a. The use of roles is
mandatory in’ these’ situations:

A relatronshlp scheme R may ‘also be declared as

total with'| ‘respect to- at most one partrcrpant E to.

mdrcate that mstances ‘of - E “cannot ‘exist ‘without
partrcrpatrng in.at least one instance of R, For
-example, ! suppose that, as an enterpnse pohcy, an
employee cannot ex1st unless he'is assrgned toat least
one project. Tn this case we say that the relatlonshrp
scheme: ASSIGNMENT lS total - with, respect to
EMPLOYEE. .

Finally, a relationship scheme R may. be declared
as functional with respect-to: one or’ more -of -the
participating entity ‘schemes; called the identifying
_participants. This indicates that, if two relationship
“instances ‘of R “involve ‘the 'same" instances of the
identifying participants, then the instances :of R
are actually the same. Moreover, the .identifier of
the relationship scheme is the concatenation.of the
-identifiers. (keys)-of .the identifying participants.

Particular cases of 1nterest are - those .of binary
relatlonshlp schemes. that are functional w1th respect

189

to one participant—which are called one-to-n . re-
lationships (with: n. on- the identifying participant
side)—or with respect to both—called one-to-one re-
lationships. Non-functional binary relatlonshlps are
said to be r-to:m.

‘To summarize, we require that

R1. R must have at’ least two partlclpatrng entrty
~schemes;
- R2. R must be declared after the parhcrpatmg
R _entlty schéemes; ~
CR2Vf an entity scheme partrcrpates more. than
" once in a: relatronshrp scheme, each partici-
" pation must be assigned a different role;
R3. all partrclpants must have dlﬁ‘erent names,
* either roles or not; :

'R4.if "the identifiers ‘of two participating entity
schemes have attribute names in common; at
least oné of the part1crpants must be assigned
a role;

R5. R may be declared as total with respect to at
most"one partrcrpatmg entity scheme.

2 6. DecIaratzon of restrzct /propagate options

As drscussed in: the prevrous subsectlons, an ER

‘schema may contain several integrity: constraints, A

state of the schema is consistent- iff it satisfies. all
constraints of the.schema and a transaction. is correct
iff it maps consrstent states into consxstent states

A fundamental question therefore is how -to
transform a transaction specified by the user mto a
correct transaction. This question brings up another
issue- since ' some - types - of .integrity - constraints do
not. completely. determine. the transformation. Thus,

in order to-solve the basic question, we must also

extend .the:concept of integrity constraint to.include
extra -information :that: specrﬁes how a transaction

.must be modlﬁed ThlS is:a very important issue that

is often neglected although the CODASYL DBTG
proposal - had already made some progress in- ‘this
direction.

The tool consrders a specral case of th1s problem,
which is how to transform a single insertion, deletion
or update operation jnto a correct transaction with
respect to.the type of constraints defined in an
ER schema. The transformation is based on certain
restrict [propagate options, specified during the design
of the ER schema, and, discussed. below.

.-Suppose . first that an ER _schema declares that
E is-a F. The.options are fixed in this case: the

-.1nsert10n of an.instance e 1nt0 Eis. restrrcted @G.e.

blocked), if e is. not; already an 1nstance of F, and the
deletion.of an instance f from F automatlcally propa-
gates to.the dﬁeletlon, of f.as:an,instance of E.

Let us assume that an ER schema declares that R
is a-relationship scheme over. Eq, ..., E;. An obvious

,mtegnty constraint,_.call it the mczdence constraint,

is: that. an ‘instance of R. cannot exist unless the
part1c1patmg .instances - from, each E;.also exist. To
preserve this constraint, the ER schema must 1ndrcate

190

whether- the insertion of ‘an instance (e;, . ., €;) of
Rmust be restricted (i.e: blocked), if ¢; is not an
instance of E;, for éach iin [, n], or propagate to'the
insertion of ‘e, into E;; if ¢, is not an ‘instance of E;.
Likewise, the ER schema must also indicate whether
the deletion of an instance e; of E; must be:blocked,
if an instance (f}; . .. ,.f,) of R with f; = e; exists, or be
followed by the deletion of all 1nstances (s ky)
of R .with fi=e¢;. .

Suppose. now that an ER schema declares that R
is total over E;. In this. case, a smgle possrblhty for
transforming the 1nsertron of a new 1nstance ¢, of E,
presents itself: 1t must be followed by the msertron of
an instance’ (fl, cenfi).of R such: that fi=e,. This
means that, if a correct _transaction contains an
insertion of a new instance ¢; into E;, it must also
contain an 1nsertlon into R.. But. which - instances
fl,fz, T .‘.,f,, should we take? Unless
some criterion has been chosen, the only option we
have is to.consult the person performmg the insertion
of e;. The situation would in fact be more complex if
a relatxonsh1p sheme were allowed to be total with
respect to.more than one entity scheme, which for
simplicity the tool exp11c1tly forbids. To’ d1samb1guate
the treatment ‘of ‘the * deletion-~ of - an - instance
(e,). Ui e,) of 'Ry the ER schema must indicate
‘whether it must bé testricted, if there is no other
‘instance (f;;. .5 ,f;) of R with'f; = e, or propagate to
the deletion of e from E,, if* there is no other mstance
(f,,...,f,,) of R Withf; =,

The decisions ‘related to: the 1ncrdence conistraitit
are niot ‘independent- from those related to totality.
“For example, if the designer has:chosen that deletion
of an- instances e, of -E; partlclpatmg in"a relation-
ship~ R that' is- total with " respect” to” E;'should be
 block” the deletlon of the

‘blocked; the decision to-al
‘last ‘instanicé r'of R ‘whé
‘situation that'is not usually mtendedf once created &
‘can never be déleted. &

"+ Finally,‘in all ‘other situdtions, such as v1olat10ns
ofattribute’ types or umqueness of 1dent1ﬁers, the
operatron is blocked

"3 CONCEPTUAL DESIGN PHASE '_

3 L Outlme of the phase

' This phase is best characterlzed as'a knowledge-
acquisition phase, during which the general’ Know-
ledge“about the des1gn strategy embedded in the tool
is’ complemented by knowledge:about the spec1ﬁc
apphcatlon being' desigried. “The tool must acquire
this specnﬁc knowledge by’ estabhshmg a rule- driven
dialogue with the designer. Once logged; the-answers
supplied by’ the desngner become a fundamental part
of the ‘design.

"“As afesult of the dralogue a log is created consist-

: mg of a number of Prolog clauses: When the designer
“initiates ‘the ‘definition of each entity-or ‘rélationship,
“control is transferred ‘toa program——cal]ed Scheduler
—which engages’ ‘him‘in a -dialogiie to supply the

Luiz TUCHERMAN et al.

various. ‘components of the definition, ‘according
to “a. definition order. Moreover, the .dialogue is
driven by certain rules that validate thedesigner’s
answers (valid_-answer), declare that only one answer
should be supplied in specific cases (unique - answer),
prompt the designer to - supply new " answers
(complete _answer) or-automatically fire (trigger) new
internal operations-as a result of an answer. -

‘The - following: figure summarizes the structure
of: this . phase, where the ‘single - arrows denote
program invocation and the double arrow: denotes

r-‘output [26]

scheduler

rules .«—— interactive ===———=> log
~ facility

In addition to commands to design’entity or re-
lationship schemes, described in-detail in the next
two subsections, at any point during a session, the
desrgner may’ also issue the command keep(F) to
save the current’ status of the desrgn in'a file F.
Conversely, the designer may reinitiate a session
saved it F by issuing the command restore(F).
The drop(X) command deletes all ‘clauses related
'to an entity or relationship X, as well as all clauses
‘related to ‘other entities or relatlonshlps defined after
X, since their definitions may have become incorrect
due to the removal of X (of course, more selective
redesxgn features are des1rable) Finally, before reply-
1ng to a query posed to him, the designer may want
»to inspect previous definitions recorded' in"'the log,

_Wh1ch s provrded by the Iog command through a

3 2 Deﬁmng an entity

The tool ‘offers a smgle command entlty(E),
.to define an entlty scheme, as well as the is-a relation.

We now descnbe the successive deﬁnmon steps
determined by the entity ‘scheduler and the fules that
drive the dialogue. The kind of reply expected from
the desrgner is mdlcated in each case. In this dialogue,
“Q”, stands for a questlon posed by the’tool and
“A”, the expected answer, from the desrgner '

Q1: If other entities have been previously defined,
is E a sub-class of one or more of them" :
«Als from menu. ~ ~
Q2: Which-are the attributes of E?:
A2: name of attribute.: .

“ For each such attrlbute A that has not been

blmhented from any super-class

Q3:- What:is the type of A? -

: A3 from'~ menu; If the type selected “is- char-
“acter string; enter an 1nteger determmmg the
"maximum string length. - :

Q4: Does'A admit répeating’ values" BRI

The CHRIS:consultant) - 191

-Ad: yes or no. If yes, it is-assumed that A can have

0:or more values, i.e. the value of A-can be

i undefined. :

= Q5:-If A does.not admit repeatmg values, can the
value of A be undeﬁned" :

- AS:-yes or. no:

- 'Q6: Which: dre the 1dent1fymg attrlbutes of E"

A6 from menu,

. Notes—we remmd that

() Naines of attnbutes are unique,’ and SO attrl-
bute”A: ‘of ‘anentity ‘E is the same as ‘A of: another
entity F.or relationship R: Accordingly, the type of A

is -asked only: when' A is first ‘introduced. Yet “the -

-properties of beitig multi-valued and/or admit an un-

defined value can:differ for ‘A'in E-and F(or R)...

- (2) Entities admit a single identifier, which may be
simple or composite. Therefore when more than one
1dent1fymg attribute is selected a compos1te attr1bute
is assumed : - :

The rules that dnve the d1alogue for the deﬁmuon '

of entltles are

: ":"(l) valid - .answer rules
Questlon Test applied

Q1° o ',;’only entmes prewously deﬁned are dis-
played in_the menu; if the des1gner

"7 selects' more than one super-class, they

“must all have the same identifiers and

“must all have d1st1nct non-ldent1fy1ng

o attrlbutes) ’ :
'Q3: omly INTEGER FLOA‘T _or

"CH,' R((number of characters)) are

L disp yed in the menu._

'Q6: - only attributes of E that are not multt-
" "'valued ‘and cannot be’ undeﬁned are

'dlsplayed in the menu. ‘ :

(2) tngger rules PR R R
Questlon Actlons IR L
Q1: the. attrlbutes ‘of super-class F are

% w7 inherited by Es.-they::will: be -multi-

- valued and/or'accept null values if they
..+ are 5o with respect to-F. The identifiers

- o copof Brare exactly those of F. ¢

: 'Qf‘:'-' -+ multi-valued:-attributes -are-automati-
o "+ cally specified-as undeﬁned

(3) uhique _answer rules . { i
Questlon Test apphed
Q3 only ornie type can’ be spec1ﬁed per

. ,attrj ute.

(4) complete a ,
Qnestlon Test applled o

- Q6:: o every: .entity must have at least one

identifying attribute. ‘

3.3 Deﬁmng a relatzonsth

*The tool'has a single command relauonshlp(R),
to define arelationship scheme. :

--Again, we now describe the successive definition

steps determined. by the relationship scheduler and
the rules that drive. the dialogue:

) Ql' Which are the partmpants P of R?

Al: name of an entlty or name of a role

For each part1c1pant P

' ‘.‘, Q2' IfPis the name of a role, then enter the name

of the. entlty for wh1ch P is the role i in R.

' A2 from menu.
Q3 IfR Ahas not already been declared total with

respect to some other participant Q, is R total
‘ ~ with. respect to P?
A3. yes or no. If the answer is yes

.. Q4: Does the deletion of the last instance of R that

* references an 1nstance of P -propagate to the
. deletion of this 1nstance of P?
A4. yes or no.

; _Q5' Does the deletion - of an instance- of P

propagate to the deletlon of the instances of
“'R that reference that 1nstance ‘of P‘7
AS: 'yes or no.

) Q6 Which part1c1pants are 1dent1ﬁers of R"

A6: from menu.

‘ Q7° Which are: the attnbutes of R bes1des the

‘ 1dent1ﬁers of the part1c1pants"
A7: name of attiibute.

- For each such attnbute,

Q8: What i is the type of A?
" A8 from ‘menu. If the type selected is character
. strmg, enter an mteger deterrmmng the maxi-
© mum strlng length
): Does A adrmt repeatmg values” -

Q10. ‘If A does not adm1t repeatlng values, can the
. value_of A be undeﬁned‘7 ‘ ’

. ‘(l) Valid : ahsWers ‘rules

Questlon Tost applled

QL vonly prevrously deﬁned ent1t1es can
i~ be-specified, and no- two participants
. of -R can. have identifiers with' attri-
butes:in common. (the ‘use of roles
- can-solve this. problem as explalned in
- Section"2.5). :
- only previously deﬁned entltles are: d1s-
s oplayed-in the. menu.- ;
-Q6: only: partlclpants are dlsplayed in the
coed menu.: =
Q8 - only INTEGER : FLOAT or
CHAR((number of characters)) are
"displayed in the menu.

192 Luiz TUCHERMAN et al.

(2): unique_answer rules-
Questlon Test applied
Q8: only one type can be specrﬁed per
- attribute.
(3) trigger rules: W v
Question Actions taken- .
Q1 _define the attrrbutes of the 1dent1-
‘ fiérs of participating’ entmes with no
ass1gned roles as attrlbutes of the re-
lationship.
for each attrlbute A of’ the 1dent1ﬁer
of an entity partlclpatrng through a
“role Pin R, define P_A as'an attnbute
of R. " o
the. concatenatwn “of the 1dent1ﬁers
of 1dent1fymg participating entities
becomes the 1dent1ﬁer of the relatron-
ship.
‘multi-valued attrlbutes aré automati-
"cally specrﬁed as undefined.

(4) complete_ answer rules
Question ‘Test applied

Q2
Qé:

Q9 |

Qt: relatlonshrp R'‘must have at least two
oo partlclpants
Q6: relatronshrp R must have' at least one

: ‘1dent1fy1ng partrclpant

4, LOGICAL DESIGN PHASE

To map entities and relatronshlps into relatronal
tables we. start w1th the srmple strategy of assrgnmg
to each entity E a table, also.named E, and to.each
relationship .R, a table R. The columns of tables E
or-R correspond to the réspective attrlbutes and the
key of the table corresponds to the idi ' ;
entity or: relatlonshlp‘ 1
duces a simplification: if E'is-a F; then table E must
keep only the attributes of the identifier (which is the
same’ as that‘of F)-and the attnbutes not 1nhented
from F.

~-However, the first. normal form requrrement con-
flicts with the notion of multi-valued attributes. Such
attributes are placed in separate. repéating-attribuite
tables, together with the identifiers of. theas_socrated
entity or relatlonshlp .

Binary:one-to-n relatronshrps also receive a spec1al
treatmént. Consider one such-relationship R between
‘E-and Fywhere E-is the:identifying participant. Then
the identifier of R-is exactly that-of-E, and hence the

keys of tables E'and R are the same. Then, we:can
compress tables E and:Rinto & single table, reducing
the number of original tables, without violating third
normal form. This led to:the extended-entity table
concept whereby ‘a single table represents both.an
entity and-one- (or more) binaryone-to-n: relatlon-
ships, together with their attributes.:

The “adoption . 'of "extenided-entity - tables turned

~out: td" introduce far ‘more *coimplexity than we
anticipated. ‘We decided not to use them when: (1)

-the identifying entity. E particpates through a:role;

(2) there is:more than one binary one-to:n relation-
ship, say R1 and R2, between the same participants

“E-and F except if Fis d1st1ngu1shed by roles in R1

or R2.

Depending on the type of a table and on the
options taken by the designer during the dialogue at
the conceptual design phase, the tool also -attaches

. different restrict and propagate rules to-the table.

For example, if an entity scheme E participates in a
general relationship R, the deletion of a tuple e from

E may. propagate.to. or, be restricted by the existence
-of a tuple rin R that represents the participation of

e in the relationship. If R.is total with respect.to E,
the insertion of a tuple e in E necessarily propagates
to the insertion into R of a tuple referencing e, to be
supphed by .the user.

Restrict and propagate -rules break down into -a

‘dlvversrty of .cases for extended-entity tables. One

should recall that such tables are notlimited to
representmg the. instances of an entity since they
embed one (ot more) rélationships. Thus operations
on their tuples may be directed either to the entity or
to a relationship, and may affect both: in :some
situations. Another source of complexity. is that the
(foreign) keys denoting the other entities may be null

f the relatlonshlp is not. total, _‘whlch requires that

rules be attachedt not only to insertions and deletions

‘but also to updates so that these values are handled
correctly B

To,_give: Van 1dea ‘of how these rules are formed

_from . the; mformahon gathered at the conceptual

deslgn phase, consider the deﬁmtlon of .a one-to-n

'relatronshlp WORKS between, 'EMPLOYEE and

DEPARTM ENT and suppose that the designer. replies

(see Section 3. 3):

¢)) YES to questrons Q3‘ g and Q4, when
EMPLOYEE is indicated as a participant of WORKS;

(2) YES to Q5, when DEPARTM ENT is indicated
as a participant of WOR KS; 1

Together, the: repliés in (1) mean that WORKS
is* total for [EMPLOYEE -and “that the deletion of

‘an employee department pair’ (e, d) from WORKS

propagates to-the deletion of the employee e from
EMPLOYEE, if-¢" “does. not -work for any.”other
department Furthermore, the reply in (2) means that
the deletion of . a department d-propagates to the
deletion of all entries in WORKS:that, reference d.
_Suppose now that, ‘at the loglcal de51gn ‘phase,

‘EMPLOYEE and WORKS are collapsed into 4 single

extended-entity table, also called EM PLOYEE and
that DEPARTMENT s mapped into ‘an ordmary
entity table with the same name: Then, a propagation

- ruleis-created: and stored” as. the followmg Prolog

clause:

propagate(rdl',delete:!d_epartment,employee); :

where ‘the parameters..délete and department: indi-

cate that. the rule is ‘applicable: when' a' tuple . -of

The CHRIS-consultant.

DEPARTMENT is deleted; elsewhere in the system
it is established that rd1 means that the propagation
action is the deletion of all tuples of the other table,
EMPLOYEE in this case, referencing ?.

The previous clause is simply displayed to the
designer in the format:

delete: department = delete: employee

Now, if the reply to Q3 were NO, a different kind
of propagate rule would be created, whose display
format is:

delete department — nullify reference in employee

Finally, if the reply to Q35 were NO, regardless of
the replies to Q3 and Q4, the result would be a restrict
rule forbidding: the deletion of departments with
employees, displayed in the format:

delete department / no reference in employee

To conclude, the structure command displays the

relational tables that represent the entity-relationship -

definitions and the behavior command displays the
restrict and propagate rules. Finally, the command
schema(F) exhibits both the tables’ organization
and the rules and stores them in file F.

5. THE INTERFACE GENERATION PHASE

The' mappmg from" relational ‘tables” to SQL/DS
tables is of course, lmmedtate, smce SQL/DS follows
closely the relatlonal model., However a number of
remarks must be made

~The order of' columns is immaterial in the relatlonal'
model but inan 1mplementat10n the order'is “signifi-
cant in many cases. The’ SQL/DS columns of a table

Tawill: follow the definition order commg from:the .

entity-relationship phase

To " enforce keys in SQL/DS ‘the” too] deﬁnes
indexes on keys’ with the umque Joption.’

Whenever undefined - values -are excluded. for. an
attribute A, the respective:column is declared with the

“net: null” optlon in ‘the’ “create table” ‘command.
An exceptxon occurs if A denotes an attrlbute of a
relat1onsh1p R that is, ‘not total wrth respect to E.and
both E and-R:are. mapped into an extended-entlty

table: In-this case, the'value of ‘A-in a tuple of the

table will be:“null”“if and’only if the 1nstance of E
represented by the tuple does not currently partlcl-
pate in R. In fact, in such tuple all. attrlbutes or1g1nat-
_ing from :R must, be Snull”. ‘

As” the tool creates a'table; 1t also creates restrlct
and *propagate”’ Tules’: associated w1th executable

VM/Prolog code and stores them i in.an 1nterface file ;

indicated by, the desrgner, whichs used for momtored
execution by’ the. prototypmg tool.~ The executable
_ code created is 'stored s an addltlonal parameter in
thé clatises recording the rules, and' kes'into consid-

eration which tables are involved:and what is.to be

done. For restrict: rules; this: may: include. SQL/DS

193

select:-commands:. For propagate rules, insert, delete -
and: update: commands may: also be. included,to be

invoked from the recursive executel. metapredicate.
(see: Section. 6).:In the example of Section-5; the code :
of the propagate rule displayed: as. o

rtment—»nulhfy reference |n employee

shouldr perform ‘an update on the appropnate
EMPLOYEE - tuples. to set ‘to nullthe : values - of -
the:fields. corrésponding to: the key- of the: DEPART-
MENT: tuple "deleted. and. to the attrlbutes (1f any)
of the:-WORKS . relationship; -

For. the execution of updatmg commands the tool .
provides different . error-cliecking: methods. In some
cases-it .uses the SQL return codes, but generally
most of the ehecks are done via the restnct/propagate
rules. ...

These rules av01d .that key values be updated
prevent the insertion .of tuples with less values:than
specified in the :table-definition, control nulls‘in the
case.:mentioned béfore -for - extended-entity. tables,
where-the “‘not-null” option would. not apply, and— -
as their most important purpose—-guarantee the
referential integrity requirements arising from is-a,
connections with repeatmg-attrlbute tables, total and
partial relationships,'étc..

The physical creation of the SQL/DS tables, plus
1nd1ces v “th the “umque optior, and’ of the file
contamlng Prolog predtcates correspondlng to the"
restrrct and’ propagate rules is accomphshed by 'the
command |mplement(F D), where F is the name
of a ﬁle whereln the predrcates for the restrlct and
1 rules_ are stored, and D is the database
space where the tables and’ indeéxes will be kept.
Besrdes the restnct and propagate rules, ‘other useful
mformatton is stored in ‘file F, espec1ally the record
of the “create fable” and * ‘create index” ‘opérations
executed.

tS :THE PROTOTYPING TOOL

If F is the appllcatlon mterface file created at the
1nter 'ce generatlon phase, the user lmtlates a proto-
typmg sessron by entermg mterf F.

This initiates a VM/Prolog sessmn, “where the
database can be updated and querled momtored by
the” restrlct and propagate rules in F. ‘Besides F ; the
command lnterf Floads a file contammg generic
commands for the momtored mampulatlon of data-

i

r10 Forbrds 1nsert10n in any table of tuples whose
. number of values is not the same as the
" ‘hummber of columns of the table. | "
ruO Forblds update of keys of any table

The major ° ‘command: of ‘the ; prototypmg ‘tool - is
execute(0); where. O is eithér. an :SQL: ‘select” -

-command or an SQL “insert”, “delete” or ‘‘update’

commahd:: Its main purposeis to handle:the éxecu-
tion of “insert”;““delete’: and “‘update” operations;

194

monitored by the restrict and propagate rules. Before ™

executing these operations; the user may want:to see

the ‘cteate:table” command originating the table in -

order to correctly write the sequence of values-of the

“insert” operation. The associated “create “index”
command may also-be inspected. The execution of
SQL commands ‘may be traced, which is especially
useful-to: follow the chains of. commands mduced by'
the propagate rules. : '

~For"update: operations,’ execute calls execute1 " and tngger ed SQL /DS comman ds and questlons to

‘the” user ifi cases whete he must supply values 'to

and :in “case : of success, forces an:SQL “commit”’,
otherwise it issues' a- “rollback. In-turn; eXecuteT
proceeds along-the followign steps: (1). identification

of the operation;:(2).analysis of the tuples affécted; -

(3) test-of each applicable restriction;: (4):‘execution
of the operation itself: (5) call to executel for each
applicable propagation. The last step may cause the
execution of ‘a chain of operations, -induced by the

recursive structure .of executel. So, the “commit”"

or-“rollback’” command issued by execute refers to:

the entire chain of operations.-If the trace: option of -

the toolis “‘on?. (which is the default), each operation
is .displayedias it is executed.

7. CONCLUSIONS

The work reported contrrbutes to providing expert.
help for correct information systems design. Because"_'

the process ‘starts with the ent1ty-relat1onsh1p model,
a designer who knows about the appllcanon on hand
can rely on his intuition, w1th almost no- need
to worry “about computer-onented processmg The
relational tables induced from this phase are both

srmple and meanmgful Restnct/propagate rules are :
generated automatlcally to govern the behavior of
update operatlons on the database so as to. enforce

certain classes of integrity constraints.

The prototyping tool cumulatlvely applres all‘

approprlate restrlct/propagate rules’ “to * each
operation the' user ‘Submits, thus transforming the

operatron into a transactlon that. guarantees. the,

cons1stency of the database ThlS property 51mp11ﬁed

the des1gn of the tool and will certamly contribute ,

to its ‘evolution because it allows addmg new restnct/
propagate ru]es w1thout reprogramming. o
The scope of ‘the design tool ‘was dehberately‘

hmlted in order to have a first versron avallable ina

reasonably ~short” tlme “Yet, the’ 1mp1ementat10n
turned out to be qulte complex Some of the limits
affect the des1gn strategy itself,- the most 1mportant
belng R o

1. Attnbute types are s1mp1y those of the under-
lying DBMS .

(2) Each entrty can have only one key, which may
be simple: or:composite; :At' the relational level;:this
means-that: alternative - candldate keys are%‘inot

. cons1dered L

3):A relatlonshrp can be declared total w1th

respect ‘to. no ‘more- than one’ partrclpatmg entity.

Luiz. TUCHERMAN:et al.

(4) -At the conceptual design phase, the. designer
can choose between restriction or propagation only in
certain cases. e
- The implementation was likewise simplified. Only
at the conceptual design phase the prototype estab-
lishes a dialogue with the designer. The logical design
and interface generation phases are totally automatic.

) When running the 1nterface, 1nteract10n w1th the user

cons1sts of error messages, smple traces’ of 1nvoked

propagated 1nsertlons and updates.
Much remains to be done in at least two direc-

_tlons reﬁmng the strategy and further developmg

the' implementation, especially to' 1nc]ude more
advanced ' featuires- to' correct or modify the ‘design
of applications [26] “and ‘to improve user -inter-
action,, By applying CHRIS to cases of increasing
complex1ty and. by exposing it to designers with
different backgrounds, we expect.to gain the neces-
sary feed-back to. usefully achieve the two objectives:
above.

REFERENCES

[1] C. J. Date. Relational Database: Selected Writings
Addrson-Wesley, New York (1986). '

-{2] C: J. Date. An' Introduction to Ddtabase Systems, 4th
edn. Addrson—Wesley, New York (1986).

[3]-VM/Programming in Logic—program description and
operations | manual. Doc. IBM SB11-6374-0 (1985)..

[4] ‘A, L Furtado. ‘'VM/Prolog, étc. ~——-add1ng an expert tool
capability to 'VM/Prolog.- Techmcal Report CCBO41
IBM Brasil (1986).

[5}. P. Hammond.and M. Sergot. APES Augmented Prolog
for Expert Systems. Logic Based Systems, Ltd (1984).

- [6] SQL/Data “System” apphcatlon programmmg Doc

IBM SH24-5018-2 (1983):

[7}:N.-Azar ‘and E. Pichat, ‘Translatlon ‘of ‘an extended
‘entity-relationship model into - the universal : relation
with inclugion formalism.. Prac. 5th Int.. Conf. Enttty-
Relationship - Approach, Dijon (1986).

[8] A. Atri-and 'D. Sacca. Equrvalence and ‘mapping of
" database schernes. -Proc. " 10th: Int Conf Very Large
“"Data Bases, Singapore: (1984): .

[9]. M..N: Bert, G. Ciardo, B. Demo et al The logical
design in the DATAID project; “the Easymap system. In
Computer-azded Database Design: The' DATAID Pro-

* ject. (Edited by A." Albano, V- Dé Antonelhs and A. D1 :
Leva). North-Holland; Amsterdam’ (1985)! -~ ..

[10] I. Chung, F. Nakamura and P P. Chen. A decom-
position of relations using the entity-relationship
approach. In Entity-Relationship Approach to Informa-
tion Modelling and Analysis (Edited by P. P. Chen)
North-Holland, Amsterdam (1981).

[L1] P. Bertaina, A. Di Leva and P. Giolito. Logical design
in Codasyl and relational environment. In Methodology
and Tools for Data Base Design (Edited by S. Ceri)
North-Holland, Amsterdam (1983).

[12] V. de Antonellis, G. D. Antoni, G. Mauri and B.
Zonta. Extending the entity-relationship approach to
take into account historical aspects of systems. In
Entity-Relationship Approach to Systems Analysis
and Design (Edited by P. Chen). North-Holland,
Amsterdam (1980).

[13] S. Ceri (Editor) Methodology and Tools for Data Base
Design. North-Holland, Amsterdam (1983).

The CHRIS :consultant:. : L 195

[14] H. Sakai. A method for entity-relationship . behavior

modeling. In Entity-Relationship Approach to Software . .
Engineering (Edited by C. Davis et al.). North-Holland .

Amsterdam (1983).

[15]. H. Sakai-and H. Horiuchi. A method for behavior.

modeling in data oriented approach to system design.

Proc. Ist Int: Conf-Data Engmeermg, Los Angeles, pp.

- 492-499 (1984).

[16] K. :P. Eswaran and D. D Chamberlm Functlonal'-

.specification of a subsystem for data base integrity.
Proc. Ist Int. Conf. Very Large Data Bases (1975).

[17]. K. P.-Eswaran.. Specification,.implementation-and in-

* teraction of a trigger subsysteni: in an integrated data
base system. IBM Research Report RF1820 (1976).

[18] P. Scheuermann, G. Schiffner and H. Weber. Abstrac-

tion capabilities and invariant properties modelling
within the entity-relationship approach. In Entity-Re-

lationship-Approach to System Analysis and Design,”

(Edited by P. P. Chen) ‘North- Holland Amsterdam
(1980).-

[19] M. Bouzeghoub and E. Metals SECSI: an. expert
system approach for database design. In' Information
Processing 86 (Edited by H. J. Kugler), pp: 251-257.
North-Holland, Amsterdam (1986). -

[20]; H.:Briand, H. Habrias, J-F Hue and Y. Simon. Expert
_system for translating an. E-R diagram into databases.
Proc. 4th Int. Conf. Entity-Relationship Approach,
' Chicago (1985), " -~ })

[21] D. Reiner, M. Brodie,. G. Brown et al. The database
‘design -and . evaluation workbench (DDEW). IEEE
.Database . Engng 7(4) (1984)."

[22]:C. Rolland and C. Proix. An expert system approach
‘to information system design. In Information Process-

 ing 86 (Edited by H. J. Kugler), pp. 241-250. North-

‘Holland;-Amsterdam (1986).
[23]:P. P.-Chen. The:entity-relationship. model: toward a
. - unified view of data. ACM TODS 1(1), 9-36 (1976).

[24] U. Bussolati, S. Ceri, V. De Antonellis and B. Zonta.
Views conceptual design. In Methodology and Tools for
* Data Baseé Design (Edited by S. Ceri). North-Holland.
Amsterdam (1983).

- [25]: M. Lenzetini and G. Santucci. Cardinality constraints

’m the - E-R model. In Entity-Relationship ‘Approach
‘to -Software’ Engmeermg North-Holland, Amsterdam
(1983). -

[26] A. L. Furtado, M. A. Casanova and L Tucherman.
A framework for design/redesign experts.-Proc. Ist Int.
. Conf. Expert Database System, pp. 313-328 (1986).

